
EDITOR'S INTRODUCTION

''''HEN I WAS A young student in California, Lou Harrison suggested that I

send one of my first pieces, Piano Study #5 (forJPR) to a Dr. Chalmers, who

might publish it in his journal Xenbarmonikon. Flattered and fascinated, I

did, and John did, and thus began what is now my twenty year friendship

with this polyglot fungus researcher tuning guru science fiction devotee

and general everything expert.

Lou first showed me the box of papers, already called Divisions of the

Tetracbord, in 1975. I liked the idea of this grand, obsessive project, and felt

that it needed to be availablein a way that was, likeJohn himself, out of the

ordinary. When Jody Diamond, Alexis Alrich, and I founded Frog Peak

Music (A Composers' Collective) in the early 80S, Divisions (along with

Tenney's then unpublished Meta + Hodos) was in my mind as one of the

publishing collective's main reasons for existing, and for calling itself a

publisher of "speculative theory."

The publication of this book has been a long and arduous process. Re­

vised manuscripts traveled with me from California to Java and Sumatra

(John requested we bring him a sample of the local fungi), and finally to our

new home in New Hampshire. The process of writing, editing, and pub­

lishing it has taken nearly fifteen years, and spanned various writing tech­

nologies. (When John first started using a word processor, and for the first

time his many correspondents could actually read his long complicated

letters, my wife and I were a bit sad-we had enjoyed reading his com­

pletely illegible writing aloud as a kind of sound poetry).
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Many people have contributed to the publication of this book, all vol­

unteeringtheir valuable time. David Doty (editor of III, The Journal o/the

}ustlntMllltio71 Network) and Daniel J. Wolf (who took over publication of

XI1lDannoniko71 for several issues in the I98os) both made a tremendous

editorial contribution to style and content. Jarrad Powell, Joel Man­

delbaum, David Rothenberg (especially for chapter five) andjody Diamond

mahluable suggestions. Lauren Pratt, who is to copy editing whatJohn

Chalmers is to tetrachords, saw countless errors that were not there until

she pointed them out. Carter Scholz, the one person I know who can give

JohnChalmers a run for his money in the area of polymathematics, began

as ilie book's designer, and by virtue of his immeasurable contributions,

became its co-editor.

John Chalmers's Divisions oftbe Tetracbord is a fanatic work. It is not a

book that everyone will read or understand. It is a book that needs to

exist.

LARRY POLANSKY

Lebanon, New Hampshire 1992



FOREWORD

NEARLY TWENTY YEARS AGO John Chalmers and I had a number of very

fruitful conversations. Well acquainted with the work of Harry Partch and

also of younger musical theoreticians, Erv Wilson among them, John

brought an immense amount of historical and scientific knowledge to our

happy meetings. In turn, William Colvig and I brought the substance of

professional musical life and the building of musical instruments.

At that time I had rhapsodic plans for a "Mode Room," possibly for

UNESCO, in which would be assembled some great world-book of notated

modes, their preferred tunings and both ethnic and geographic provenance,

along with such history of them as we might have. I had supposed a roomful

of drawers, each holding an octave metallophone of a mode, and some­

where a harp or psaltery of some further octaves' compass on which one

might try out wider musical beauties of the mode under study. I even wrote

out such a proposal in Esperanto and distributed it in an international

ethnomusicology conference in Tokyo in 196 I.

However, a little later Mr. Colvig began to build extremely accurate

mono chords on which we could study anything at all, and we rushed, in a

kind of ecstasy, to try everything at once. Bill and I designed and built a

"transfer harp," wirestrung and with two tuning systems, both gross and

fine. Although innocently and quickly designed and built, its form, we

discovered, is that ofwhat the Chinese call a "standing harp"- the plate is

parallel to the strings. We already owned a Lyon and Healey troubador

harp, and, with these and with the addition of one or two other incidental
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instruments, a bowed psaltery, drones, and small percussion, Richard Dee

and I in one rapturous weekend tuned and recorded improvisations in a fair

number of modes from planetary history, especiallyfrom the classical civ­
ilizations and Islam.

A little later, our friend Larry London, a professional clarinetist with

wide intellectual interests and a composer of wide-ranging inquiry, made

two improved versions of our original "transfer harp" and he actually

revived what literature tells us is the way Irish bards played their own

wirestrung harps, stopping off strings as you go. He has composed and

plays a beautiful repertory of pieces and suites (each in a single mode)

for his harps. I continue to want to hear him in some handsome small

marble hall that reminds of Alexandria, Athens, or Rome.

Thus, the "Mode Room," about which I am still asked, turned into

anyone's room, with a good monochord and some kind of transfer in­

strument. But the great book of modes?

Knowing that the tetrachord is the module with which several major civ­

ilizations assemblemodes,]ohn andI had begun to wonder about how many

usable tetrachords there might be. We decided that the ratio 81/80 is the

"flip-over" point and the limit of musical use, although not of theoretical

use.This isthe interval that everyoneconstantly shifts around when singing

or playing major and minor diatonic modes, for it is the difference between

a major major second (9/8) and a minor major second (10/9) and the dis­
tribution of these two kinds of seconds determines the modal characters.

Thus our choice.

John immediately began a program, and began to list results. I think that

he used a computer and he soon had quite a list. From his wide reading he

also gave attributions as historically documented formations turned up. It

was enthralling, and this was indeed the "Great Book"- to my mind the

most important work of musical theory since Europe's Renaissance, and

probably since the Roman Empire.

But it has taken many years to mature. Not only isJohn a busy scientist

and teacher, but he has wished to bring advanced mathematical thought

to the work and enjoys lattice thinking and speculation, often fruitful.

He tried a few written introductions which I in turn tried to make in­

telligible to advanced musicians, who, I thought, might see in his work

a marvelous extension of humanist enquiry. Always he found my effort

lacking to his needs. He often employed a style of scientese as opaque
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to me as his handwriting is illegible. About the latter there is near uni­

versal agreement-John himself jestingly joins in this.

In the last very few years all of us have finally had translations into

English of Boethius, Ptolemy, and others-all for the first time in our

language. For decades before this John worked from the Greek and other

languages. This, too, was formidable.

Few studies have stimulated me as has John Chalmers's Divisions of the

Tetracbord. It is a great work by any standards, and I rejoice.

Lou HARRISON
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PREFACE

THIS BOOK IS WRITTEN to assist the discovery of new musical resources, not

to reconstruct the lost musical culture of ancient Greece. I began writing

it as an annotated catalog of tetrachords while I was a post-doctoral fellow

in the Department of Genetics at the University of California, Berkeley in

the early 1970s. Much earlier, I had become fascinated with tuning theory

while in high school as a consequence of an unintelligible and incorrect

explanation of the r z-rone equal temperament in a music appreciation

class.My curiosity was aroused and I went to the library to read more about

the subject. There I discovered Helmholtz's On the Sensations ofTone with

A. ]. Ellis's annotations and appendices, which included discussions of

non-r z-tone equal temperaments and long lists of just intervals and his­

torical scales. Later, the same teacher played the 1936 Havana recording

of Julian Carrillo's Preludio a Colon to our class, ostensibly to demonstrate

the sorry condition of modern music, but I found the piece to be one of

almost supernatural beauty, and virtually the only interesting music pre­

sented the entire semester.

During the next summer vacation, I made a crude monochord calibrated

to ro-tone equal temperament, and later some pan pipes in the 5- and 9­

tone equal systems. Otherwise, my interest in microtonal music remained

more or less dormant for lack of stimulation until as a sophomore at Stan­

ford I attended its overseas campus in Stuttgart. Music appreciation hap­

pened to be one of the required courses and Stockhausen was invited to

address the class and play tapes of "elektronische Musik," an art-form to­

tally unknown to me at the time. This experience rekindled my interest in
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music theory and upon my rerum to California, I tried to sign up for

courses in experimental music. This proved impossible to do, but I did find

Harry Partch's book and a recording of the complete Oedipus in the Music

Library. Thus I began to study microtonal tuning systems. My roommates

were astonished when I drove nails into my desk, strung guitar strings be­

tween them, and cut up a broom handle for bridges, but they put up with

the resulting sounds more or less gracefully.

During my first year of graduate school in biology at UCSD, I came

across the article by Tillman Schafer and]im Piehl on ro-tone instruments

(Schafer and Piehl 1947).Through Schafer, who still lived in San Diego at

that time, I met Ivor Darreg and Ervin Wilson. Later Harry Partch joined

the UCSD music faculty and taught a class which I audited in 1967-68.

About this time also, I began collaborating with Ervin Wilson on the gen­

eration of equal temperament and just intonation tables at the UCSD

computer center (Chalmers 1974, 1982).
After finishing my Ph.D., I received a post-doctoral fellowship from the

National Institutes of Health to do research at the University of Wash­

ington in Seattle and from there I moved to Berkeley to the Department

of Genetics to continue attempting to study cytoplasmic or non-Mendelian

genetics in the mold Neurospora crassa, A visit byJohn Grayson provided an

opportunity to drive down to Aptos and meet Lou Harrison. I mentioned

to Lou that I had begun a list of tetrachords in an old laboratory notebook

and he asked me for a copy.

I photocopied the pages for him and mailed them immediately. Lou

urged me to expand my notes into a book about tetrachords, but alas, a

number of moves and the demands of a career as both an industrial and

academic biologist competed with the task. While working for Merck

Sharp & Dohme in New Jersey before moving to Houston in the mid­

1970s, I wrote a first and rather tentative draft. I also managed to find the

time to edit and publish Xenharmonikon, An InformolJournal ofExperimental

Music, while certain harmonic ideas gestated, but I had to suspend pub­

lication in 1979. Happily, it was resurrected in 1986 by Daniel Wolf and I

resumed the editorship late in 1989'

In the winter of 1980,I wasinvited to the Villa Serbelloni on Lake Como

by the Rockefeller Foundation to work on the book and I completed an­

other draft there. Finally, through the efforts ofLarry Polansky and David

Rosenboom, I was able to spend the summer of 1986 at Mills College
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working on the manuscript.

It was at Mills also that I discovered that the Macintosh computer has

four voices with excellent pitch resolution and is easily programmed in

BASIC to produce sound. This unexpected opportunity allowed me to

generate and hear a large number of the tetrachords and to test some of

my theories, resulting in a significant increase in the size of the Catalog and

much of the material in chapter 7.

After returning to Houston to work for a while as a consultant for a

biotechnology firm, I moved back to Berkeley in the fall of 1987 so that I

could devote the necessary time to completing the book. With time out to

do some consulting, learn the HMSL music composition and performing

language developed at Mills College, and work as a fungal geneticist once

again at the University of California, the book was finally completed.

A few words on the organization of this work are appropriate. The first

three chapters are concerned with tetrachordal theory from both classical

Graeco-Roman and to a lesser extent medieval Islamic perspectives. The

former body of theory and speculation have been discussed in extenso by

numerous authorities since the revival of scholarship in the West, but the

latter has not, as yet, received the attention it deserves from experimentally

minded music theorists.

After considerable thought, I have decided to retain the Greek nomen­

clature, though not the Greek notation. Most importantly, it is used in all

the primary and secondary sources I have consulted; readers desiring to do

further research on tetrachords will have become familiar with the standard

vocabulary as a result of exposure to it in this book. Secondly, the Greek

names of the modes differ from the ecclesiastical ones used in most coun­

terpoint classes. To avoid confusion, it is helpful to employ a consistent and

unambiguous system, which the Greek terminology provides.

Since many of the musical concepts are novel and the English equiv­

alents of a number of the terms have very different meanings in traditional

music theory, the Greek terminology is used throughout. For example, in

Greek theory, the adjective enharmonic refers to a type of tetrachord con­

taining a step the size of a major third, with or without the well-known

microtones. In the liturgical music theory of the Greek Orthodox church,

also called Byzantine (Savas 1965; Athanasopoulos 1950), it refers to va­

rieties of diatonic and chromatic tunings, while in traditional European

theory, it refers to two differently written notes with the same pitch. Where
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modern terms are familiar and unambiguous, and for concepts not part of

ancient Greek music theory, I have used the appropriate contemporary

technical vocabulary.

Finally, I think the Greeknames add a certain mystique or glamour to the

subject. I find the sense of historical continuity across two and a halfmillen­

nia exhiliarating-four or more millennia if the Babylonian data on the di­
atonic scale are correct (Duchesne-Guillemin 1963; Kilmer 1960). Harry

Partch musthavefelt similarly when he began to construct the musical system

he called monophony (Partch [1949] 1974). Science, including experimental

musicology, is a cumulative enterprise; it is essential to know where we have

been, as we set out on new paths. Revolutions do not occur invacuo.
The contents of the historical chapters form the background for the new

material introduced in chapters 4 through 7. It is in these chapters that

nearly all claims for originality and applicability to contemporary com­

position reside. In particular, chapters 5, 6, and 7 are intended to be of

assistance to composers searching for new materia musics.
Chapter 8 deals with the heterodox, though fascinating, speculations of

Kathleen Schlesinger and some extrapolations from her work. While I do

not believe that her theories are descriptive of Greek music at any period,

they may serve as the basis for a coherent approach to scale construction

independent of their historical validity.

While not intended as a comprehensive treatise on musical scale con­

struction, for which several additional volumes at least as large as this would

be required, this work may serve as a layman's guide to the tetrachord and

to scales built from tetrachordal modules. With this in mind, a glossary has

been provided which consists of technical terms in English pertaining to

intonation theory and Greek nomenclature as far as it is relevant to the

material and concepts presented in the text. Terms explained in the glos­

sary are italicized at their first appearance in the text.

The catalogs of tetrachords in chapter 9 are both the origin of the book

and its justification-the first eight chapters could be considered as an ex­

tended commentary on these lists.
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I The tetrachord in experimental music

WHY, IN THE LAST quarter of the twentieth century, would someone

write a lengthy treatise on a musical topic usually considered of interest

only to students of classical Greek civilization? Furthermore, why might a

reader expect to gain any information of relevance to contemporary musi­

cal composition from such a treatise? I hope to show that the subject of this

book is of interest to composers of new music.

The familiar tuning system of Western European music has been

inherited, with minor modifications, from the Babylonians (Duchesne­

GuiIlemin 196)). The tendency within the context of Western European

"art music" to use intervals outside this system has been called microtonality,

experimental intonation (polansky 1987a), or xenbarmonics (a term proposed

by Ivor Darreg). Interest in and the use of microtonality, defined by scalar

and harmonic resources other than the traditional 1a-tone equal tempera­

ment, has recurred throughout history, notably in the Renaissance

(Vicentino 1555) and most recently in the late nineteenth and early twen­

tieth century. The converse of this definition is that music which can be

performed in 1a-tone equal temperament without significant loss of its

identity is not truly microtonal. Moreover, the musics of many of the other

cultures of the world are microtonal (in relation to r r-tone equal tem­

perament) and European composers have frequently borrowed musical

materials from other cultures and historical periods, such as the Ottoman

Empire and ancient Greece.

We owe our traditions of musical science to ancient Greece, and the

theoretical concepts and materials of ancient Greek music are basic to an
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understanding of microtonal music. Greek musical theory used the tetra­

chord as a building block or module from which scales and systems could be

constructed. A current revival of interest in microtonality, fueled by new

musical developments and technological improvements in computers and

synthesizers, makes the ancient tetrachord increasingly germane to con­
temporary composition.

Contemporary microtonality

Although rz-tone equal temperament became the standard tuning of

Western music by the mid-nineteenth century (Helmholtz [1817] 1954),

alternative tuning systems continued to find partisans. Of these systems,

perhaps the most important was that of Bosanquet (Helmholtz [18n]

1954; Bosanquet 1876), who perfected the generalized keyboard upon

which the fingering for musical patterns is invariant under transposition.

He also championed the 53-tone equal temperament. Of nineteenth­

century theorists, Helmholtz and his translator and annotator A.J. Ellis

(Helmholtz [1817] 1954) are outstanding for their attempts to revive the
use of just intonation.

The early twentieth century saw a renewed interest in quarter-tones (24­

tone equal temperament) and other equal divisions of the octave. The

Mexican composer julian Carrillo led a crusade for the equal divisions

which preserved the whole tone (zero modulo 6 divisions) through 96-tone

temperament or sixteenths of tones. Other microtonal, mostly quarter­

tone, composers of note were Alois Haba (Czechoslovakia), Ivan Wysch­

negradsky (France), and Mildred Couper (USA). The Soviet Union had

numerous microtonal composers and theorists, including Georgy Rimsky­

Korsakov, Leonid Sabaneev, Arseny Avraamov, E.K. Rosenov, A.S. Obo­

lovets, and P.N. Renchitsky,before Stalin restrained revolutionary creativ­

ity under the doctrine of Socialist Realism (Carpenter 1983).Joseph Yasser

(USA) urged the adoption of 19-tone equal temperament and Adriaan

Fokker (Holland) revived the theories of his countryman, Christian

Huygens, and promoted JI-tone equal temperament. More recently,

Martin Vogel in Bonn and Franz Richter Herfin Salzburg have been active

in various microtonal systems, the latter especially in 72-tone equal

temperament.
No discussion of alternative tunings is complete without mentioning

Harry Partch, an American original who singlehandedly made extended
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just intonation and home-built instruments not only acceptable, but vir­

tually mandatory for musical experimenters at some stage in their careers.

Composers influenced by him include Lou Harrison, Ben Johnston, James

Tenney, and younger composers such as Larry Polansky, Cris Forster,

Dean Drummond, Jonathan Glasier, and the members of the Just Intona­

tion Network.

Ivor Darreg is an American composer working in California. He has

been very actively involved with alternative tunings and new instru~ent

design for more than fivedecades. Darreg has employed both non-r a-tone

equal temperaments and various fonns of just intonation in his music,

theoretical writings, and instruments. More recently, he has begun to use

MIDI synthesizers and has explored all the equal temperaments up to 53

tones per octave in a series of improvisations in collaboration with Brian

McLaren.

Ervin Wilson is one of the most prolific and innovative inventors of new

musical materials extant and has been a major influence on me as well as a

source for many tetrachords and theoretical ideas. He holds patents on two

original generalized keyboard designs. Wilson has collaborated with Kraig

Grady and other experimental musicians in the Los Angeles area. He also

assisted Harry Partch with the second edition of Genesis of a Music by

drawing some of the diagrams in the book.

Some other North American microtonal composers are Ezra Sims,Easley

Blackwood, Joel Mandelbaum, Brian McLaren, Arturo Salinas, Harold

Seletsky, Paul Rapoport, William Schottstaedt, and Douglas Walker.

While still very much a minority faction of the contemporary music

community, microtonality is rapidly growing. Festivals dedicated to

microtonal music have been held in recent years in Salzburg under the

direction of Franz Richter Herr;" in New York City, produced by Johnny

Reinhard; and in San Antonio, Texas, organized by George Cisneros.

Partch, Darreg, Wilson, Harrison, Forster, and William Colvig, among

others, have designed and constructed new acoustic instruments for

microtonal performance, Tunable electronic synthesizers are now available

commercially and provide an an alternative to custom-built acoustic or

electroacoustic equipment. A great deal of software, such as HMSL from

Frog Peak Music, ]ICak by Robert Rich and Carter Scholz, and Antelope

Engineering's TuneUp, has been developed to control synthesizers micro­

tonally via MIDI.

3 THE TETRACHORD IN EXPERIMENTAL MUSIC



p---------------------
Good references for additional information on the history of microtonal

systems are Helmholtz ([1877] 1954), Barbour (1951), Partch ([1949]

1974), and Mandelbaum (1961). Small press publications are a rich source

and several journals devoted to music in alternative tunings have been

published. The major ones are Xenhannonikon, Interval, Pitch, and 1/1: The

Journal oftheJust Intonation Network. Finally, Musi£al Six-Six Bulletin, Leo­

nardo: TheInternationalJournal ofArts, Science, andTechnology, Expmmentlll

MuriClli Instruments, and Musicworks have also contained articles about

instruments in non-traditional tuning systems.

HYPATE PAIUlYPATE LICHANOS MESE

III 4/3

3h 2/x

PARAMESE TRITE PARANETE NETE

I-I. TheutTacborrJ.

The tetrachord in microtonal music

Tetrachords are modules from which more complex scalar and harmonic

structures may be built. These structures range from the simple heptatonic

scales known to the classical civilizations of the eastern Mediterranean to

experimental gamuts with many tones. Furthermore, the traditional scales

ofmuch of the world's music, including that ofEurope, the Near East, the

Catholic and Orthodox churches, Iran, and India, are still based on

tetrachords. Tetrachords are thus basic to an understanding of much of the

world's music.

The tetrachord is the interval of a perfect fourth, the diatessartm of the

Greeks, divided into three subintervals by the interposition of two addi­

tional notes.

The four notes. or strings, of the tetrachord were named hypllte, parb­
ypate. lidumos, and mese in ascending order from III to 4/3 in the first tet­

rachord ofthe central octave of the Greater Perfect System, the region of the

scale of most concern to theorists. Ascending through the second tetra­

chord, they were called paramese, trite, paraneu, and nete. (Chapter 6 dis­

cusses Greek scales and nomenclature.)

Depending upon the spacing of these interposed tones, three primary

genera may be distinguished: the diatonic, composed of tones and semitones;

the chromatic, of semitones and a minor third; and the enharmonic, with a

major third and two quarter-tones. Nuances or chroai (often translated

"shades") of these primary forms are further characterized by the exact

tuning of these intervals.

These four tones apparently sufficed for the recitation of Greek epic

poetry. but soon afterwards another tetrachord was added to create a hep­

tachord. As a feeling for the octave developed, the gamut was completed.
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and from this gamut various sections were later identified and given ancient

tribal names (Dorian, Phrygian, et cetera). These octave species became the

modes, two of which, the Lydian and Hypodorian, in the diatonic genus fonn

the basis for the European tonal idiom. Although a formal nomenclature

based on the position of the strings later developed, the four tetrachordal

tones remained the basis for the Greek solfege: the syllables re, teo, 'tij, re,

(pronounced approximately teh, toe, tay, and tah in English) were sung in

descending order to the notes of every genus and shade.

The detailed history of the Greek tetrachordal scales is somewhat more

complex than the sketchy outline given above. According to literary tes­

timony supported at least in part by archaeology, the diatonic scale and its

tuning by a cycle ofperfect fifths, fourths, and octaves was brought from

Egypt (or the Near East) by Pythagoras. In fact the entire i z-tonechromatic

scale in this tuning is thought to have been known to the Babylonians by

the second millennium BeE and was apparently derived from earlier

Sumerian precursors (Duchesne-Guillemin 1963, 1969; Kilmer 1960).

Having arrived in Greece, this scale and its associated tuning doctrines

were mingled with local musical traditions, most probably pentatonic, to

produce a plethora of scale-forms, melody-types and styles (see chapter 6).

From a major-third pentatonic, the enharmonic genus can be derived by

splitting the semitone (Winnington-Ingram 1928; Sachs 1943). The

chromatic genera, whose use in tragedy dates from the late fifth century,

may be relicts of various neutral and minor-third penta tonics, or con­

versely, descended from the earlier enharmonic by a process of "sweet­

ening" whereby the pitch of the third tone was raised from a probable

2561243 to produce the more or less consonant intervals 5/4. 6/S. 7/6 and

possibly 11/9 (Winnington-Ingram 1928).

The resulting scales were rationalized by the number theory of

Pythagoras (Crocker 1963, 1964, 1966) and later by the geometry of

Euclid (Crocker 1966; Winnington-Ingram 19P, 1936) to create the body

of theory called harmonics, which gradually took on existence as an inde­

pendent intellectual endeavor divorced from musical practice. The acous­

tic means are now available, and the prevailing artistic ideology is

sympathetic enough to end this separation between theory and practice.

Many composers have made direct use of tetrachordal scales in recent

compositions. Harry Partch used the pentatonic form of the enharmonic

(161rS . 5/4' 9/8. 16lrS . S/4) in the first of his Two StudiesonAncient Greek
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Scales (1946) and the microtonal form in the second (in Archytas's tuning,

28/27.36/35 ·5/4), Partch also employed this latter scale in The Dreamer

that Remains, and in verse fifteen of Petals. His film score Windsong (1958)

employs Ptolemy's equable diatonic (diatonon bomalon). Ivor Darreg's On

theEnharmonic Tetracbord from his collection Excursion intotheEnharmonic,

was composed in 1965 and published in Xenbarmonikon 3 in 1975. Lou

Harrison has used various tetrachords as motives in his "free style" piece

A Phrase for Arion'sLeap (Xenharmonikon 3, 197 S). An earlier piece, Suite

(1949) was based on tetrachords in r a-tone equal temperament. Larry

London published his Eight Pieces for Harp in Ditone Diatonic in Xen­

barmonikon 6 (1977) and his Four Pieces in Didymus's Chromatic in Xen­

barnumikon 7+8 (1979). In 1984, he wrote a Suite for Harp whose four

movements used Archytas's enharmonic and a chromatic genus ofJ.M.
Barbour. Gino Robair Forlin's song in Spanish and Zapotec, LasTortugas
(1988), is based on the tetrachord 16!IS . IS!I4' 7/6. There are of course

many other recent pieces less explicitly tetrachordal whose pitch structures

could be analyzed in tetrachordal terms, but doing so would be a major

project outside the scope of this book. Similarly, there is a vast amount of

music from Islamic cultures, Hindustani, and Eastern Orthodox traditions

which is also constructed from tetrachordal scales. These will not be dis­

cussed except briefly in terms of their component tetrachords,

A psychological motivation for the consideration of tetrachords is pro­

vided by the classic study of George A. Miller, who suggested that musical

scales, in common with other perceptual sets, should have five to nine ele­

ments for intuitive comprehension (Miller 1956). Scales with cardinalities

in this range are easily generated from tetrachords (chapter 6) and the

persistence of tetra chordal scales alongside the development of triad-based

harmony may reflect this property.

Tetrachords and their scale-like complexes and aggregates have an

intellectual fascination all their own, a wealth ofstructure whose seductive

intricacy I hope to convey in this book.
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2 Pythagoras, Ptolemy, and the
arithmetic tradition

GREEK MUSICAL TRADITION begins in the sixth century BCE with the

semi-legendary Pythagoras, who is credited with discovering that the fre­

quency of a vibrating string is inversely proportional to its length. This

discovery gave the Greeks a means to describe musical intervals by numbers,

and to bring to acoustics the full power of their aritlunetical science. While

Pythagoras's own writings on music are lost, his tuning doctrines were

preserved by later writers such as Plato, in the Timaeus, and Ptolemy, in the

Harmonics. The scale derived from the Timaeus is the so-called Pythagorean

tuning ofWestern European theory, but it is most likely of Babylonian or­

igin. Evidence is found not only in cuneiform inscriptions giving the tuning

order, but apparently also as music in a diatonic major mode (Duchesne­

Guillemin 1963,1969; Kilmer 1960; Kilmer et al. 1976). This scale may be

tuned as a series of perfect fifths (or fourths) and octaves, having the ratios

III 9/8 81/644/3 3/2 27!I6 243/128 2h, though the Babylonians did not

express musical intervals numerically.

The next important theorist in the Greek arithmetic tradition is Ar­
chytas, a Pythagorean from the Greek colony of Tarentum in Italy. He lived

about 390 BCE and was a notable mathematician as well. He explained the

use of the arithmetic, geometric, and harmonic means as the basis of mu­

sical tuning (Makeig 1980) and he named the harmonic mean.In addition to

his musical activities, he was renowned for having discovered a three­

dimensional construction for the extraction of the cube root of two.

Archytas is the first theorist to give ratios for all three genera. His tun­

ings are noteworthy for employing ratios involving the numbers 5 and 7

7 PYTHAGORAS, PTOLEMY, AND THE ARITHMETIC TRADITION



instead of being limited to the 2 and 3 of the orthodox Pythagoreans, for

using the ratio 2812 7 as the first interval (hypate to parhypate) in all three

genera, and for employing the consonant major third, 5/4, rather than the

harsher ditone 81/64, as the upper interval of the enharmonic genus. These

tunings are shown in 2-1.

Other characteristics of Archytas's tunings are the smaller second in­

terval of the enharmonic (36/35 is less than 28127) and the complex second

interval of his chromatic genus.

Archytas's enharmonic is the most consonant tuning for the genus, es­

pecially when its first interval, 2812 7, is combined with a tone 9/8 below the

tonic to produce an interval of 7/6. This note, called hyperhypate, is found

not only in the harmoniai of Aristides Quintilianus (chapter 6), but also in

the extant musical notation fragment from the first stasimon of Euripides's

Orestes. It also occurs below a chromaticpyknon in the second Delphic hymn

(Winnington-Ingram 1936). This usage strongly suggests that the second

note of the enharmonic and chromatic genera was not a grace note as has

been suggested, but an independent degree of the scale (ibid.), Bacchios, a

much later writer, calls the interval formed by the skip from hyperhypate

to the second degree an ekbole (Steinmayer 1985), further affirming the

historical correctness ofArchytas's tunings.

The complexity ofArchytas's chromatic genus demands an explanation,

as Ptolemy's soft chromatic (chroma malakon) 28/27' 15h4' 6/5 would

seem to be more consonant. Evidently the chromatic pyknon still spanned

the 9/8 at the beginning of the fourth century, and the 31./27 was felt to be

ARCHITAS'S GENERA

ERATOSTHENES'S GENERA

2. 8127' 36/35' 5/4
2.812.7' 2.43122.4' 32127
2.8127.8/7' 9/8

Z-I. Ptolemy'scatarog cfbistorical tetrllchords,

fromtheHarmonics (WIIJJis I 68z).Thegenus

56/55 . zz/z: . 514 UI+81 +386 cents) isaiIoat­
tributed toPtolemy. WaDissays thatthisgenus isin

allofthemanuscripts, butislikely tobea18teraddi­

tion. Thestatements of'Auicenn« andBrymnios that

46/4> istheS11I/Jlkstmelodic intervalsupports this

view.

40/39' 39/38. 19h5

2.0/19' 19118.6/5
256h4] . 9/8. 9/8

32./]1. 31/3°' 5/4
16/15.2.5124 .6/5
16h 5 . 10/9 . 9/8
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63 +49+ 386

63 + 141 + 294

63+ 231+2.°4

44+45 + 4°9
89 + 94 + 316
90 + 204 + 204

DIDYMOS'S GENERA

55 + 57 + 386

1l2. + 71 + 316

112. + 182 + 2.04

ENHARMONIC

CHROMATIC

DIATONIC

ENHARMONIC

CHROMATIC

DIATONIC

ENHARMONIC

CHROMATIC

DIATONIC



the proper tuning for the interval between the upper two tones. This may

be in part because 3212 7 makes a 4/3 with the disjunctive tone immediately

following, but also because the melodic contrast between the 32127 at the

top of the tetrachord and the 7/6 with the hyperhypate below is not asgreat

as the contrast between lower 7/6 and the upper 6/5 of Ptolemy's tuning.

Archytas's diatonic is also found among Ptolemy's own tunings (2-2) and

appears in the lyra and kitbara scales that Ptolemy claimed were in common

practice in Alexandria in the second century CEo According to WInning­

ton-Ingram (1932), it is even grudgingly admitted by Aristoxenos and thus

would appear to have been the principal diatonic tuning from the fourth

century BCE through the second CE, a period of some six centuries.

Archytas's genera represent a considerable departure from the austerity

of the older Pythagorean forms:

ENHARMONIC: 2561243.81/64
CHROMATIC: 2561243' 218712048. ph7
DIATONIC: 2561243 '9/8. 9/8

The enharmonic genus is shown as a trichord because the tuning of the

enharmonic genus before Archytas is not precisely known. The semitone

was initially undivided and may not have had a consistent division until the

stylistic changes recorded in his tunings occurred. In other words, the in­

composite ditone, not the incidental microtones, is the defining characteristic

of the enharmonic genus.

The chromatic tuning is actually that of the much later writer Gau­

dentius (Barbera 1978), but it is the most plausible of the Pythagorean

chromatic tunings.

The diatonic genus is the tuning associated with Pythagoras by all the

authors from ancient times to the present (Winnington-Ingram 1932).

4 6/45' 24/23' 5/4 3 8 + 75 + 38 6 ENHARMONIC

28/z7' 15/14.6/5 63+ Il9+3 I 6 SOIT CHROMATIC

2-2. Ptolemy's owntunings. 22/21. nlrI' 7/6 81 + 151 + 267 INTENSE CHROMATIC

21/20 . 10/9 . 8/7 85+ 18 2+ 2 31 SOFT DIATONIC

28/27. 8/7' 9/8 63 + 231 + 204 DJATONON TONlAION

2561243' 9/8 . 9/8 9 0 + 204 + 204 DIATONON DITONIAJON

I6lrS . 9/8. ro/9 Il2 + 204+ 182 INTENSE DIATONIC

I21r I . t tiu» . 10/9 151 + r6s + 182 EQUABLE DIATONIC
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Ptolemy and his predecessors in Alexandria

In addition to preserving Archytas's tunings, Ptolemy (ca. 160 CE) also

transmitted the tunings of Eratosthenes and Didymos, two of his pre­

decessors at the library of Alexandria (2-1). Eratosthenes's (third century

BeE) enharmonic and chromatic genera appear to have been designed as

simplifications of the Pythagorean prototypes. The use of 40/39 and 2O!I9

for the lowest interval presages the remarkable Tanbur of Baghdad of

Al-Farabi with its subbarmonic division by the modal determinant 40 (Ellis

1885; D'Erianger 1935) and some of Kathleen Schlesinger's speculations

in The Greek Aulos (1939).

Didymos's enharmonic seems to be mere formalism; the enharmonic

genus was extinct in music as opposed to theory by his time (first century

BeE). His I: 1 linear division ofthe pyknon introduces the prime number 3I

into the musical relationships and deletes the prime number 7, a change

which is not an improvement harmonically, though it would be of less

significance in a primarily melodic music. His chromatic, on the other

hand, is the most consonant non-septimal tuning and suggests further de­

velopment ofthe musical styles which used the chromatic genus. Didymos's

diatonic is a permutation of Ptolemy's intense diatonic (diatonon syn­

tonon). It seems to be transitional between the Pythagorean (J-limit) and

tertian tunings.

Ptolemy's own tunings stand in marked contrast to those of his pre­

decessors. In place of the more or less equal divisions of the pyknon in the

genera of the earlier theorists, Ptolemy employs a roughly 1: 2 melodic pro­

portion. He also makes greateruse ofsuperparticularor epimore ratios than his

forerunners; ofhis list. only the traditional Pythagorean diatonon ditoniaion

contains epimeres, which are ratios of the form (n + m) / n where m» 1.

The emphasis on superparticular ratios was a general characteristic of

Greek musical theory (Crocker 1963; 1964). Only epimores were accepted

even as successive consonances, and only the first epimores (211,312, and

4/3) were permitted as simultaneous combinations.

There is some empirical validity to these doctrines: there is no question

that the first epimores are consonant and that this quality extends to the

next group, 5/4 and 615. else tertian harmony would be impossible. Con­

sonance of the septimal epimore 7/6 is a matter of contention. To my ear,

it is consonant, as are the epimeres 7/4 and 7/5 and the inversions of the

epimores 5/4 and 6/5 (8/5 and 5/3)' Moreover, Ptolemy noticed that octave

IO CHAPTER 2



2-3. Hofmann's listofcompletely superparticuiar

divisions. Thistable hasbeen recomposed after

Hofmann from Vogel (1975). See Main Catalogfor

furtherinformation. (5) basalso been attributedto

Tanini, butpl'obably should be credited to

Pacbymeret; a thirteenth-century Byzantine author.

compounds of consonances (which are not themselves epirnores) were au­

rally consonant. It is clear, therefore, that it is not just the form of the ratio,

but at least two factors, the size of the interval and the magnitude of the

defining integers, that determines relative consonance. Nevertheless, there

does seem to be some special quality ofepimore ratios. I recall a visit to Lou

Harrison during which he began to tune a harp to the tetrachordal scale

III 271256154/3312 81/50915211. He immediately became aware of the

non-superparticular ratio 27h 5 by perceiving the lack of resonance in the

instrument.

A complete list of all possible tetrachordal divisions containing only

superparticular ratios has been compiled by I. E. Hofmann (Vogel 1975).

Although the majority of these tetrachords had been discovered by earlier

theorists, there were some previously unknown divisions containing very

small intervals. The complete set is given in 2-3 and individual entries also

appear in the Miscellaneous listing of the Catalog.

The equable diatonic has puzzled scholars for years as it appears to be

an academic exercise in musical arithmetic. Ptolemy's own remarks rebut

this interpretation as he describes the scale as sounding rather strange or

foreign and rustic (~EVtKOtEPOV ~EV noo KCXt (typotKOtEpOV, Winnington­

Ingram 1932). Even a cursory look at ancient and modern Islamic scales

from the Near East suggests that, on the contrary, Ptolemy may have heard

a similar scale and very cleverly rationalized it according to the tenets of

Greek theory. Such scales with 3/4-tone intervals may be related to

I. 256h55' 17116. 5/4 NEW ENHARMONIC 14· 28/27' 15114.615 PTOLEMY'S SOFT CHROMATIC

2. 1361I35' 18117' 5/4 NEW ENHARMONIC 15· 16lI5 . 25/24·6/5 DIDYMOS'S CHROMATIC

J. 96195 . 19118. 5/4 WILSON'S ENHARMONIC 16. 20119' 191I8 . 615 ERATOSTHENES'S CHROMATIC

4· 76175' 20119' 5/4 AUTHOR'S ENHARMONIC 17· 64163 . 9/8 . 716 BARBOUR

5· 64163 . 21/20. 5/4 SERRE'S ENHARMONIC 18. 36135 . 10/9' 716 AVICENNA

6. 56155' z z/zt , 514 PSEUDO-PTOLEMAIC ENHARMONIC 19· nhI . r z/rr • 716 PTOLEMY'S INTENSE CHROMATIC

7· 46/45 . 24123 . 5/4 PTOLEMY'S ENHARMONIC 20. 16115' 15/14' 716 AL-FARABI

8. 40/39' 26/25 . 5/4 AVICENNA'S ENHARMONIC 21. 49/48 . 817 . 8/7 AL-FARABI

9· 28/27' 36135 . 514 ARCHYTAS'S ENHARMONIC za, 281l7' 8/7' 9/8 ABCHYTAS'S DIATONIC

10. 3213 1 • 31/3 0 ' 514 DIDYMOS'S ENHARMONIC 23· 2Iho • 10/9 . 8/7 PTOLEMY'S SOFT DIATONIC

II. 100199 . 11110 . 615 NEW CHROMATIC 24· 14113 . 13/ IZ . 8/7 AVICENNA

n. 55/54 . r a/rr . 615 BARBOUR 25· 16115' 19118 . 10/9 PTOLEMY'S INTENSE DIATONIC

IJ. 40/39' r j/r z . 615 BARBOUR 26. r a/rr . IIlIo . 10/9 PTOLEMY'S EQUABLE DIATONtC
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~-+ Genesisoftheenharmonicpylmo by katapykno­

sis. Inprindple, allpyknoticdivisions can begener­

atedbythisprocess, although very high multipliers

maybe necessary insome cases. The onessboum are

merely illustrative. See theCatalogrfor thecomplete

list. (IX)Thebasicformisthe enharmonic tricbord,

ormajor thirdpentatonic, often ascribed toOlympos.

(2X) Didymas~enharmonion, a "'weak"form. (]x)

Ptolemy's enbarmonion, a "strong"form. Tocomply

withGreek melodiccanons, it was"eordered as

46/45' 24123 ' 5/4' (4X) Serre's enharmonic,
sometimesattributed to Tsrtini, anddiscussedby

Perrett (1926, 26). Pachymeres maybe theearliest

source. (5x) Author~ enharmonu, also onHof
mann's list ofsuperpm-Neular divisions. (6x) Wil­

son ~enbarmonic, also onHofmann's listof

superparticulardivisions.

INDEX NUMBERS PYXNA

IX 16 IS 16115
2X 3~ 31 3° p /31' p /3°

3x 48 47 46 45 24/23 '46/45

4X 64 63 62 61 60 64/63·21ho

5x 80 79 78 77 76 75 20119' 76175
6x 96 95 94 93 92 91 9° 96195'19/18

Aristoxenos's hemiolic chromatic and may descend from neutral third

pentatonics such as Wmnington-Ingram's reconstruction of the spondeion

or libation mode (Winnington-Ingram 1928 and chapter 6), if Sachs's ideas

on the origin of the genera have any validity (Sachs 1943). In any case, the

scale is a beautiful sequence of intervals and has been used successfully by

both Harry Partch (Windsong, Daphne of theDunes) and Lou Harrison, the

latter in an improvisation in the early 1970s.

Ptolemy returned to the use of the number seven in his chromatic and

soft diatonic genera and introduced ratios of eleven in his intense chromatic

and equable diatonic. These tetrachords appear to be in agreement with the

musical reality of the era, as most of the scales described as contemporary

tunings for the lyra and kithara have septimal intervals (6-4)'
Ptolemy's intense diatonic is the basis for Western European just in­

tonation. The Lydian or C mode of the scale produced by this genus is the

European major scale, but the minor mode is generated by the intervallic

retrograde of this tetrachord, 10/9' 9/8. 16!IS. This scale is notidentical

to the Hypodorian or A mode of 12-tone equally tempered, meantone, and

Pythagorean intonations. (For further discussion of this topic, see chapters

6 and 7')
The numerical technique employed by Eratosthenes, Didymos, and

Ptolemy to define the majority of their tetrachords is called linear division
and may be identified with the process known in Greek as katapyknosis.
Katapyknosis consists of the division, or rather the filling-in, of a musical

interval by multiplying its numerator and denominator by a set of integers

of increasing magnitude. The resulting series of integers between the ex­

treme terms generates a new set of intervals of increasingly smaller span as

the multiplier grows larger. These intervals form a series of microtones

which are then recombined to produce the desired melodic division, usually

composed of epimore ratios. The process may be seen in 2-4 where it is

applied to the enharmonicpyknotic interval 16:15. Byextension, the pyknon

may also be termed the katapyknosis (Emmanuel 1921). It consists of three

notes, the barypyknon, or lowest note, the mesopyknon, or middle note, and

the oxypyknon, or highest.

The harmoniai of Kathleen Schlesinger are the result of applying kat­

apyknosis to the entire octave, 2:1, and then to certain of the ensuing in­

tervals. In chapter 4 it is applied to the fourth to generate indexedgenera.

The divisions of Eratosthenes and Didyrnos comprise mainly 1:1 divi-
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sions of the pyknon while those of Ptolemy favor the I:Z proportion, al­

though in some instances the sub-intervals must be reordered so that the

melodic proportions are the canonical order; small, medium and large. This

principle was also enunciated by Aristoxenos, but violated by Archytas,

Didyrnos, and Ptolemy himself in his diatonic tunings.

A more direct method of calculating the divisions is to use the following

formulae (Winnington-Ingram 1932; Barbera 1978) where x/y is the in­

terval to be linearly divided:

III 2X/(X+Y)·(x+y)/zy=x/y,
liz 3x/(zx+Y)'(zx+Y)/3Y=x/y,
zii 3x/(x+Zy),(x+zY)/3Y=x/y.

Finer divisions may be defined analogously; if alb is the desired pro­

portion and x/y the interval, then (a+b).x/(bxuy) .(bxuy)/(a+b).y=x/y.

The final set of tetra chords given by Ptolemy are his interpretations of

the genera of Aristoxenos (z-5). Unfortunately, he seems to have com­

pletely misunderstood Aristoxenos's geometric approach and translated his

"parts" into aliquot parts of a string of 1 Z0 units. Two of the resulting tet­

rachords are identical to Eratosthenes's enharmonic and chromatic genera,

but the others are rather far from Aristoxenos's intent. The Ptolemaic

version of the herniolic chromatic is actually a good approximation to

Aristoxenos's soft chromatic. Aristoxenos's theories will be discussed in

detail in chapter 3.

59+ 60+379

44 + 45 + 409

SOFT DlATONIC

INTENSE DIATONIC

INTENSE CHROMATIC

HEMIOLIC CHROMATIC

ENHARMONIC

40/39 ' 39/38 . 19/15

SOFT CHROMATIC

:-5, Ptolemy's interpretation of'Aristoxenos's

genera.

The late Roman writers

After Ptolemy's recension of classical tuning lore, a few minor writers such

as Gaudentius (fourth century CE) continued to provide tuning information

in numbers rather than the fractional tones of the Aristoxenian school.

Gaudentius's diatonic has the familiar ditone or Pythagorean tuning, as

does his intense chromatic (chroma syntonon), z561z43 . Z187/z048. ph7

(Barbera 1978).

The last classical scholar in the ancient arithmetic tradition was the

philosopher Boethius (sixth century CE) who added some novel tetrachords

and also hopelessly muddled the nomenclature of the modes for succeeding

generations ofEuropeans. Boethius's tuning for the tetrachords in the three

principal genera are below:

ENHARMONIC: 5Iz/499' 499/486.81/64

CHROMATIC: 256/z43' 81/76. 19!I6

DIATONIC: 256/243' 9/8 . 9/8
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These unusual tunings are best thought of as a simplification of the

Pythagorean forms, as the limma (2561243) is the enharmonic pyknon and

the lowest interval of both the chromatic and diatonic genera. The en­

harmonic uses the 1:1 division formula to divide the 256/243, and the

I91r6 is virtually the same size as the Pythagorean minor third, 3z1z7'

The medieval Islamic theorists

With the exception of Byzantine writers such as Pachymeres, who for the

most part repeated classicaldoctrines, the next group ofcreative authors are

the medieval Islamic writers, Al-Farabi (950 CE), Ibn Sina or Avicenna

(1037 CE) and Safiyu-d-Din (1276 CE). These theorists attempted to

rationalize the very diverse musics of the Islamic cultural area within the

Greek theoretical framework.

In addition to an extended Pythagorean cycle ofseventeen tones, genera

of divided fifths and a forty-fold division of the the string (Tanbur of

Baghdad) in AI-Farabi, several new theoretical techniques are found.

Al-Farabi analogizes from the 256/243 . 9/8 . 9/8 ofthe Pythagorean tuning

and proposes reduplicated genera such as 49/48.8/7.8/7 and z7/z5 . 10/9 .

1019. Avicenna lists other reduplicated tetrachords with intervals of ap­

proximately 3/4 of a tone and smaller (see the Catalog for these genera).

The resemblance of these to Ptolemy's equable diatonic seems more than

fortuitous and further supports the notion that three-quarter-tone intervals

were in actual use in Near Eastern music by Roman times (second century

CE). These tetra chords may also bear a genetic relationship to neutral-third

pentatonics and to Aristoxenos's hemiolic chromatic and soft diatonic

genera as well as Ptolemy's intense chromatic.

Surprisingly, I have been unable to trace the apparently missing redupli­

cated genus, I IlIo· I IlIo· 400/363 (165 + 165+ 168 cents) that is a virtually

equally-tempered division of the 4/3. Lou Harrison has pointed out that

tetra chords such as this and the equable diatonic yield scales which approx­

imate the 7-tone equal temperament, an idealization of tuning systems

which are widely distributed in sub-Saharan Africa and Southeast Asia.

Other theoretical advances of the Islamic theorists include the use of

various arrangements of the intervals of the tetrachords, Safiyu-d-Din

listed all six permutations of the tetrachords in his compendious tables,

although his work was probably based on Aristoxenos's discussion of the

permutations of the tetrachords that occur in the different octave species.
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At least for expository purposes, the Islamic theorists favored arrangements

with the pyknon uppermost and with the whole tone, when present, at the

bottom. This format may be related to the technique of measurement

termed messel, from the Arabic al-mitbal, in which the shorter of two string

lengths is taken as the unit, yielding numbers in the reverse order of the

Greek theorists (Apel 1955,441-442.).

The so-called nee-chromatic tetrachord (Gevaert 1875) with the aug­

mented second in the central position is quite prominent and is also found

in some of the later Greek musical fragments and in Byzantine chant

(Winnington-Ingram 1936) as the palace mode. It is found in the Hungarian
minor and Gypsy scales, but, alas, it has become a common musical cliche,

the "snake-charmer's scale" of the background music for exotic Oriental

settings on television and in the movies.

The present

After the medieval Islamic writers, there are relatively few theorists

expressing any great interest in tetrachords until the nineteenth and

twentieth centuries. Notable among the persons attracted to this branch

of music theory were Helmholtz ([1877] 1954) and Vogel (1963, 1967,

1975) in Germany; A.J. Ellis (1885), Wilfrid Perrett (1926,1928,1931,

1934), R. P. Winnington-Ingram (1928,1932) and Kathleen Schlesinger

(1933) in Britain; Thorvald Kornerup (1934) in Denmark; and Harry

Partch (1949) and Ervin Wilson in the United States. The contributions

of these scholars and discoverers are listed in the Catalog along with those

of many other workers in the arithmetic tradition.

After two and a half millennia, the fascination of the tetrachord has still

not vanished. Chapter 4 will deal with the extension of arithmetical tech­

niques to the problem of creating or discovering new tetrachordal genera.

IS PYTHAGORAS, PTOLEMY, AND THE ARITHMETIC TRADITION



3 Aristoxenos and the geometrization of

musical space

ARISTOXENOS WAS FROM the Greek colony ofTarentum in Italy, the home

of the famous musician and mathematician Archytas. In the early part of

his life, he was associated with the Pythagoreans, but in his later years he

moved to Athens where he studied under Aristotle and absorbed the new

logic and geometry then being developed (Barbera 1980; Crocker 1966;

Litchfield 1988). He was the son of the noted musician Spintharos, who

taught him the conservative musical tradition still practiced in the Greek

colonies, if not in Athens itself (Barbera 1978).

The geometry of music

The new musical theory that Aristoxenos created about 320 BeE differed

radically from that ofthe Pythagorean arithmeticians. Instead ofmeasuring

intervals with discrete ratios, Aristoxenos used continuously variable

quantities. Musical notes had ranges and tolerances and were modeled asloci

in a continuous linear space. Rather than ascribing the consonance of the

octave, fifth, and fourth to the superparticular nature of their ratios, he took

their magnitude and consonance as given. Since these intervals could be

slightly mistuned and still perceived as categorically invariant, he decided

that even the principal consonances of the scale had a narrow, but still

acceptable range ofvariation. Thus, the ancient and bitter controversy over

the allegedly unscientific and erroneous nature ofhis demonstration that the

perfect fourth consists of two and one half tones is really inconsequential.

Aristoxenos defined the whole tone as the difference between the two

fundamental intervals of the fourth and the fifth, the only consonances

smaller than the octave. The octave was found to consist of a fourth and a

17 ARISTOXENOS AND THE GEOMETRIZATON OF MUSICAL SPACE
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3-1. Thegenera ofAristoxenos. The descriptions of
Aristoxenos (Macron 1902) in termsoftwelfths of
tones have been converted tocents, IlSSUming 500
cents to theequally temperedfOurth. The inter­
pretation ofAristoxenos'sfractional tones as thirty
parts tothefourth isafter thesecond century theo­
rist CleonMes.

fifth, two fourths plus a tone, or six tones. The intervals smaller than the

fourth could have any magnitude in principle since they were dissonances

and not precisely definable by the unaided ear, but certain sizes were

traditional and distinguished the genera known to every musician. These

conventional intervalscould be measured in terms of fractional tones bythe

ear alone because musical function, not numerical precision, was the

criterion. The tetrachords that Aristoxenos claimed were well-known are

shown in 3-I.
Aristoxenos described his genera in units of twelfths of a tone (Macran

19°2), but later theorists, notably Cleonides, translated these units into a

cipher consisting of 30 parts (moria) to the fourth (Barbera 1978). The

enharmonic genus consisted of a pyknon divided into two 3-part micro­

tones or dieses and a ditone of 24 parts to complete the perfect fourth. Next

come three shades of the chromatic with dieses of 4,4.5, and 6 parts and

upper intervals of 22,11, and 18parts respectively.The set was finishedwith

two diatonic tunings, a soft diatonic (6 + 9 + 15 parts), and the intense

diatonic (6+12 +12 parts). The former resembles a chromatic genus, but the

latter is similar to our modern conception of the diatonic and probably

ENHARMONIC INTENSE CHROMATIC

0 5° 100 5°0 ° 100 aoo 50 0

3 + 3 + 24 PARTS 6+ 6 + 18 PARTS

1/4 + 1/4 + 2 TONES liz + liz + I liz TONES

50 + 50 + 400 CENTS 100 + 100 + 300 CENTS

SOFT CHROMATIC SOFT DIATONIC

-----
a 67 133 5°0 a 100 250 500

4 + 4 + ZZ PARTS 6 + 9 + IS PARTS

1/3 + 1/3 + I 5/6 TONES liz + 3/4 + I 1/4 TONES

67 + 67 + 333 CENTS 100 + ISO + 250 CENTS

HEMIOLIC CHROMATIC INTENSE DIATONIC

--
° 75 ISO 5°0 a 100 3 0 0 500

4.5 + 4.5 + 2 I PARTS 6 + IZ + IZ PARTS

3/8 + 3/8 + I 3/4 TONES liz + I + I TONES

75 + 75 + 350 CENTS 100 + 200 + 200 CENTS
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DIATONIC WITH HEMIOLIC CHROMATIC DIESIS

0 75 300 500

4.5 + 13·5 + 1I PARTS

3/8 + I 1/8 + I TONES

75 + 225 + 200 CENTS

REJECTED CHROMATIC

0 100 150 50 0

6 + 3 + 2I PARTS

Ih + 1/4 + I 3/4 TONES

100 + 50 + 350 CENTS

UNMELODIC CHROMATIC

-----
0 75 133 50 0

4·5 + 3·5 + 22 PARTS

3/8 + 7/24 + I 5/6 TONES

75 + 58 + 367 CENTS

DIATONIC WITH SOFT CHROMATIC DIESIS
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represents the Pythagorean form. Two such jo-part tetrachords and a

whole tone of twelve parts completed an octave of 72 parts.

Several properties of the Aristoxenian tetrachords are immediately

apparent. The enharmonic and three chromatic genera have small intervals

with similar sizes, as if the boundary between the enharmonic and chro­

matic genus was not yet fixed. The two chromatics between the syntonic

chromatic and the enharmonic may represent developments of neu­

tral-third pentatonics mentioned in chapter 2.

The pyknon is always divided equally except in the two diatonic genera

whose first intervals (half tones) are the same as that of the syntonic

chromatic. Thus Aristoxenos is saying that the first interval must be less

than or equal to the second, in agreement with Ptolemy's views nearly five

hundred years later.

The tetrachords of 3-2 are even more interesting. The first, an approved

but unnamed chromatic genus, not only has the 1:2 division of the pyknon,

but more importantly, is extremely close to Archytas's chromatic tuning

(Winnington-Ingram 1932). The diatonic with soft chromatic diesis is a

very good approximation to Archytas's diatonic as well (ibid.). Only

Archytas's enharmonic is missing, though Aristoxenos seems to allude to it

in his polemics against raising the second string and thus narrowing the

largest interval (ibid.). These facts clearly show that Aristoxenos understood

the music of his time.

The last two tetrachords in 3-2 were considered unmusical because the

second interval is larger than the first. Winnington-Ingram (1932) has

suggested that Aristoxenos could have denoted Archytas's enharmonic

tuning as 4+ 3 + 23 parts (67 + 50+ 383), a tuningwhich suffers from the same

defect as the two rejected ones. A general prejudice against intervals

containing an odd number of parts may have caused Aristoxenos to disallow

tetrachords such as 5 + I I + 14, 5 + 9 + 16 (ibid.), and 5 + 6 + 19 (Macran

1902) .

The alleged discovery of equal temperament

Because a literal interpretation of Aristoxenos's parts implies equal tem­

peraments of either 72 or 144 tones per octave to accommodate the

hemiolic chromatic and related genera, many writers have credited him

with the discovery of the traditional western European rz-tone intonation.

This conclusion would appear to be an exaggeration, at the least. There is

500

500300

4 + 14 + 12 PARTS

1/3 + I 1/6 + I TONES

67 + 233 + 200 CENTS

UNNAMED CHROMATIC

zoo

4 + 8 + 18 PARTS

1/3 + 2/3 + I Ih TONES

67 + 133 + 300 CENTS

3-2.. Othergene7'o mentioned byAristoxenos.

o

°



no evidence whatsoever in any of Aristoxenos's surviving writings or from

any of the later authors in his tradition that equal temperament was in­

tended (Litchfield 1988).

Greekmathematicians would have had no difficulty computing the string

lengths for tempered scales, especially since only two computations for each

tetrachord would be necessary, and only a few more for the complete octave

scale. Methods for the extraction of the square and cube roots of two were

long known, and Archytas, the subject of a biography by Aristoxenos, was

renowned for having discovered a three-dimensional construction for the

cube root of two, a necessary step for dividing the octave into the 12, 24, 36,

72, or 144 geometric means as required by Aristoxenos's tetrachords (Heath

[I9:H] 1981, 1:246-249). Although irrationals were a source of great worry

to Pythagorean mathematicians, by Ptolemy's time various mechanical

instruments such as the mesolabium. had been invented for extracting roots

and constructing geometric means (ibid., 2:104). Yet neither Ptolemy nor

any other writer mentions equal temperament.

Ptolemy, in fact, utterly missed Aristoxenos's point and misinterpreted

these abstract, logarithmic parts as aliquot segments of a real string of 120

units with 60 units at the octave, 80 at the fifth, and 90 at the fourth. His

upper tetrachord had only twenty parts, necessitating the use of com­

plicated fractional string lengths to express the actually simple relations in

the upper tetrachords of the octave scales.

There are two obvious explanations for this situation. First, Aristoxenos

was opposed to numeration, holding that the trained ear of the musician

was sufficiently accurate. Second, Greek music was mostly monophonic,

with heterophonic rather than harmonic textures. Although modulations

and chromaticism did exist, they would not have demanded the paratactical

pitches ofa tempered gamut (polansky 1987a). There was no pressing need

for equal temperament, and if it was discovered, the fact was not recorded

(for a contrary view, see McClain 1978).

Later writers and Greek notation

Although most of the later theorists continued the geometric approach

taken by Aristoxenos, they added little to our knowledge of Greek music

theory with few exceptions. Cleonides introduced the cipher of thirty parts

to the fourth. Bacchios gave the names of some intervals of three and five

dieses which were alleged to be features of the ancient style, and Aristides
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3-3. Twomedieval Islamicforms. These twomed­
inialIslamic tetracbords areAristoxenian ap­
proximations to Ptolemy's equable diatonic. The
Arabs also listed Aristoxenos's othertetracbords in
theirtreatises.

NEUTRAL DIJl.TONIC

° 200 35° 5°0
12 + 9 + 9 PJl.RTS

1+ 3/4 + 3/4 TONES

200 + 150 + IS0 CENTS

EQUJl.L D1J1.TONIC

° 167 334 500

10 + 10 + 10 PJl.RTS

5/6 + 5/6 + 5/6 TONES

167 + 167 + 166 CENTS

Quintilianus offered a purported list of the ancient hannoniai mentioned

by Plato in the Timaeus.
One exception was Alypius, a late author who provided invaluable

information on Greek musical notation. His tables of keys or tonoiwere

deciphered independently in the middle of the nineteenth century by

Bellennann (1847) and Fortlage (1847), and made it possible for the few

extant fragments of Greek music to be transcribed into modern notation

and understood. Unfortunately, Greek notation lacked both the numerical

precision of the tuning theories, and the clarity of the system of genera and

modes (chapter 6). Additionally, there are unresolved questions concerning

the choice of alternative, but theoretically equivalent, spellings of certain

passages. Contemplation of these problems led Kathleen Schlesinger to the

heterodox theories propounded in The Greek Aulos.

Others have simply noted that the notation and its nomenclature seem

to have evolved away from the music they served until it became an

academic subject far removed from musical needs (Henderson 1957)' For

these reasons, little will be said about notation; knowledge of it is not

necessary to understand Greek music theory nor to apply Greek theory to

present-day composition.

Medieval Islamic theorists

As the Roman empire decayed, the locus of musical science moved from

Alexandria to Byzantium and to the new civilization of Islam. Aristoxenos's

geometric tradition wasappropriated by both the Greek Orthodox church to

describe its liturgical modes. Aristoxenian doctrines were also included in the

Islamic treatises, although arithmetic techniques were generally employed.

The tetrachords of3-3 were used by Al-Farabi to express 3/4-tonescales

similar to Ptolemy's equable diatonic in Aristoxenian terms. Ifone subtracts

10 + 10+ 10 parts from Ptolemy's string of 120 units, one obtains the series

120 110 100 90, which are precisely the string lengths for the equable

diatonic (Diu. 11110' 1019). It would appear that the nearly equal

tetrachord 11110' 1r/ro- 400/363 was not intended.

The tetrachord 12 + 9 + 9 yields the permutation 120 108 99 90, or

10/9' 12111 . 11110. This latter tuning is similar to others of Al-Farabi and

Avicenna consisting of a tone followed by two 3/4-tone intervals. Other

tetrachords of this type are listed in the Catalog.
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Eastern Orthodox liturgical music

The intonation of the liturgical music of the Byzantine and Slavonic

Orthodox churches is a complex problem and different contemporary

authorities offer quite different tunings for the various scales and modes

(echoi). One of the complications is that until recently a system of 28 parts

to the fourth, implying a 68-note octave (28+ 12 + 28=68 parts), was in use

along with the Aristoxenian 30+ 12. + 30 parts (Tiby 1938).

Another problem is that the nomenclature underwent a change; the term

enharmonic wasapplied to both a nee-chromatic and a diatonic genus, and

chromatic was associated with the neo-chromatic fOnDS. Finally, many of

the modes are composed of two types of tetrachord, and both chromaticism

and modulation are commonly employed in melodies.

Given these complexities, only the component tetrachords extracted

from the scales are listed in 3-4. The format of this table differs from that

of 3-1 through 3-3 in that the diagrams have been omitted and partially

replaced by the ratios of plausible arithmetic forms. The four tetrachords

from Tiby which utilize a system of 28 parts to the fourth are removed to

the Tempered section of the Catalog.

ATHANASOPOULOS(I950)

9 + 15 + 6 ISO + 250 + 100 CHROMATIC

6+ 18 + 6 100 + 300 + 100 CHROMATIC

6+12+12 100 + 200 + 200 DIATONIC

12+12+6 200 + 200 + 100 ENHARMONIC

SAVAS (1965)

8 + 14+8 133 + 233 + 133 CHROMATIC

10+ 8 + 12 167 + 133 + 200 DIATONIC

8 + 12 + 10 133 + 200 + 167 BARYS DIATONIC

12+12+6 200 + 200 + 100 ENHARMONIC

8 + 16+ 6 133 + 267 + roo BARYS ENHARMONIC

6+ 20+4 100+ 333 + 67 PALACE MODE (NENANO)

XENAKIS (1971)

7+ 16+ 7 II7 + 266 + II7 I6h5 . 7/6• I51I4 SOFT CHROMATIC

5 + 19+ 6 83 + 317 + 100 256/1.43. 6/5' 135/128 INTENSE CHROMATIC

U+II+7 200 + 183 + II7 9/8• 10/9' 16/15 DIATONIC

6+12+12 IDa + 1.00 + 200 25 6/243 • 9/8 • 9/8 ENHARMONIC

3-4· Byzantine and Greek Orthodox tetracbords.
Athana.fopouks's enharmonic and diatonic genera
consist ofvarious permutations of6+ I 2 + I:1., i.e, I:1.

+6+12. Xmakir permitspermutations ofthe12 +
I I +7 lind 6+12 + I 2 genera. A closer, butnon­

superpartu:ular, approximJJtion toXenakir's intense
chromatic would be22/21·6/5' 35/33.

PARTS CENTS RATIOS GENUS
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The tetrachords of Athanasopoulos (1950) are clearly Aristoxenian in

origin and inspiration, despite being reordered. One of his chromatics is

Aristoxenos's soft diatonic and the other is Aristoxenos's intense chromatic.

The rest of his tetrachords are permutations of Aristoxenos's intense

diatonic.

Savas's genera (Savas 1965) may reflect an Arabic or Persian influence,

as diatonics with intervals between 133 and 167 cents are reminiscent of

Al-Farabi's and Avicenna's tunings (chapter 2 and the Catalog). They may

plausibly represent l2/I1 and i itu: so that his diatonic tunings are in­

tended to approximate a reordered Ptolemy's equable diatonic. His

chromatic resembles 14113 .8/7' 13/12 and his Barys enharmonic, 15114'
7/6. I6!I 5. Savas's ordinary enharmonic may stand for either Ptolemy's

intense diatonic (IO/9' 9/8. 16115) or the Pythagorean version (2561243 .

9/8. 9/8). The palace mode could be 15114.6/5 . 2812 7 (Ptolemy's intense

chromatic). The above discussion assumes that some form of just in­

tonation is intended.

The tunings of the experimental composer Iannis Xenakis (1971) are

clearly designed to show the continuity of the Greek Orthodox liturgical

tradition with that ofPtolemy and the other ancient arithmeticians, though

they are expressed in Aristoxenian terms. This continuity is debatable;

internal evidence suggests that the plainchant of the Roman Catholic

church is derived from Jewish cantillation rather than Graeco-Roman

secular music (Idelsohn 192I). It is hard to see how the music of the Eastern

church could have had an entirely different origin, given its location and

common early history. A case for evolution from a common substratum of

Near Eastern music informed by classical Greek theory and influenced by

the Hellenized Persians and Arabs could be made and this might give the

appearance of direct descent.

The robustness of the geometric approach ofAristoxenos isstill evident

today after 2300 years. The musicologist James Murray Barbour, a strong

advocate of equal temperament, proposed 2 + 14 + 14 and 8 + 8 + 14 as

Aristoxenian representations of49/48. 8/7.8/7 and 14113 . 13h2' 8/7 in his

1953 book on the history of musical scales, Tuning andTemperament. 'With

Xenakis's endorsement, Aristoxenian principles have become part of the

world ofinternational, or transnational, contemporary experimental music.

In the next chapter the power of the Aristoxenian approach to generate new

musical materials will be demonstrated.
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4 The construction of new genera

THIS CHAPTER IS concerned with the construction of new genera in addi­

tion to those collated from the texts of the numerous classical, medieval,

and recent writers. The new tetrachords are a very heterogeneous group,

since they were generated by the author over a period of years using a

number of different processes as new methods were learned or discovered.

Including historical tetrachords, the tabulated genera in the catalogs

number 723, of which 476 belong in the Main Catalog, 16 in the re­

duplicated section, 101 under miscellaneous, 98 in the tempered list, and

32 in the semi-tempered category.

The genera in the Main Catalog are classified according to the size of

their largest or characteristic intervaleCI) in decreasing order from 13110

(454 cents) to 10/9 (182 cents). There are 73 CIs acquired from diverse

historical and theoretical sources (4- I). Sources are documented in the

catalogs. The theoretical procedures for obtaining the new genera are de­

scribed in this chapter and the next.

New genera derived by linear division

The first of the new genera are those whose CIs are relatively simple

non-superparticular ratios such as IIlg, 14/II, and 16113. These ratios

were drawn initially from sources such as Harry Partch's 43-tone, rr-Iimit

just intonation gamut, but it wasdiscoveredlater that some of these CIs are

to be found in historical sources aswell. The second group is composed of

intervals such as 37/30, which were used sporadically by historical writers.

To these ratios may be added their 4/3'S and 3h'S complements, e.g, 17122
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4- I. Cbaracurutic intervals (CIs) ofnwgenera injust intonation. TheCl isthelargest in­
tervalofthe tetracbordandthepybwn orapybwnisthedifference between theClandthe
fourth. Because 71IIlny oftheneu: genera have historically knoum CIs,alloftheCIsin the
MainCatalog arelisted in thistable. TheCIsofthe reduplicated, miscellaneous, tempered,
andsemi-temperedlistsarenotincludedin thistable.

HYPERENHARMONIC GENERA EIO 34127 18h7 399 + 99 cn wh7 17115 281 + u7

Theterm byperenhamJl)1/ic isori~7lIlUyfrom Ell 113/90 120h13 394+ 1°4 C22 27123 92/ 81 278 + 220

Wilson andrefers togenera whose CIisgnater EI2 64"SI 17116 393+ 1°5 c23 75/64 256/225 275+ 223

than 425 cents. Theprototypital hyperenhanllonit EI3 5/4 16115 386+ 112 C24 7/6 8/7 267 + 231

genuris Wilson's 56/55'55/54'9/7'Seuhapter5 EI4 8192/6561 218712048 384+ 114 c25 1361117 39/34 261 + 238

jorclamji&4tion sthemes. uS 56/45 15h4 379+ 119 c26 36/31 F 127 259 + 239

CI PYKNON CENTS EI6 41/33 44/41 376+ 122 C27 80/69 2312 0 256 + 242

13/10 40139 CHROMATIC GENERA c28 22119 38/33 254+ 244
HI 454+44 c29 52/45 15113 250 + 248
H2 35127 36/35 449 +49 TheCIsofthuhromaticgenera rangefrom 375 to

H3 221t7 34/33 446 +52 250 cents. DIATONIC GENERA

H4 128/99 33/32 445 + 53 CI 36129 29127 374+ 124 The CIsofthediatonic genera rangefram 250 to

H5 F 124 32/31 443 + 55 C2 26/21 14h3 370+ 128 166cents. Inthediatonic genera, apylmon does not
H6 40/31 31/30 441 + 57 2I!I7 68/63 366 + 132 exist.c3
H7 58/45 30129 439 + 59

C4 100/81 27125 365 + 133 DI 15/13 52/45 248 + 25°
H8 9/7 28127 435 +63 c5 37/30 40/37 363 + 135 D2 38123 22 !I9 242 + 256
H9 104/81 27126 433 +65 c6 16/13 13/12 359+ 139 D3 23120 80/69 242 + 256
HIO 5°/39 26125 430 +68

27122 88/81 F h 7 36/3 1
32125 25124

c7 355 + 143 04 239 + 259
HII 427+ 71

c8 II/9 12/n 39/34 136h l7 238 + 261347+ lSI 05
ENHARMONIC GENERA C9 39/3 2 128/r17 342+ 156 06 8/7 7/6 231+ 267

TheCIsoftheenhanllonicgenera rangefrom 375 CIO 28123 23 12 1 341 + 157 07 25612 25 75/64 223+ 275
to4:25 cents. CII 17h4 56/51 336+ 162 08 25122 88/75 221 + 277

EI 23118 24"23 424+ 73 C12 4°/33 r r/ro 333+ 165 09 92/81 27123 220+ 278

E2 88/69 23/22 421 + 77 cI3 29124 32/29 328+ 17° 010 76/67 67/57 u8 + 280

E3 5°/41 160h53 421 + 77 CI4 6/5 10/9 316+182 011 17/r5 20117 u7 + 281

E4 14/11 22/21 418 +81 CIS 25/21 28125 302 + 196 0I2 II 2/99 33128 214 + 284
E5 80/63 21120 414+ 84 cI6 19116 64/57 298 + 201 01 3 44/39 13/II 209 + 289
E6 33126 1°4/99 413 + 85 CI7 32/27 9/8 294+ 204 01 4 I 52/r 35 45/38 205 + 293
E7 19115 20h9 409 + 89 cI8 45/38 152/r35 293+ 205 01 5 9/8 32127 204+ 294
E8 81/64 2561243 408 + 9° CI9 13/11 44/39 289+ 2°9 016 1601143 143h 2O 194+ 304
E9 24/r9 19118 4°4+94 C20 33128 II2/99 284 + 214 01 7 10/9 6/5 182 + 316
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MlILTIPLlER: 4 TERMS: 16 15 14 13 12

MULTIPLIER: 6 TERMS: 24 23 22 2I 20 19 18

MULTtPLIER: S TERMS: 20 19 18 17 16 IS

4-2. Indexedgenei'll, The terms4 and3 which

represent the III and4/3ofthefinal tetracbord are
multipliedby theindex. Thelefthandsetsof

tetrachordsare those generatedby selectingand

raombining thesuccessive intervals resultingfrom

theadditional termsafter themultiplication, The

righthandsets oftetracbords havebeen reduced to

lowest tel711S andorderedwith theCI uppermost.

is the 3h's complement of II/9 and 52/45 the 4/3's complement of ISh3'

Various genera were then constructed by dividing the pykna or apykna by

linear division into two or three parts to produce 1:1, 1:2, and 2:1 divisions.

Both the 1:2 and 2:1 divisionswere made to locate genera composed mainly

of superparticular ratios. Even Ptolemy occasionally had to reorder the

intervals resulting from triple division before recombining two of them to

produce the two intervals of the pyknon (2-2 and 2-4). More complex di­

visions were found either by inspection or by katapyknosis with larger

multipliers.

Indexed genera

One useful technique, originated by Ervin Wilson, is a variation of the

katapyknotic process. In 4-2 this technique is applied to the 4/3 rather than

to the pyknon (asit wasin 2-4).The 1 II and 4/3 of the undivided tetrachord

are expressed as 3 and 4, and are multiplied by a succession of numbers of

increasing magnitude. The new terms resulting from such a multiplication

and all the intermediate numbers define a set of successive intervals which

may be sequentially recombined to yield the three intervals of tetrachords.

I have termed the multiplier, the index, and the resulting genera indexed

genera. The intermediate terms are a sequence of arithmetic means between

the extremes.

The major shortcoming of this procedure is that the number of genera

grows rapidly with the index. There are 120 genera of index 17,and not all

of these are worth cataloguing, since other genera of similar melodic con­

tours and simpler ratios are already known and tabulated. The technique is

still of interest, however, to generate sets of tetrachords with common

numerical relations for algorithmic composition.

Pentachordal families

Archytas's genera were devisedso that they made the interval 7/6 between

their common first interval, 28/z7, and the note a 9/8 below the first note

of the tetrachord (Erickson 1965; Winnington-Ingram 1932; see also 6-1),

Other first intervals (x) may be chosen so that in combination with the

9/ 8 they generate harmonically and melodically interesting intervals.

These intervals may be termed pentacbordal intervals (PI) as they are part of

a pentachordal, rather than a tetrachordal tonal sequence. Three such

groups or families of tetrachords are given in 4-3 along with their initial and

pentachordal intervals.

2O/r9' I9/r8 ·6/S
2O/r9' I9/r7 . I7/rS
2O/r9' I6/rS ' I9/r6

I8/r7' 10/9' I7/rS

16/rS' 10/9' 9/8

I7/r6, I6/rS ' 2O/r7

24/23' 23/22 . II/9

24/23' 23/21' 7/ 6

24/23' 10/9' 23/20

24/2 3 . I9 lr 8 . 23/r9
22121. 12/rI . 7/6

I2/rI' II/rO' ro/9
I9/r8, 12/r I . 22/r9

21120' 10/9' 8/7

I9II8. zr/r9 . 8/7

2Olr9' I9/r8 .6/S

I6/rS' IS/r4' 7/ 6

I6/r S . 13/12 . 1S/13

14/13 ' 13/ 12 • 8/7

I6/r 5 . IS/r4' 14/12

16/rS' IS/r3 ' 13/r 2

I6/r4' 14/13 ' 13/12

2O/r9' I9/r8 . I8/rS

2O/r9' I9/r7 . I7/r 5
2O/r9' I9/r6. I6/rS

20/r8· I8/r7 . I7/rS
2O/r8 ' I8/r6 . I6/I S

2O/r7' I7/r6. I6/IS

24123' 23122' 22/r8

24123' 23121' 2I1I8

24123' 23120' 2Olr8

24123' 23lr9' I9lr8"

24/22 . 22121 '2III8

24/22 . 22120' 20lr8

24/22 . 22II9 , I9lr8

24121, 21120' 201I8

24121, 2I/r9' I9lr8

24120' 2O/r9 . I9lr8

• see Catalog number 536.
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4-3. Pemacbordal intervalsandfami/ies.These
tetracbordsaredefined bytwoparameters: the

pentachordol interual, gx/8, andthecharacteristic
interual,whichdetermines thegenus.An initial
interualxresults in apentacbordalinterval (PI) of

9x/8. These pentachordalfamiliesare themost
importanttritriadicgenera ofchapter7. The initials
arethefirst mtenmlsofthetetracbords.

The '28/27family is an expansion ofArchytas's set of genera. The 40/39

family fits quite well into '24-tone equal temperament because of the rea­

sonably close approximation of many of the ratios of 13 to quarter-tone

intervals. The 1Sir3 is another plausible tuning for the interval of five

dieses which was reputed to be a feature of the oldest scales (chapter 6;

Bacchios, 3'20 CE in Steinmayer 1985). The 16lrS family contains the most

consonant tunings of the chromatic and diatonic genera.

The pentachordal intervals of 4-3 are the mediants("thirds") of the triads

which generate the tritriadicscales of chapter 7, where they are discussed in

greater detail. In general, all tetrachords containing a medial 9/8 may

function as generators of tritriadic scales.

DISJUNCTIVE TONES INITIAL PI INITIAL PI INITIAL PI

I6hS 6/5 10/9 5/4 8/7 9/71 ~RACT<",mC ll<nRVAL' 28/27 7/6 n/II 27/22 88/81 II/9

-- --~ I3/n 39/31 n8hI7 16/13 22/21 33/28

8/9 s/: x y 413 3/2 3x12 3Y/2 2/I
112/99 I4/II 40/ 39 15!I3 52/45 rj/ro

\ /'
44/39 33/26 104/99 I3/II 56/51 2Ih7

PENTACHORDALINTERVALS 68/63 I7/I4 64/57 24!I9 I9 h 8 I9!I6

256h43 31/27 9/8 81/64 52/51 39/34

136/II7 I7!I3 7/6 lIh6 64/63 8/7

80/68 30/23 56 /45 23120 24/23 27/23

92/81 23h 8 I84h71 57/46 76/69 23h9

DIATONIC

ENHARMONIC
ERATOSTHENES

AVICENNA

DIATONIC

I6h5 . 9/8 . 10/9 PTOLEMY

16/15' 13/12. I5!I3 MAIN CATALOG

x-r6lr5, PI- 615

CHROMATlC

I6h5' 25/24'6/5 D1DYMOS
I6!I5' IS!I4' 7/6 AL-FARABI
16/15' 2O!I9' I9h6 KORNERUP

ARCHYTAS

ARCHYTAS

MAIN CATALOG

x-28127, P/-716

ENHARMONIC

28/27. 36/35 . 5/4

DIATONIC

28127 .8/ 7 ' 9/ 8

28127' 39/35' 15h3

CHROMATIC

28/27' 2431224' 32h.7 ARCHYTAS
28/27. Ish4 . 6/5 PTOLEMY
28/27' 27126. 26/21 MAIN CATALOG

BARBOUR
CHROMATlC

40/39 . 13/12 . 6/5

40/39 . 39/35 . 7/6

40/39' II/IO' 13/u

40/39' 39/38 . 19/IS

40/39 . 26/25 . S/4

40/39 . 52/45' 9/8

'40/39 . 9 r/Bo. 8/7
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4"4, Meam: formulae andequivalent expressions

fr(J11l Heath 192I, 1:85-87,except[ortbe
Iogm'ithmie, ratio, androot meansquare means.
Number 12 isthejramew01'k ofthescale whena - 12

andb = 6. Thetaracbordsgeneratedby number17
areextremely close numerically tothecounter­

10gl17'ithmiemean tetracbordsoftheotberkinds.

They also resemble thesubcontraries to thegeometric

means.

1. ARITHMETIC

(a- b)I(b-c)Z ilia=bib«c/c a +c =zb

2. GEOMETRIC

(a-b)I(b-e)-alb-b/c ae-bl

3' HARMONIC

(a-b)I(b-c) «a/c, t/a +I Ie= 21b b- zac/ta+e)

4- SUB CONTRARY TO HARMONIC

(a-e)I(b-L~ -cia (il2+t?)/(a+e) -b

5, FIRST SUBCONTRARY TO GEOMETRIC

(a-b)I(b-e)=elb a-b+e-L2Ib

6. SECOND SUBCONTRARY TO GEOMETRIC

(a-b)l(b-e)-bla e=l1+b-112Ib

7, UNNAMED

(l1-e)I(b-e) -ille t?«aac-cab

8. UNNAMED

(a-e)/(a-b)=lJle a2 +t?-a(b+c)

9. UNNAMED

(a-e)I(b-e)-ble !J2+t? ",c(a «b)

Mean tetrachords

The mathematician and musician Archytas may have been the first to rec­

ognize the importance of the arithmetic, harmonic, and geometric means

to music. He was credited with renaming the mean formerly called the

"subcontrary" as the harmonic mean because it produced more pleasing

melodic divisions than the arithmetic mean (Heath [1921] 1981j Erickson

1965)' His own tunings were constructed by the application of only the

harmonic and arithmetic means, but there were actually nine other means

known to Greek mathematicians and which might be used to construct

tetrachords (Heath [1921] 1981).

To this set of twelve may be added the rootmean square or quadratic mean

and four of my own invention whose definitions are given along with the

historical ones in 4-4. The logarithmic mean divides an interval into two

parts, the ratio of whose widths is the inverse of the ratio of the extremes

of the interval. For example, the logarithmic mean divides the 2/r into two

10. UNNAMED (SAME AS FIBONACCI SERIES)

(a-e)l(a -b)- ble a -b +e

II. UNNAMED

(a- c)l(a - b)_alb il2 '" zab - be

12. MUSICAL PROPORTION

a: (a+b)12 - labl(a «b): b

13. LOGARITHMIC MEAN

logb= (cloga-:«Jogc)l(a +e) (bla)C '"(elb)"

14, COUNTER-LOGARITHMIC MEAN

Jogb-(aloga+cJogc)l(a +c) (bla)a -(elb)e

15. RATIO MEAN

(a-c)l(b-c) -x/y c-(bx-ay)/(x-y)

16. SECOND RATIO MEAN

(a-c)I(a-b) -xly c- (ay-ax+bx)/y

17. ROOT MEAN SQUARE

b_v((a2+t?)h) !J2_(a2+t?)h
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4-5· Generating tetracbords withmeans.

MEAN TETRACHORDS 01' THE FIRST KIND

1/r

HYPERH, H,MESON PARlfYPA'I"E LICHANOS ME.SE P.ARAMESE-----_._------
FIRS1'MUN

SECOND MUN

Licbanos isdefined asthe lIppropritJte meanbetween

bypate mes;m (I II) and mese (#3). Parhypate isthen

computedasthe identical meanbetween Jicbanos lind
hypate.

MEAN TETRACHORDS OF THE SECOND KIND

I\YPERH. H.MESON PARRYPATE L\CHANOS ,.(ESE PA\U.MESE

PIRST ML\N

SECOND MEAN

Parhypate isdefined astheappropriate meanbetween
bypate meson (1/1) andmese (#3). Licbanos isthen
computed af the identical mellnbetween plJrhypate and

mes«.

MEAN TETRACHORDS OF THE THIRD KIND

HYPERH. H.MESON PARHYPATE L1CHANOS MESE PA\U.MESE

FIRST MEAN

SECONl> MEAN

Licbano« isdefined astheappropriate mesn between

byptlte meson (III) andparames« (312). Parhypate is
then computed asthe identical meanbetween mese (413J

andhyperhypate (819).

intervals of 400 and 800 cents in the proportion of 1:2 (0,4°0, and 1200

cents). The counter-logarithmic mean effects the same division in the op­

posite order, i.e., 800 and 400 cents (0,800, and 1200 cents).

The two ratio means, numbers 15 and 16, are variations of numbers 7 and

8 of 4-4, differing only in that the ratio of the difference of the extremes to

the difference between the mean and one of the extremes is dependent

upon the parameter x/y.

There are still other types of mean, but these seventeen are sufficient to

generate a considerable number of tetrachords (4-6-8) and may be of fur­

ther utility in the algorithmic generation of melodies.

The most obvious procedures for generating tetrachords from these

means are shown in 4-5. Mean tetrachords of the first kind are constructed

by first calculating the lichanos as the mean between III and 4/3, or

equivalently between a =4 and and c=3. The next step is the computation

ofparhypate as the same mean between I II and the just calculated lichanos

(4-6). Tetrachords of the second kind have the mean operations performed

in reverse order (4-7). Tetrachords of the third kind are found by taking the

means between III and 3h and between 8/9 and 4/3 (4-8); the smaller is

defined as parhypate; the larger becomes the lichanos.

The construction ofsets ofgenera analogous to those ofArchytas, which

are composed of a mean between 8/9 and 4/3 and its "subcontrary" or

"counter"-mean between 8/9 and 321z7 (Erickson 1965; Winnington­

Ingram 1932), is left for future investigations as it involves deep questions

about the integration of intervals into musical systems.

Multiple means may be defined for the arithmetic, harmonic, and geo­

metric means. The insertion of two arithmetic or harmonic means into the

4/3 results in Ptolemy's equable diatonic and its intervallic retrograde,

12/l1· II/IO' 10/9, 10/9 . IIlrO . r a/r r, The geometric mean equivalentis

the new genus 166.667 + 166.667 + 166.667 cents (see the discussion of

tempered tetrachords below).
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4-6. Mean tetracbords ofthefirst kind. Thelicbanoi arethemeansbetween III and"f/3 i the
plll'hypataian themeansbetween I II andthelicbanoi.

I, ARITHMETIC III IJ/u 7/ 6 4/3 I3 / I2 . 14/IJ . 817 139+ 128 + 231
2. GEOMETRIC 1.0 1.°7457 1.1547° 1,33333 1.°7457' I. 07457· 1.1547° 12 5 + 12 5 + 249

3· HARMONIC III 16h5 8/7 4/3 16h5' 15h4' 716 Il2 + Il9 + 267

4· SUBCONTRARY TO HARMONIC III 533 /483 2512 1 4/3 533 /483 . 5751533 . 28/25 17 1 + 131 + 196

5· FIRST SUBCONTRARY TO GEOMETRIC 1.0 1.°9429 1.18046 1.33333 1.°9429.1.°7874.1.1295° 156+13I+2I1
6. SECOND SUBCONTRARY TO GEOMETRIC 1.0 1.09 185 1.177°4 1.33333 1.°9185' 1.07803 . 1.13 278 15 2+ 13°+216

7· UNNAMED III 615 5/4 4/3 615 ' 25!l4' I6/r5 316+ 71 + Il2
8. UNNAMED III 157/r56 13/u 4/3 157h56. 169/r57' 16113 II + 128 + 359
9, UNNAMED 1.0 1.216 77 1.26376 1.33333 1.21677 . 1.03 86 2 . 1.05505 34°+66+93
10. FIBONACCI SERIES NO SOLUTION

II. UNNAMED III 256/255 16h5 4/3 256/255' 17h 6· 5/4 7 + 105 + 386

12. MUSICAL PROPORTION III 8/7 716 4/3 8/7' 49/48.8/7 23 1+36+ 23 1

13. LOGARITHMIC MEAN 1.0 1.°5956 1.13 U 2 1.33333 1.05956. 1.06763' 1.17 867 IOO+ I13+ 285

14. COUNTER-LOGARITHMIC MEAN 1.0 1.°93°1 1.17867 1.33333 1.°93°1• 1.07837' I. I 3I2 2 154+ 13 1 + 21 3
IS. RATIO MEAN (x/y = 413) III 19 h 6 5/4 4/3 I9h6. 20h9 . 16h5 29 8+ 89+ Il 2

16. SECOND RATIO MEAN (xlv = 4/3) III 157/I 56 13/12 413 157h S6. 1691r57' 16113 I1+I28+359

17. ROOT MEAN SQUARE 1.0 1.°929° 1.1785 1 1.33333 1.°9291' 1.°783 28. I.IJ I37 154+ 13 1 + 21 4

4-7. Mean tetracbords oftbesecond kind. Theparhypataiarethemeansbenueen III ond"f/3ithe
litbanoi orethemeansbetween theparbypatai and"f/3.

I. ARITHMETIC III 7/ 6 5/4 4 /3 7/6. 15h4' I6h5 267 + I19 + Il2

2. GEOMETRIC I.O 1.1547° 1.240 81 1.33333 1.15470' 1.°7457.1.°7457 249 + 12 5 + 12 5

3· HARMONIC III 8/7 I6IIJ 4/3 8/7' I4h3 . 13 / 12 231 + 128 + 139

4· SUBCONTRARY TO HARMONIC III 25h l 14091r II 3 4/3 25/21' I4 09h325' 1484/r4°9 302 + 106 + 90

5· FIRST SUBCONTRARY TO GEOMETRIC 1.0 1.18046 I.2 5937 1.33333 1.18046. 1.0 6 6 85' 1.05 873 28 7 + 112 +99

6. SECOND SUBCONTRARY TO GEOMETRIC 1.0 1.177°4 I.2 5748 1.33333 1.177°4' 1.06833 . 1.0 603 2 282 + Il4 + 101

7· UNNAMED III 5/4 85/64 413 5/4' 17h 6• 2561255 386 + 105 + 7

8. UNNAMED III 13/ 12 2I7/r92 4/3 13/12 • 217h08. 256!lI7 139+73+ 28 6

9· UNNAMED 1.0 1. 26376 1.3 299 1.33333 1.26376.1.°5321.1.00260 405+ 88+4

10. FIBONACCI SERIES NO SOLUTION

II. UNNAMED III I6h5 10/9 4/3 16/r5 . 25/24' 6/5 III + 71 + 316

I2. MUSICAL PROPORTION III 8/7 716 4/3 8/7 ' 49148• 8/7 23 1+ 36+ 23

13· LOGARITHMIC MEAN 1.0 1.131 22 1. 2 19 87 1.33333 1.13122' 1.°7837.1.°93°1 21 3 + 13 1 + 154

14. COUNTER-LOGARITHMIC MEAN 1.0 I.I7867 1. 25839 1.33333 1.17 867' 1.06763 . 1.05956 285 + Il3 + 100

15. RATIO MEAN (X/V=4/3) III 5/4 2III6 4/3 5/4' 21120.64/ 63 386 + 84+ 27

16. RATIO MEAN (x/v=4/3) III 13/ n 55/4 8 4/3 13 /12 . 55152 . 6~55 139+97+ 26 2

17. ROOT MEAN SQUARE 1.0 1.1785 I 1.22 583 1.33333 1.17851' 1.0677°8.1.°59625 284+ I13 + 100
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4-8. Mean tetrachordsofthe thirdkind. The li­
chanoiofthese tetrachords a"e the means between III

and312; the parhypataiare themeans between 8/9
and-tI]. These tetracbordsare also tritriadicgenera.

Summation tetrachords

Closely related to these applications of the various means is a simple

nique which generates certain historically known tetrachords as v

some unusual divisions. Wilson has called this freshman sums, and h

plied it in many different musical contexts (Wilson 1974, 1986, 1989

numerators and denominators of two ratios are summed separat

obtain a new fraction of intermediate size (Lloyd and Boyle I97B

example, the freshman sum of 1/1 and 4/3 is 5/4, and the sum of 5

III is 6/5. These ratios define the tetrachord t.I: 6/55/44/3' Similar

"sum" of 5/4 and 4/3 is 9/7, and these ratios delineate the III 5/49
tetrachord. The former is a permutation of Didymos's chromatic gen

the latter is the inversion of Archytas's enharmonic. If one ernp

multiplier/index as in 4-2 and expresses the I/r as 2h, 3/3... , an i

set of graded tetrachords may be generated. The most important a

teresting ones are tabulated in 4-9.

Similarly,the multiplier may be applied to the 4/3 rather than the

yield 8/6, 12/9•••• The resulting tetrachords fall into the enharmor

hyperenharmonic classes and very quickly comprise intervals too 51

be musicallyuseful. A few of the earlier members are listed in 4-10.

I. ARITHMETIC III 1019 5/4 4/3 10/9' 9/8 . 16/r5 182 + 204 + II

2. GEOMETRIC 1.0 1.08866 1. 2 2474 1·33333 1.08866· I.U5· 1.08866 147 + 204 + 14

3· HARMONIC III 16II5 6/5 4/3 16/r5 • 9/8. 1019 II2 + 204+ 18

4· SUBCONTRARY TO HARMONIC III 52/45 13 / u 413 5 2/45' 9/8 . 40/39 250+ 2°4+4-1

5· FIRST SUBCONTRARYTO GEOMETRIC 1.0 1.13 847 1.28°78 1.33333 1.13847' I.U5· 1.°410 225 + 204+ 70

6. SECOND SUBCONTRARY TO GEOMETRIC 1.0 I.u950 1. 270 69 1.33333 1. 1295' 1.125' 1.0493 2II + 204+ 83
7· UNNAMED NO SOLUTION

8. UNNAMED III 28/z7 7/6 4/3 28/z7 . 9/8.8/7 63+ 2°4+ 231

9· UNNAMED NO SOLUTION

10. FIBONACCI SERIES NO SOLUTION

II. UNNAMED NO SOLUTION

12. MUSICAL PROPORTION NOT DEFINED

13· LOGARITHMIC MEAN 1.0 1.°454° 1.176 0 8 1.33333 1.°454.1.125' 1.1337 77+ 204+ 21 7
14. COUNTER-LOGARITHMIC MEAN 1.0 1.13371 1. 2 754 2 1.33333 1.1337' I. U 5 • 1.0454 21 7 + 2°4+ n
15. RATIO MEAN (x/y =2/r) III 1019 514 4/3 1019' 918 . 16/r5 182 + 204 + I I

16. RATIO MEAN (x/y =2/r) III 10/9 5/4 4/3 1019 ' 9/8 . 16/r5 182 + 204 + I I

17. ROOT MEAN SQUARE 1.0 1.133 1 1.27475 1.33333 1.1331' 1. 125' 1.°4595 216+ 204+7 E
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TETRACHORD RATIOS SOURCE

I. III 6/5 5/4 4/3 6/5' 25124' 16IIS DIDYMOS

4-9. Summation tetracbords ofthejim type. 2. III 5/4 9/7 4/3 5/4' 36/ 35 . 2812 7 ARCHYTAS

Unreduced ratios have been retained to danfy the 3· 212 8/7 6/5 4/3 8/7 . 2Iho . 10/9 PTOLEMY

gene1'ating process. 4· 212 6/5 10/8 413 6/5' 25124' I6/I5 DIDYMOS

5· 3/3 10/9 7/ 6 4/3 10/9' 2Iho . 8/7 PTOLEMY
6. 3/3 7/ 6 11/9 413 7/6. 22/21 • U/II PTOLEMY

7· 4/4 12/II 8/7 4/3 UIII . 22121' 7/6 PTOLEMY
8. 4/4 8/7 12IIO 4/3 8/7' 21120' 10/9 PTOLEMY

9· 5/5 14/13 9/8 4/3 14II3 . 117/Iu . ph7 MISC. CAT.
10. 5/5 9/8 13/ II 4/3 9/8. 104/ 99 ' 44/39 MAIN CAT.
II. 6/6 16II5 10/9 4/3 16II5 . 25124. 6/5 DIDYMOS
12. 6/6 10/9 14/12 4/3 10/9' nho . 7/6 PTOLEMY

13· 7/7 18lr7 r r/ro 4/3 I8lr7' 187/I80. 40/33 MISC. CAT. .~

14· 7/7 IIlIo 15/13 4/3 IIlrO' 15o/I43 . 52/45 MISC. CAT.

15· 8/8 2olI9 12/r I 4/3 20lr9' S7/S5 . 11/9 MAIN CAT.
16. 8/8 U/II 16II4 4/3 12/r1 . 22121. 7/6 PTOLEMY

17· 9/9 22121 13/12 4/3 2Zh I . 91/88 . 16/I3 MISC. CAT.
18. 9/9 13/12 17lrS 4/3 13/12 ·68/65' 2o/I7 MAIN CAT.

19· ictus 24123 14/I3 4/3 24123' 161lrS6. 26121 MISC. CAT.
20. io/u: 14II3 18/r6 4/3 14/13 . II7lr u . p h7 MISC. CAT.
21. II/II 2612 5 ISlr4 4/3 26125 ' 375/364' 56/45 MISC. CAT.

22. I III I ISh4 19h7 4/3 ISII4' 2661255 .68/57 MISC. CAT.
2]. 12/12 2812 7 16IIS 4/3 28127 ' }6/3S . 5/4 ARCHYTAS

24· U/12 16lrS 2Olr8 4/3 16/15' 25124.6/5 DIDYMOS

4-10. Summation tetracbords ofthesecond type.
Unreduced ratios have been retained tocla1'ify the
generatingprocess.

TETRACHORD RATIOS SOURCE

I. III 10/8 9/7 8/6 5/4' 36/35 . 28127 ARCHYTAS

2. III 9/7 17/13 8/6 9/7' 119/I17' S2/SI MISC. CAT.

3· III 14hII3IIo U/9 14/II . 143/I40' 40/39 MISC. CAT.

4· Ih 13II o 25h9 U/9 13/Io. 2501247' 76/75 MISC. CAT.

5· IIr 18II4 17lr3 16/12 9/7' II9/I 17' 52/51 MISC. CAT.

6. III 17II3 33125 16/I2 17/I3 . 429/425' 100/99 MISC. CAT.

7· III 22lr7 nh6 2olr5 22lr7' 357/352 .64/63 MISC. CAT.

8. III 21/r6 41/31 2O/r5 2Ilr6· 656/6S1 . IZ4/r23 MISC. CAT.

9· III 26120 2Sh9 24/r8 13II o. 25°1247' 76/75 MISC. CAT.

10. III 2SII9 49/37 24/I8 25119' 931/925' 148/I47 MISC. CAT.
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•
PARTS CENTS APPROXIMATION PTOLEMAIC INTERPRETA

ENHARMONIC

1.5 + 1.5 + 27 25+ 25+450 80/79' 79/78. rj/ro 80/79' 79/78. 13ho

4- II. Neo-Aristoxenian generll7J)jth 1+2 + 27 17+33+450 12ohI9' II9h17' 13h o 120hI9' II9 h 17' 13h

constant CI. 2 + 2 + 26 33 + 33 +433 56/55' 55/54' 9/7 60/59' 59/58 . 58/45

2.5+ 2.5+ 25 42 + 42 +417 44/43' 43/42' 14h 1 48/47' 47/46. 23h 8

2 + 3 + 25 33+50+417 55/54' 36/35 . 14h 1 60/59' II8h15' 23/r8

2+4+ 24 33 + 67 + 400 60/59' 59/57 . 19h5 60/59' 59/57 . 19h5

3 + 3 + 24 50 + 50 + 400 40/39' 39/38. 19h5 40/39' 38/39' 19h5

2+5+ 23 33 + 83 + 383 56/55' 22121 . 5/4 60/59' II8h13' II3/9<

3+4+ 23 50+ 67 + 383 36/35' 28127 . 5/4 40/39' II7h13' II3/9<

3·5 + 3·5 + 23 58 + 58 + 383 3213 1' 31/30' 5/4 2401233' 233/226. II3'

CHROMATIC

2 + 6+ 22 33 + 100+ 367 51/50' 18h7' 100/81 60/59' 59/56. 56/45

8/3 + 16/3 + 22 44+ 89+ 367 40/39' 21120· 26121 45/44 . 22121 . 56/45

3 + 5 + 22 50+ 83 + 367 34/33' 22121 . 21h7 40/39' II7h 12. 56/45

4+4+ 22 67+ 67 + 367 28127' 27126.26121 30129' 2912 8. 56/45

2+7+ 21 33 + II7 + 350 56/55' 15lr4 . Il/9 60/59' II8lrIl . 37/30

3 +6 + 21 50 + 100+ 350 34/33' 18h7 . Il/9 40/39' 39/37' 37/30

4+ 5 + 21 67+ 83 + 350 28127' 22121 . 27/22 30129' II6hII . 37/30

4.5 +4·5 + 21 75 + 75 + 350 24123' 23/ 22 . Il/9 80/77 . 77/74' 37/30

2 + 10 + 18 33 + 167 + 300 45/44' r r/ro- 32127 60/59' 59/54. 6/5

3 +9+ 18 50+ 150+300 33/32 . 12/II . 32127 40/39' 13/12 .6/5

4+ 8+ 18 67 + 133 +300 28127 ' 2431224' 32127 30129' 29127. 6/5

4·5 + 7·5 + 18 75 + 125 + 300 25124' 27125 . 32127 80/77 . 77/72 ·6/5

5 + 7 + 18 83 + II7 + 300 21120'15/r4' 32127 24123' II5lr 08. 6/5
6 +6 + 18 100 + 100 + 300 2561243' 218712048. 32127 20h9' 19/r8 . 6/5

DIATONIC

2+13+ 15 33 + 217 + 250 45/44' 44/39 . 52/45 60/59' Il8h05 . 7/6

3 + 12 + IS 50+ 200+ 250 34/33' 19lr7' 22lr9 4°/39' 39/35 . 7/ 6

4+ II+ 15 67 + 183 + 250 27126. 10/9' 52145 30129' II6h05 . 7/6

5 + 10 + IS 83+ 167+ 250 104/99' rr/ro- 15/r3 24123' 2312 1' 7/6

6+9 + IS 100+ 217+250 19/r8. 12hI9' 22h9 20h9' 38/35 . 7/6

7 + 8 + IS Il7 + 217+250 104/ 97 ' 97/909 '15lr3 12ohIJ' II3/r05' 7/ 6

705 + 7·5 + IS 125125 + 250 15/r4' 14h3 . 52/45 I6h5' ISh4' 7/6
2 + 16 + 12 33 + 267 + 200 64/63' 7/6. 9/8 60/59' 59/51 . 17/r5
3 + IS + 12 50+ 250 + 200 40/39' 52145 . 9/8 4°/39' 39/34' 17h5

4+ 14+ 12 67+ 233+ 200 28127 . 8/7 ' 9/8 30129' 58/5 1 . 17lrS

4.5 + 13·5 + 12 75+225+200 24123' 92/ 81' 9/8 80/77 . 77/68 . 17lr5
5 + 13 + 12 83 + 217 + 200 22121 . 112/90' 9/8 24123' II5lr 02. 17/r5
6+12+12 100 + 200 + 200 2561243' 9/8. 9/8 20h9' 19/r7 . 17/r5
7+ II+ 12 II7 + 183 + 200 16/r5' 10/9' 9/8 UOh13 . II3/r02' 171l
8 + 10 + 12 II3 + 167 + 200 3201297 . t tito- 9/8 I5/r4' 56/51 . 17/r5
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4-12. Neo-Aristoxenian gene"'a with
reduplication.

Neo-Aristoxenian tetrachords with Ptolemaic interpretations

While Aristoxenos may have been documenting contemporary practice,

even a cursory look at his tables suggests that many plausible neo­

Aristoxenian genera could be constructed to "fill in the gaps" in his set. The

most obvious missing genera are a diatonic with enharmonic diesis, 3 + 15

+ 12 (50 + 250 + 200 cents), aparachromatic, 5+ 5 + 20(83 + 83 + 334 cents), and

a new soft diatonic, 7.5+ 7·5 + 15 (12 5 + 125 + 250 cents).

Although Aristoxenos favored genera with I: I divisions of the pyknon,

Ptolemy and the Islamic writers preferred the 1:2 relation. More complex

divisions, of course, are also possible. 4-11 lists a number of neo­

Aristoxenian genera in which the CI is held constant and the pyknotic di­

vision is varied. With the exception of the first five genera which represent

bypermbarmonic forms and three which are a closer approximation of the

enharmonic (383 cents, rather than 400 cents), only Aristoxenos's CIs are

used.

For each tempered genus an approximation in just intonation is selected

from a genus in the Main Catalog. Furthermore, an approximation in terms

of fractional parts of a string of 120 units of length, analogous to Ptolemy's

interpretation of Aristoxenos's genera, is also provided. While these

Ptolemaic interpretations are occasionally quite close to the ideal tempered

forms, they often deviate substantially. One should note, however, that the

Ptolemaic approximations are more accurate for the smaller intervals than

the larger.

Intervals whose sizes fall between one third and one half of the perfect

fourth may be be repeated within the tetrachord, leaving a remainder less

than themselves. These are termed reduplicated genera and a repre­

sentative set of such neo-Aristoxenian tetrachords with reduplication is

shown in 4- 12 •

PARTS CENTS APPROXIMATION PTOLEMAIC INTERPRETATION

2+14+ 14 34+ 233+ 233 49/48 . 8/7 . 8/7 60/59' 59/52 . 52/45

4+ 13+ 13 67 + 21 7 + 117 300/289' 17II5 . 17II5 30129' II6/r03 . 103/90

6+12+11 100 + 200 + 200 256/243 . 9/8 . 9/8 201I9' 19117' 17115

8+11+11 133 + 183 + 183 27/25' 10/9' 10/9 15II4' II2IIOI . 101/90

10+10+10 166 + 167 + 167 1 III 0 ·1 11I0 . 400/363 izls z . IIlIo· 10/9
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1:1 PYKNON CENTS APPROXIMATION PTOLEMAIC INTERPRETA1

1.5+ 1.5+ 27 25+ 25+450 80/79' 79/78 . 13110 80/79' 79/78 . 13110
4-13. Neo-Aristoxenian genera with 2 + 2 + 26 33 + 33 + 433 56/55' 55/54' 9/7 60/59' 59/58 . 58/45
constantpybuJticproportions. 2.5+ 2.5+ 25 42 + 42 + 417 44/43' 43/42 . 14/II 48/47' 47/46. 2311 8

3 + 3 + 24 50+ 50+400 40/39' 39/38 . 19115 40/39' 39/3 8 . 19115

3.5+3.5+ 23 58 + 58 + 383 3213 1' 31/30' 5/4 2401233. 233/ 226. II3/'

4+4+ 21 67 +67 + 367 28127' 27126.26/21 30129' 29128 . 56/45

4.5+4.5+ 21 75+75+350 24123' 23/21 . II/9 80/77 . 77/74 . 37/30

5 + 5 + 20 83 + 83 + 334 21/21 . 2Iho . 40/33 24123' 23122. II/9

5·5 + 5·5 + 19 92+92+317 20119' 19118 .6/5 2401229' 2191218. 109/
6 + 6 + 18 100 + 100 + 300 18117' 1711 6 . 32127 20119' 19118.6/5

6,5 + 6,5 + 17 108 + 108 + 283 17116. 16115 . 20117 2401227' 2171214' 107/!
7 + 7 + 16 II7 + 117 + 267 16115' 15II4 . 7/6 120II 13 . I I 3II 06 . 53/4:

7·5 + 7·5 + 15 125 + 125 + 250 15II4' 14/13 . 52/45 16115' 15114' 7/6
8 + 8 + 14 133 + 133 + 234 14/13 . 13/12 . 7/6 15114' 14113 . 52/45

8.5+ 8.5+ 13 142 + 142 + 217 40/37 . 37/34' 17115 2401223' 223h06. 103/
9+9+ 12 150+150+200 64/59' 59/54 . 9/8 40/37' 37/34' 17115

9·5 +9.5 + II 158 + 158 + 183 12/II . IIlIo . 10/9 240/221' 221h02. IOI/!

10+ 10 + 10 166 + 166 + 167 11110 . 11110 . 400/363 12/II . IIlIo . 10/9
1:2 PYKNON

1+2 + 27 17+33+450 1201119' I19III7' 13110 1201119 ' II9II17' 1311(
4/3 + 8/3 + 26 22 +44+433 84/83 . 83/81 . 9/7 90/89. 89/ 87' 58/45

5/3 + 10/3 + 25 28 + 56 + 417 64/63 . 33/32 . 14/11 72/71 . 71/69' 23118
2+4+ 24 33 + 67 + 400 57/56. 28127 . 24119 60/59' 59/57 . 19115
7/3 + 14/3 + 23 39 + 78 + 383 46/45' 24123' 5/4 360/353 . 353/339' 113/!
8/3 + 16/3 + 22 44 + 89+ 367 40/39 . 21/20 . 26/21 45/44' 22121 . 56/45
3+ 6+ 21 50 + 100+ 350 34/33 . 18II 7 . II/9 40/39' 39/37' 37/30
10/3 + 20/3 + 20 56+ 111+333 33/32' 16II5 . 40/33 36/35 . 35/33 . 11/9
II/3 + 21/3 + 19 61 + 122 + 317 28127 ' 15114. 6/5 360/349' 349/327' 109/
4 + 8 + 18 67 + 133 + 300 27h 6· 13/12 . 31/27 3°129' 29127. 6/5
13/3 + 26/3 + 17 72 + 144+ 283 51/49' 49/45' 20117 360/347' 347/321 . lo7/!
14/3 + 28/3 + 16 78 + 156 + 267 22hl . 12/11 . 7/6 1801173' I73 II 59 ' 53/4:
5+ 10+ 15 83+ 167+ 250 104/99 ' II110' 15113 24123' 23/22' 7/6
16/3 + 32/3 + 14 89 + 178 + 233 21ho . 10/9 . 8/7 45/43 . 43/39' 52/45
17/3 + 34/3 + 13 94 + 189 + 217 201I9' 19II7 . 201r7 360/343' 343/309' 103/~
6+12+12 100+ 200 + 200 2561243 . 9/8 . 9/8 20119. 19117' 171r5
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4-14. Aristoxenian realizations. Thefl"ll1l1ew01'k is

thenumber of''p(/1'ts'' in the twotetracbords andthe

disjunctive tone, The C017'eSp011ding equal

temperament istbesum ofthepartsofthe
framew01'k, Thearticulatedgenemarethose that

1l1Ily be played in thecorresponding equal

temperaments. The scheme of I 44 partswasusedby
Auicenna andAl-Farnbi (D'EI'langel' 1930).

Finally, in 4-13, the pyknotic proportions are kept constant at either 1:1

or 1:2 and the CIs are allowed to vary.

These neo-Aristoxenian tetrachords may be approximated in just in­

tonation or realized in equal temperaments whose cardinalities are zero

modulo 12. The zero modulo I2 temperaments provide opportunities to

simulate many of the other genera in the Catalogs as their fourths are only

two cents from 4/3 and other intervals of just intonation are often closely

approximated. One may also use them to discover or invent new neo­

Aristoxenian tetrachords.

To articulate a single part difference, a temperament of 72 tones per

octave is required, The liz parts in the hemiolic chromatic and several

other genera normally demand 144 tones unless all the intervals including

the disjunctive tone have a common factor. In this case, the 48-tone system

suffices. For the 1:2 pykna which employ 1/3 parts, 216-tone temperament

is necessary unless the numbers of parts share common factors. These data

are summarized in 4-14.

FRAMEWORK ET ARTICULATED GENERA

5 2 5 12 Diatonic andsyntonic cbromatic.

10 4 10 24 Enhl17711Onic, syntonic andsoftdiatonics, syntonic chromatic.

15 6 15 36 Syntonic diatonic, syntcmic andsoftchromatics, unnamed.

Chromatic, diatonic with softchromatic dieses.

20 8 20 48 Hemiolic chromatic, softandsyntonic diatonics, syntonic chromatic;

diatonic with bemiollc chromatic diem. See 24-tone ET.

25 10 25 60 Syntonic diatonic andchromatic,

30 12 3° 72 All previous gene1'a except bemiolic chromatic andgmera with

hemiolic chromatic dims (see 24-tone E1).

35 14 35 84 Syntonic diatonic and chromatic.

40 16 4° 96 Enharmonic, syntonic diatonic, softdiatonic, syntonic and bemiolic

chromatic. See 24-tone ET.

45 18 45 108 See 36-toneET.

50 20 5° 120 See 24-tone ET.

55 22 55 132 See i z-tone ET.

60 24 60 144 All genera except 1:2pyknll with 1/3parts.

90 36 9° 216 All gmeradefined in text.
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4- I 5, Semi-temperedAristoxenil1n tetrl1churds.
These tetracbords areliterl11 interpretations of
Aristoxmos'sgenerl1 underBarbera'sassumption
tbat Arlstoxenos71Ul1nt todivide theperfectfourthof

ratio 413 into30 eqUllIparts.

Semi-tempered tetrachords

The computation ofthe mean tetrachords also generates a number ofgenera

containing irrational intervals involving square roots. These tetrachords

contain both tempered intervals as well as at least one in just intonation, the

4/3, and may therefore be called semi-tempered. There also are the semi­

tempered tetrachords resulting from a literal interpretation of the late clas­

sical theorists Nichomachos and Thrasyllus (Barbera 1978). The first of

these is Nichomachos's enharmonic, defined verbally as a ditone with an

equally divided limmaand mathematically as ..}(256/243)· ..}(2561243)· 81/64

(45 + 45 + 408 cents). The second is Thrasyllus's chromatic, described

analogously as having a Pythagorean tribemitone or minor third and awhole

tone pyknon. Literally, this genuswouldbe..}(9/S), ..}(9/8). 32/27 (102 + 102

+ 294 cents), but it is possible that Thrasyllus meant the standard Py­

thagorean tuning in which the pyknon consists of a limma plus an apotome,

i.e., 256/243 '2187/2048. 32/27 (90+ II4+ 294 cents).

Other semi-tempered forms result from Barbera's assumption that Aris­

toxenos may have intended that the perfect fourth of ratio 4/3 be divided

geometrically into thirty parts. Barbera (1978) offers this literal version of

the enharmonic: 1O..}(4/3)· 10..;(4/3)'1O..}(65536/6561), or 50 + 50 + 398 cents,

where 65536/6561 is (4/3)8, It is an easy problem to find analogous inter­

pretations of the remainder of Aristoxenos's genera. These and a few closely

related genera from 3-1-3 have been tabulated in 4-15.

PARTS ROOTS CENTS GENUS

1. 3 +3+ 14 4/31/10 . 4/31/10 . 4/34/5 50 + 50 + 398 ENHARMONIC

1. 4+4+ 11 4/32/15. 4/32/15. 4/3ll/lS 66 +66 + 365 SOFT CHROMATIC

3· 4.5+4.5 + 2I 4/33/20 . 4/33120 • 4137/10 75 + 75 + 349 HEMIOLIC CHROMATIC

4· 6 +6 + 18 4/31/5. 4/31/5 . 4/33/5 100 + 100 + 199 INTENSE CHROMATIC

5· 6+9+ 15 4/31/5.4/33/10. 4/31/2 100 + 149 + 150 SOFT DIATONIC

6. 6+11+11 4/31/5 . 4/3215 • 4/32/5 100 + 199 + 199 INTENSE DIATONIC

7· 4+ 14+ 11 4/32/15. 4/37/ 15. 4132/5 66+132+ 199 DIATONIC WITH SOFT CHROMATIC DIESES

8. 4.5 + 13'5+11 4/33/20. 4/39/20. 4/32/5 75 +114 +199 DIATONIC WITH HEMIOLIC CHROMATIC DIESES

9· 4 +8 + 18 4/32/15. 4/3'1/15 . 4/33/5 66+ 133 +299 UNNAMED

10. 6+3 +21 4/31/5 . 4/31/10 . 4/37110 100+ 50 +349 REJECTED

II. 4·5+ 3·5+ 21 4/33/20 . 4/37/60 • 4/31l/15 75+ 58 + 365 REJECTED

n. 10+ 10+ 10 4/31/3 • 4/3113 • 4/31/3 166 + 166 + 166 SEMI-TEMPERED EQUABLE DIATONIC

13· 12+9+9 4/32/5 . 4/33/10 . 4/33/ 10 100 + 149 + 149 ISLAMIC DIATONIC
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Equal divisions of the 413
The semi-tempered tetrachords suggest that equally tempered divisions of

the 4/3 would be worth exploring. Such scales would be analogous to the

equal temperaments of the octave except that the interval of equivalence is

the 4/3 rather than the 2h. Scales of this type are very rare, though they

have been reported to exist in contemporary Greek Orthodox liturgical

music (Xenakis 1971).

A possible ancestor of such scales is the ancient Lesser Perfect System,

which consisted of a chain of the three tetrachords hypaton, meson, and

synemmenon. In theory, all three tetrachords were identical, but this was

not an absolute requirement, and in fact, in Ptolemy's mixed tunings, they

would not have been the same. (See chapter 6 for the derivations of the

various scales and systems, and chapter 5 for the analysis of their

properties.)

The most interesting equal divisions of the 4/3 resemble the equal

temperaments described in the next section and in 4-14 and 4-17. The

melodic possibilities of these scales should be quite rich, because in those

divisions with more than three degrees to the 4/3 not only can several tet­

rachordal genera be constructed, but various permutations of these genera

are also possible.

The harmonic properties, however, may be very different from those of

the octave divisions as the 1.11 may not be approximated closely enough for

octave equivalence to be retained. Moreover, depending upon the division,

other intervals such as the 312 or 3h mayor may not be acceptably

consonant.

The equal divisions of the 4/3 which correspond to equal octaval tem­

peraments are described in 4-16. A few supplementary divisions such as the

one of I I degrees have been added since they reasonably approximate

harmonically important intervals. For reasons of space, only a very limited

number of intervals was examined and tabulated. To gain an adequate un­

derstanding of these tunings, the whole gamut should be examined over a

span of at least eight 4/3 'so

Additionally, the nearest approximations to the octave and the

number of degrees per 211 are listed. This information allows one to

decide whether the tuning is equivalent to an octave division, or

whether it essentially lacks octave equivalence. Composition in scales

without octave equivalence is a relatively unexplored area, although the
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DEGREES PER 4/3 CENTS/DEGREE DEGREES/OCTAVE CENTS/OCTAVE OCTAVE DIVISION OTHER CONSONANT INTERVA

3 166.0 7·n 8 II62.1 7(-) GOLDEN RATIO (PHI) .. 5

4 124 .5 9.638 1245.1 10 (+) 7II .. 27

5 99.61 12·°5 II95-3 12 (-) 5II .. 28

6 83.01 14.46 II62.1 14 (-) 7/5" 7

7 71.15 16.86 1209.5 17 (+)

8 61.26 19.27 n82·9 19 (-) 7II .. 54

9 55-34 11.68 1217.4 22 (+) 5/3" 16, 6II .. 56

10 49.80 24·°9 II95·3 24 (-) 312 .. 14, 5II .. 56

II 45.28 26.50 1211·5 27 (+) 3II .. 42, 4h = 53,512 .. 35,

13 38,31 31.32 II87·6 31 (-) 6h .. 81, 7h = 88, 8II .. 94

14 35·57 33·73 1209.5 34 (+) 712 .. 61

15 33.20 36.14 II95·3 36 (-) 5II .. 84, PHI = 25

17 29·3° 4°.96 1201.2 41 (+) 312 ,. 14, 712 .. 74

20 24·9° 48.19 II95·3 48 (-) 5II .. II1, 7/4= 39

22 21.64 53.01 II99·8 53 (-) 312 ,. 31, 5/3 .. 39

25 19.92 60.24 II95·3 60 (-) 5II ,. 140, 7h .. 16 9

28 17-79 67-46 II91.8 67 (-) 3II ,. 107, 4h = 135

3° 16.605 71.18 II95·3 72 (-) 7II ,. 1° 3, 7/5 .. 35

35 14.23 84·33 II95·3 84 (-) 7/4" 68, 7/5 .. 41

4° 1145 96.38 II95·3 96 (-) 6II ,. 249, 5/3 .. 71

45 11.°7 108·4 II95·3 108 (-) 3/i,. 172, 4h = 217

5° 9.961 110·5 II95·3 120 (-) 3II = 191, 4II = 141

55 9·°55 1]1·5 11°4·4 133 (+) 7/4 = 107, PHI = 91, 3II =21

60 8.301 144.6 1103.6 145 (+) 3/i .. 129, 4h .. 289

9° 5·534 116.8 1100.8 217 (+) 312= 117

4-16. Equaldivisirms ofthe413. These areequal temperaments ofthe413 ratherthan the21I. "Degrees/octave Il isthe
numhel'ofdegrees ofthe division corresponding tothez/: oroctave. Formanyofthese diuisions, theoctave nolonger
functions asanintervalofequivalence. "Cents/octave" isthecent valueoftheapproximations to the111. "Octave diuision Il

istbeclosest whole numberofdegrees tothez/t, (-) indicatenhat theoctave iscompressedandless than1200cents. (+)

means that it isstretchedandlarger than1200cents. "Consonant intervals"arethedegrees ingood approximations tothe
intervals listed. All diuisions ofthe413 have goodapproximatirms tothe1011 as(413;8 + theskbismaequals 10/r. Diuisons
thatare multiples of3 also have goodapproximations tothe1 1/1. 17 isaslightly stretched4s-toneequal temperament. 11
isaudibly equivalent to53-tone equal temperament. 28 isa'lZalogrms tothedivision ofthefourth into18parts according to
Tiby's theo,'Y ofGmk Orthodox liturgicalmum (Tiby1938). 30 isanalogous toAristoxenos'sbasicsystem. 55 is
analogous to13a-tone equal temperament. 60 isanalogous to144-tone equal temperament. 90 isanalogous to216-tone
equal temperament. The Golden RatioorPhiis(1+..Js)h,approxi71Ultely 1.618.
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composer and theorist Brian McLaren has recently written a number

of pieces in non-octaval scales mostly of his own invention (McLaren,

personal communication, 1991). Xenakis has also mentioned chains of

fifths consisting of tetrachords and disjunctive tones (Xenakis 1971),

These suggest analogous divisions of the 312, including both those with

good approximations to the 4/3 and those without, Similarly, there are

divisions in which octave equivalence is retained and those in which it

is not, An example of one with both good fourths and octaves is the

seventh root of 312, which corresponds to a moderately stretched 12­

tone equal temperament of the octave (Kolinsky 1959).

Tetrachords in non-zero modulo 12 equal temperaments

Tetrachords may also be defined in non-zero modulo IZ equal tempera­

ments. For some combinations of genus and tuning the melodic and har­

monic distortions will be negligible, but for others the mappings may

distort the characteristic melodic shapes unacceptably. As an illustration,

the three primary genera, the enharmonic, the syntonic chromatic, and the

4-I 7. Tetracbords in non-zero modulo 1],equal FRAMEWORK ET GENERA

temperaments. These genera aredefined in ETs 3 I 3 7 DIATONIC/CHROMATIC

whentheperfectfourth does notequal]. I h "whole 3 1 3 8 D (ATONIC/CHRO MATIC

tones, "Theframewol'k isthenumberof"pal1s"in 4 I 4 9 CHROMATIC

the two[ourtbsandthedisjunctive time. Morethan 4 1 4 10 CHROMATIC

onefi'amework isplausible insome temperaments 4 3 4 II CHROMATIC

without goodfou71:hs 01' with morethan 17 notes, 5 3 5 13 DIATONIC, CHROMATIC

The corresponding equaltemperament isthesum of 6 1 6 14 DIATONIC, CHROMATIC

the partsofthefi'amework. Thegme,'a inagener- 6 3 6 IS DIATONIC, CHROMATIC

alized, non-specific sense maybeapproximated in 7 1 7 16 DIATONIC, CHROMATIC

these equal temperaments. "Diatonic/chromatic" 7 3 7 17 DIATONIC, CHROMATIC

means that there isnomelodicdistinction between 7 4 7 (8 2 8) 18 DIATONIC, CHROMATIC (ALL THREE)

tbese gene/'a. The chromatic pyknain9-, 10-, and 8 3 8 19 DIATONIC, CHROMATIC

11- tone ETconsist of twosmal!internals andone 84 8 20 ALL THREE

large, whilethedisjunction may1(I1'gel' orsmaller 9 3 9, 8 5 8 1I ALL THREE

than theC/. Gene711 indiffel'ently enharmonic and 949 22 ALL THREE

chromatic occuraround19 tonesperoctave andneo- 95 9, 10 3 10 23 ALL THREE

Aristoxenianformsmay berealizable in many ofthe 13 5 13 31 ALL THREE

ETs. 14 6 14 34 ALL THREE

17 7 17 41 ALL THREE
.'

21 9 22 53 ALL THREE "
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4- 1 8. Augmentedanddiminished tttrlKhordr.
Tbes« tttrlJChordsere closely related ttl those in 8-5
find 8-I 5.FortetradJords 'With perfectfturths
incorporating thediminishedfturths asintervals, see
theMainandMisce1J4neous CatJJogs. AIt'D)
additionalintervals ofsimilarsizehev«been usedas
Cisin4- I, butnotJivitkddIU to their&ompJe:dty.
Thelast three intervalsarete&bnitaOy diminished
fifths, but theyfunction asaugmentedfourths in
certain afthehamwnilliof&hapter 8.

RATIOS CENTS EXAMPLES

14"11 418 14"13 . 13111 . n/n

2.3118 42.4 1312.2. . nlIo· 1019

32.12.5 42.7 32.131 . 31130 •615

917 435 18117 . 17!I6 . 8/7

3112.4 443 31/30.10/9' 9/ 8

2.2.117 446 rr/ro- 10/9' 18117

131m 454 13/I2. . n/ll . 11110

30h3 460 15114 . 7/6 . 2. 4"2.3

17113 464 17116. 8/7 . 14113
nll6 471 2.lho. 10/9' 9/8

19h z 478 2.9h8. 7/6. 12.111

31h3 517 31/30' 5/4.2.412.3

13117 513 2.312.2. . 11/9' 18117

19114 52.9 19118 . 615 • 15114

15/11 537 15114' 7/6. rz/r r
2.6119 543 1612.5 • 5/4' 2.0119
n/8 551 11/10 . 10/9 . 9/8

40h9 557 8/7 . 7/6 . 3°/19
18113 563 9/8• 8/7' 14113

2.5118 569 5/4' 2.0119 . 19!I8
3112.3 572 16115 . 5/4 . 2.411.3

7/5 583 14"13 . 13/ n . 615
1020/72.9 588 2.56h43 . 8/7 . 7/6

45/32. 590 16115 . 10/9 . 615

10/17 597 615 . 10/9 . 18117
17h2. 603 17116 . 8/7 . 7/6

4¥31 606 11/10 . 5/4 . 32.131
10/7 617 10/9 ' 9/8 . 8/7

diatonic, will be mapped into the 12-, 19-, 21-, and 24-tone equal tem­

perament (ET) below:

ET POUllIll ENHARMONIC CHRO~C DIATONIC

12 Sa 1+1+3 1+2+1

19 SO 1+1+6 2+ 2+4 2 + 3 +3

22 9° 1+ 1+7 2+ 2+5 1 + 4 +4

~ lif 1+1+8 2+2+6 2+4+4

The enharmonic is not articulated in r a-tone ET, or at least not dis­

tinguishable from the chromatic except as a semitonal-major third pen­

tatonic. In 19-tone ET, the soft chromatic is identical to the enharmonic

and the syntonic chromatic is close to a diatonic genus like 125 + 125 + 250

cents. The enharmonic is certainly usable in az-tone ET but the diatonic

is deformed, with a quarter-tone taking the place of the semi tone. These

distortions, however, are mild compared to the 9-tone equal temperament

in which not only are the diatonic and chromatic genera equivalent as I +

I + :1 degrees, but the semitone at two units is larger than the whole tone.

Whether these intervallic transmogrifications are musically useful remains

to be tested.

There are, however, many fascinating musical resources in these non­

rz-tone tunings. As Ivor Darreg has pointed out, each of the equal tem­

peraments has its own particular mood which suffuses any scale mapped

into it (Darreg 1975). For this reason the effects resulting from transferring

between tuning systems may be of considerable interest.

Because of the large number of systems to be covered, the mappings of

the primary tetrachordal genera into the non-zero modulo 12 equal tem­

peraments are summarized in 4-17. The tetrachordal framework and pri­

mary articulated genera in the equal temperaments of low cardinality or

which are reasonable approximations to just intonation are shown in this

figure.

Augmented and diminished tetrachords

The modified or altered tetrachords found in some of the non-zero modulo

rz equal temperaments of 4-17 suggest that tetrachords based on aug­

mented and diminished fourths might be musically interesting. This sup­

position has historical and theoretical support. The basic scales (thats) of

some Indian ragas have both augmented and perfect fourths (Sachs 1943),

and the octaval harmoniai of Kathleen Schlesinger contain fourths of di-
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magnitudes (Schlesinger 1939; and chapter 8).Wilson has exploited the fact

that any scale generable by a chain of melodic fourths must incorporate

fourths of at least two magnitudes (Wilson 1986; 1987; and chapter 6). His

work implies that scales may be produced from chains of fourths of any

type, but that their sizes and order must becarefully selected to ensure tha t

the resulting scales are recognizably tetrachordal.

A number of altered fourths are available for experimentation. 4-18 lists

those which commonly arise in conventional theory and in the extended

theory of Schlesinger's harmoniai described in chapter 8. Scales may be

constructed by combining these tetrachords with each other or with normal

ones and with correspondingly altered disjunctive tones to complete the

octaves. Alternatively, the methods described in chapter 6 to generate

non-heptatonic scales may be employed.
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5 Classification, characterization, and

analysis of tetrachords

THISCHAPTER CONTAINS a complexmixture of topics regarding the descrip­

tion or characterization of tetrachords. Some of the concepts are chiefly

applicable to single tetrachords, whileothers refer to pairs of tetrachords or

the complete tetrachordal space. The most interesting of the newer meth­

ods, those of Rothenberg and Polansky, are most usefully applied to the

scales and scale-like aggregates described in detail in chapter 6. Moreover,

Polansky's methods may be applied to parameters other than pitch height.

The application of these techniques to tetrachords may serve as an model for

their use in broader areas of experimental intonation.

The first part of the chapter is concerned with the historical approach

to classification and with two analysesbased on traditional concepts. These

concepts include classification by the size of the largest, and usually

uppermost, incomposite interval and subclassification by the relative sizes

of the two smallest intervals. A new and somewhat more refined class­

ification scheme based on these historical concepts is proposed at the end

of this section.

These concepts and relationships are displayed graphically in order that

they may become more intuitively understood. A thorough understanding

of the melodic properties of tetrachords is a prerequsite for effective com­

position with tetrachordally derived scales. Of particular interest are those

tetrachords which lie near the border of two categories. Depending upon

their treatment, they may be perceived as belonging to either the diatonic

or chromatic genera, or, in other casesdepending on the CIs, to either the

enharmonic or chromatic. An example is the intense chromatic or soft
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diatonic types, where the interval near 250 cents may be perceived as either

a large whole tone or a small minor third. This type of ambiguity may be

made compositionally significant in a piece employing many different

tetra chords.

The middle portion of the chapter deals with various types of harmonic

and melodic distance functions between tetrachords having different inter­

valsor intervallic arrangements. Included in this section is a discussion ofthe

statistical properties of tetrachords, including various means (geometric

mean, harmonic mean, and root mean square; see chapter 4) and statistical

measures ofcentral tendency (mean deviation, standard deviation, and var­

iance). Both tabular and graphical representations are used; the tabular is

useful to produce a feeling for the actual values of the parameters,

These concepts should be helpful in organizing modulations between

various tetrachords and tetrachordal scales. For example, one could cut the

solid figures generated by the various means over the whole tetrachordal

space by various planes at different angles to the axes. The intersections of

the surfaces with the planes or the interiors of the bounded portions of the

figuresofintersection define sets of tetrachords. Planes parallel to the bases

define tetrachordal sets with invariant values of the means, and oblique

planes describe sets with limited parametric ranges. Similarly, lines (geo­

desics) on the surfaces of the statistical measures delineate other tetra­

chordal sets. These techniques are similar to that employed by Thomas

Miley in his compositions Z-View and Distance Music, in which the inter­

sections of spheres and planes defined sets of intervals (Miley 1989).

The distance functions are likewise pertinent both to manual and algo­

rithmic composition. James Tenney has used harmonic and melodic dis­

tance functions in Changes: Sixty-four Studies for Six Harps, a cycle ofpieces

in r r-limit just intonation. Polansky's morphological metrics are among the

most powerful of the distance functions. Polansky has used morphological

rnetrics in a number of recent compositions, although he has not yet applied

them to sets of tunings (Polansky, 1991, personal communication). His

compositions employing morphological metrics to date are I7 Simple Mel­

odies ofthe Same Length (1987), Distance Musics I-VI (1987), Duet (1989),

Three Studies (1989) and Bedhaya Sadra/Bedhaya Guthrie (19 88- 1991).
In the absence of any published measurements mown to the author of

the perceptual differences between tetrachordal genera and tetrachordal

permutations, the question ofwhich ofthe distance functions better models
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perception is unanswerable. There may be a number of interesting research

problems in the psychology of music in this area.

The chapter concludes with a discussion Rothenberg's concept ofpro­

priety as it applies to tetrachords and heptatonic scales derived from tetra­

chords. Rothenberg has used propriety and other concepts derived from

his theoretical work on perception in his own compositions, i.e., Inbarmonic

Figurations (Reinhard 1987).

Historical classification

The ancient Greek theorists classified tetrachords into three genera

according to the position of the third note from the bottom. This note was

called licbanos ("indicator") in the hypaton and meson tetrachords and

paranete in the diezeugrnenon, hyperbolaion, and synemmenon tetrachords

(chapter 6). The interval made by this note and the uppermost tone of the

tetrachord may be called the characteristic interval (CI), as its width defines

the genus, though actually it has no historical name. If the lichanos was a

semi tone from the lowest note, making the CI a major third with the 4/3,

the genus was termed enharmonic. A lichanos roughly a whole tone from

the III produced a minor third CI and created a chromatic genus. Finally,

a lichanos a minor third from the bottom and a whole tone from the top

defined a diatonic tetrachord.

The Islamic theorists (e.g., Safiyu-d-Din, 1276; see D'Erlanger 1938)

modified this classification so that it comprised only two main categories

translatable as "soft" and "firm." (D'Erlanger 1930j 1935) The soft genera

comprised the enharmonic and chromatic, those in which the largest

interval is greater than the sum of the two smaller ones, or equivalently, is

greater than one half of the perfect fourth. The firm genera consisted of the

diatonic, including a subclass of reduplicated forms containing repeated

whole tone intervals. These main genera were further subdivided according

to whether the pykna were linearly divided into approximately equal (1:1)

or unequal (I:2) parts. The I: I divisions were termed "weak" and the I: 2.

divisions, "strong."

These theorists added many new tunings to the corpus of known tetra­

chords and also tabulated the intervallic permutations of the genera. This

led to compendious tables which mayor may not have reflected actual

musical practice.
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Crocker's tetrachordal comparisons

Richard L. Crocker (1963,1964,1966) analyzed the most important of the

ancient Greek tetrachords (see chapters 2 and 3) in terms of the relative

magnitudes of their intervals. Crocker was interested in the relation of the

older Pythagorean tuning to the innovations of Archytas and Aristoxenos.

He stressed the particular emphasis placed on the position of the lichanos

by Archytas who employed 28/27 as the first interval (parhypate to III) in

all three genera. In Pythagorean tuning, the chromatic and diatonic par­

hypatai are a limma (256/243, 90 cents) above hypate, while the enhar­

monic division is not certain. The evidence suggests a limmatic pyknon, but

it may not have been consistently divided much prior to the time of

Archytas (W"mnington-Ingram 1928).

Archytas's divisionsare in marked contrast to the genera ofAristoxenos,

who allowed both lichanos and parhypate to vary within considerable

ranges. With Archytas the parhypatai are fixed and all the distinction

between the genera is carried by the lichanoi. These relations can be seen

most clearly in 5-1, 5-2, and 5-3. These figures have been redrawn from

those in Crocker (1966).

This type of comparison has been extended to the genera of Didymos,

Eratosthenes and Ptolemyin 5-4, 5-5, and 5-6. The genera ofDidymos and

Eratosthenes resemble those of Aristoxenos with their pykna divided in

rough equality.

Ptolemy's divisions are quite different. For Aristoxenos, Didymos, and

Eratosthenes, the ratio of the intervals of the pyknon are roughly I: I ,

except in the diatonic genera. Ptolemy, however, uses approximately a 2: 1

relationship.

Barbera's rate ofchange function

C. Andre Barbera (1978) examined these relations in more detail. He was

especiallyinterested in the relations between the change in the position of

the lichanoi compared to the change in the position ofthe parhypatai as one

moved from the enharmonic through the chromatic to the diatonic genera.

Accordingly,he defined a function over pairs of genera which compared the

change in the location of the lichanoi to the change in that of the par­

hypatai, His function is (lichanosj -lichanosl) I (parhypatej - parhypatej)

where the corresponding notes of two tetrachords are subscripted. This

function is meaningful only when computed on a series of related genera
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5-1. Archytas'sgenera, These genera havea con­

stant 28h.7 astheirparhypate.

ENHARMONIC

5/428127 36/35----------------° 63 II2

5-3. Aristoxenos'sgenera, expressed in Cleonides's

partsratherthanratios. Onepartequals I 6.667
cents.

ENHARMONIC

5°0

5°0

3 + 3 + 24 PARTS

SOFT CHROMATIC

67 133
4 +4 + 22 PARTS

o

---------------

---------------

° 50 100
CHROMATIC

28127 24312 24 p h 7

° 63 204 498

DIATONIC

28h7 8/7 9/ 8

° 63 294 498

HEMIOLIC CHROMATIC
----------------

ENHARMONIC

°
----

81/64

° 9° 498

CHROMATIC

256h43 218712048 32127

° 9° 204 498

DIATONIC

256/243 9/8 9/ 8

° 9° 294 498

5-2.. Pytbagorean genera. These gene1'tllll'e tradi­

tionnl/y attributedtoPythllgo1'f1s, but infilet areof

Babylonian origin (Ducbesne-Guillemin 1963,

1969).The division of theenbarmonicpyknon isnot

known, butseveralplausible tuningsarelistedin the

Main Catalog,

°

°

°

75 15°
4.5 + 4,5 + 2I PARTS

INTENSE CHROMATIC

100 200
6 + 6 + 18PARTS

SOFT DIATONIC

100 250
6 + 9 + 15PARTS

INTENSE DIATONIC

100 3°0
6+ 12+ 12 PARTS

5°0

5°0

5°0

5°0
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5-+ Didynws'sgenera. Didymos'schromatic is
probably the11UiSt consonant tuningforthe6/5

genus. Hisdiatoni: differsfrom Ptolemy's only in the

order ofthe9/8anJ 10/9'

ENHARMONIC

32/31 31/30 5/4--
0 55 IU

CHROMATIC

16II5 25124 6/5-
0 112 183

DIATONIC

16II5 10/9 9/8

0 In 294

5-5. Eratosthenes'sgenera. Eratosthenes's diatonic

istheslime asPtolemy's ditone diatonic.

ENHARMONIC

40/3939/3 8 19/15--
o 44 89

CHROMATIC

20!I9 19!I8 6/5

0 89 183

DIATONIC

2561243 9/8 9/8

0 90 294

S-6. Ptolemy'sgenera. Only Ptolemy'sowngenera

areshown. Ptolemy's tonic diatonic isthesame as

Archytas's diatonic. Hisditime diatonic isthe

Pythagorean diatonic.

ENHARMONIC

46/45 24123--------------
o 38 Il3

SOFT CHROMATIC

28127 15!I4

o 63 182

INTENSE CHROMATIC

nhl n/II 7/6

0 81 231

SOFT DIATONIC

nho 10/9 8/7

0 85 267

INTENSE DIATONIC

16!I5 9/8 10/9

0 Il2 316 498

EQUABLE DIATONIC

nlIl IllIo 10/9

0 151 316 498
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5-8. RatioofJichanos toparhypate inAristoxenos's

andPtolemy'sgenera.

5-7. Barbera'sfunction applied toAristoxmossand

Ptolemy s genera.
such as Aristoxenos's enharmonic and his chromatics or on the cor­

responding ones of Ptolemy. The extent to which such calculations give

consistent values is a measure of the relatedness of the tetrachordal sets.

In 5-7, the results of such calculations are shown. The value for Aris­

toxenos's non-diatonic genera is 2.0. Ptolemy's genera yield values near 3.0,

and the discrepancies are due to his use of superparticular ratios and just

intonation rather than equal temperament. The proportion of the Ptol­

emaic to the Aristoxenian values is near 1.4.
These facts suggest that both theorists conceived their tetrachords as

internally related sets, not as isolated tunings. Presumably, the increase

from 2.0 to about 3 of this parameter reflects a change in musical taste in

the nearly 500 years elapsed between Aristoxenos and Ptolemy.

Both ancient theorists presented additional genera not used in this

computation. Some, such as Aristoxenos's hemiolic chromatic or Ptolemy's

equable diatonic, had no counterpart in the other set. Ptolemy's soft dia­

tonic appears to be only a variation or inflection of his intense (syntonic)

chromatic. His remaining two diatonics, the tonic and ditonic, were of

historical origin and not of his invention. The same is true ofAristoxenos's

intense diatonic which seems clearly intended to represent the archaic

ditone or Pythagorean diatonic.

A comparison of the corresponding members of these two authors' sets

of tetrachords by a simpler function is also illuminating. If one plots the

ratio of lichanos to parhypate or, equivalently, the first interval versus the

sum of the first two, it is evident that Aristoxenos preferred an equal divi­

sion of the pyknon and Ptolemy an unequal I: 2 relation. These preferences

are shown by the data in 5-8, where the Iichanos/parhypate ratio is 2.0 for

Aristoxenos's tetrachords and about 3.0 for Ptolemy's non-diatonic

genera.

One may wonder whether Ptolemy's tetrachords are theoretical

innovations or whether they faithfully reflect the music practice of second

century Alexandria. The divisions of Didymos and Eratosthenes, authors

who lived between the time of Aristoxenos and Ptolemy, resemble

Aristoxenos's, and there are strong reasons to assume that Aristoxenos is

a trustworthy authority on the music of his period (chapter 3). The lyra

and kithara scales he reports as being in use by contemporary musicians

would seem to indicate that the unequally divided pyknon was a musical

reality (chapter 6). Ptolemy's enharmonic does seem to be a speculative

2.0

_ 2.0

__ 2.889

1.444

~ .3·0

2.821

SOFT DIATONIC

TONIC DIATONIC

ENHARMONIC

SOFT CHROMATIC

DITONE DIATONIC

INTENSE DIATONIC

EQUABLE DIATONIC

INTENSE CHROMATIC

SOFT CHR.lENH. 2.0

SOFT CHR.lENH. -- 2.8
lim 1.4

HEM. CHR.lSOFT CHR. - 2.0

INT. CHR.lSOFT CHR. ---- 2.7 2

lim 1.36

INT. CHR.lHEM. CHR. 2.0

INT. DIA.lINT. CHR. 2·74

HEMIOLIC CHROMATIC

• ARISTOXENOS

• PTOLEMY

~ RATIO (PTOLEMy/ARISTOXP.NOS)
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5""9- Neo-Aristoxenian elassifiaztion. a+b+c - 50 0

cents. This classijiation isbasedon the size ofthe
llIrgest orehtmzeteristic interua] (CI); the equal
division ufthepyknon (a+b) isonly illustrative and
otherdivisWnr exist. The hyperenhannrmicgenera
hflVe CLr betrDetn the mlJjor third and thefturthand
pylmotic intervals ufe0mm4ticsize. The enharmonic
genertl amtsin CLrapproximating tnIIjor thirdr. The
chromtJticgenera rtlngefrom the soft chrrmuztie to

the softditJtonic ufAristoxenosorthe intens«
chromtJtic ufofPtokmy. The diatoni;are allthose
genertl T1Jithoutpylma, i.e., T1Jhose IIlrgest intmJal is

less than z50 tems.

HYPERENHARM ONIC

dIO <a +b~ 3c1I7

13+Z3+454 to 37.5+37.5+415 cents
80/79' 79178. 13 / 10 to 5°/49'49/48. 31h5

ENHARMONIC

3dI7 <a «b Scl3

37.5+37.5+415 to 62.5+61.5+375 cents
48/47'47/46.23118 to 30h9·19h8· 56/45

CHROMATIC

cl3 <a +bSe

61·5+62·S+375 to IZS+I1S+250etnts

19118'28h7'36119 to IS/I4'I41r3'SZ/4S

DIATONIC

c<a +b~ 2e

IZ5+I2S+250 to I67+I67+I67Ctnts
104/97'9719°' IS/I3 totsts«. rrlro'400/363

construct as the enharmonic genus was extinct by the third century BeE

(Winnington-Ingram 1932)' His equable diatonic, however, resembles

modern Islamic scales and certain Greek orthodox liturgical tetrachords

(chapter 3)'
These historical studies are important not only for what they reveal

about ancient musical thought but also because they are precedents for

organizing groups of tetrachords into structurally related sets. The use of

constant or contrasting pyknotic/apyknotic proportions can be musically

significant. Modulation of genus (Il£'tCl~OA.e KCl'tCl YEVOcr) from diatonic to

chromatic or enharmonic and back was a significant stylistic feature of

ancient music according to the theorists. Several illustrations of this tech­

nique are found among the surviving fragments of Greek music (Win­

nington-Ingram 1936).

Neo-Aristoxenian classification

The large number of new tetrachordal divisions generated by the methods

of chapter 4 indicates a need for new classification tools. A conveniently

simplescheme is the neo-Aristoxenian classification which assumes a tem­

pered fourth of 500 cents and categorizes tetra chords into four classes

according to the sizesof their CIs. For tetrachords in just intonation, the

fourth has 498.045 cents, and the boundaries between categories will be

slightly adjusted. The essential feature of this scheme is the geometrical

approach of chapter three.

Those new genera whose CIs fall between a major third and perfect

fourth may be denoted byperenbarmonic after Ervin Wilson (personal

communication)who first applied it to the 56/55 . 55/54' 9/7 genus. The

hyperenharmonic CIs range from roughly 450 cents down to 425 cents.

The next classis the enharmonic with CIs ranging from 425 to 375 cents,

a span of 50 cents. The widest division is the chromatic, from 375 cents to

250 cents as it includes CIs whose widths vary from the neutral thirds of

approximately 360-35° cents (16h3, 11/9,27/22) through the minor and

subminor thirds(6/5, 7/6) to the "half-augmented seconds" (ISh 3,52/45)

near 250cents. Beyondthis limit, a pyknon no longer exists and the genera
are diatonic.

This neo-Aristoxenianclassificationis summarized in 5-9. The limits of

the categories are illustrated with representative tetrachords in just
intonation.
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5-11. Plotoflichanoi uersusparhYPlltai.

0 lJ ENHARMONIC

X INTENSE CHROMATIC

X + SOPT DIATONIC

• INTENSE DIATONIC

0 EQUAL DIATONIC

40 0

5-1%·

DIATONIC

These four main classes may be further subdivided according to the

proportions of the two intervals which divide the pyknon, or apylmon in the

case of the diatonic genera. Because of the large number of possible divi­
sions, it is clearer and easier to display the various subgenera graphically

than to try to name them individually. Thus a number of representative

tetrachords from the Main Catalog have been plotted in 5-10-12 to illus­

trate the most important types.

In 5-10, the first interval, as defined by the position of the note parhypate,

has been plotted against the characteristic interval. For most of the his­

torical tetrachords of chapters 2 and 3, this is equivalent to plotting the

smallest versus the largest intervals or the first against the third. The

exceptions, of course, are Archytas's enharmonic and diatonic and Didy­

mos's chromatic.

5-II shows the position ofthe third note, lichanos, graphed against the

second, parhypate. This is equivalent to comparing the size of the whole

pyknon (or apyknon) to its first interval. This particular display recalls the

Greek classification by the position of the lichanoi and the differentiation

into shades or chroai by the position of the parhypatai.

The first interval is plotted against the second in 5-12. In this graph,

however, all of the permutations of this set of typical tetra chords are also

plotted. This type of plot reveals the inequality of intervallic size between

genera and distinguishes between permutations when the tetrachords are

not in the standard Greek ascending order of smallest, medium, and

large.

HYPERENHARMONIC

mM ENHARMONIC

5-11•

40 0

HYPERENHARMONIC

5-10. Plotofcbaraaeristic interualsuersus

parhypatai. Thefour notes oftheillustratiue meson

tetracbord inascending 01&" ofpitch arebypste,

parbypate, lichanos, andmese. TheCI istheinterval

between licbanos andmese.

5-10•

5-12. Firstinterualplotted against second interuals

ofmajortetracbordalgenml. Thetetrachordsplotted

bere are50 +50 +400, 100 + 100 +300,100 + 150

+250,100 +200 + 200, and166.67 + 166.67 +

166.67cents in 1111 oftheirinteruallicpermutations.

Thepermutationsofthesoftdiatonic genus delineate

the region ofRothenberg-proper diatonic scales.

40 0

--

100

PARHYPATE

200 100

PARHYPATE

200 200 400

FIRST INTERVAL
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5-13- InttrVi1l1k inefjUllJityfunctions onjustand
temperedtetracbords.

RATIOS CI/MIN Cl/MID MID/MIN

HYPERENHARMONIC

56/55 . 55154 . 917 13·95 13.70 1.018

ENHARMONIC

18h7' 36/35 . 514 7.91166.13 6 1.191

31/31' JI/3 0' 5/4 7.018 6.805 1.033
46/45 . 14/13 . 5/4 10.15 5.143 1.936

CHROMATIC

10/19' 191r8. 6/5 3·554 3-371 1.054

18h7' I5!I4' 6/5 5.013 1.641 1.897

16h5' 25/14' I6!I3 5.194 5.086 1.041

39/38. 19!I8. I6!I3 7·994 3.840 1.081

14/1 3 • 13/11 . II/9 4.7 15 4·514 1.044

34/33 . 18/17' II/9 6,721 HII 1.915

I6!I5' I5!I4' 7/6 1.389 1.134 1.069

21/11' n/II . 7/6 3.314 1.771 1.870

DIATONIC

I4!I3' I3/U .8/7 1.801 1.668 1.080

lIho . 10/9 • 8/7 1·737 1.167 1.I59
18/17' 9/8 . 8/] 3.671 1.133 3.139

I6!I5' 1019' 9/8 1.815 l.u8 1.633
156h43 . 9/8 . 9/8 1.160 1.000 1.160

u/II • IIIrO' 10/9 1.1II 1.105 1.095

TEMPEREDTETRACHORDS

50 + 50 + 400 8.00 8.00 1.00

66.67 + 133033 + 300 4.50 1.15 2.00

100 + 100 + 300 3.00 3.00 1.00

100 + 150 + 250 1.50 1.67 1.50

100 +100 + 200 1..00 1.00 2.00

166.67 + 166.67 + 166.67 1.00 1.00 1.00

Intervallic inequality functions

More quantitative measures of intervallic inequality are seen in 5-13. The

first measure is the ratio of the logarithms of the largest interval to that of

the smallest. In practice, cents or logarithms to any base may be used. This

ratio measures the extremes of intervallic inequality. The second measure

is the ratio of the largest to the middle-sized interval. For tetrachords with

reduplicated intervals, i.e., 256/243 . 9/8 . 9/8 or 16h5 . 16h5 . 75164, the

middle-sized interval is the reduplicated one, and this function is equal to

one of the other two functions. The third measure is the ratio of the mid­

dle-sized interval to the smallest. This function often indicates the relative

sizes of the two intervals of the pyknon and distinguishes subgenera with

the same CI.

These functions measure the degree of inequality of the three intervals

and may be defined for tetrachords in equal temperament as well as in just

intonation. All of these functions are invariant under permutation of

intervallic order.

Harmonic complexity functions

In addition to being classified by intervallic size, tetrachords may also be

characterized by their harmonic properties. Although harmony in the sense

of chords and chordal sequences is discussed in detail in chapter 7, it is

appropriate in this chapter to discuss the harmonic properties of the tet­

rachordal intervals in terms of the prime numbers which define them.

The simplest harmonic function which may be defined on a tetrachord

or over a set of tetrachords is the largest prime function. The value of this

function is that of the largest prime number greater than 2 in the numer­

ators or denominators of three ratios defining the tetra chord. The tetra­

chord (or any other set ofintervals) is said to have an n-limitoi be an n-limit

construct when n is the largest prime number in the defining ratio(s),

irrespective of its exponent and the exponent's sign.

One limitation of the s-limit function is that it uses only a small part of

the information in the tetrachordal intervals. As a result, numerous genera

with different melodic properties have the same n-limit. However, this

one-dimensional descriptor is often used by composers of music in just

intonation (David Doty, personal communication). For example, the fol­

lowing diverseset of tetra chords all contain 5as their largest prime number:

25/24' 128/125' 514, 256/243.81/80. 514, 16h5 . 25124. 615,256/243 .
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s-14· Harmonic complexity andsimplicityfunc­
tions ontetracbords injust intonation. (1) CI com­
plexity: thesumoftheprimefactors ofthelargest
interual. (2) Pyknoticcomplexity: thejoint complex­
ityof thetwointervals ofthepyknon. (]) Average
complexity: thearithmetic meanof the CIandpyk­

noticcomplexities. (4) Totalcomplexity: thejoint
complexity oftheentiretetracbord. (S) Harmonic
simplicity: lover thesumoftheprimefactors greater

than 2 oftheratio defining the CI.It basbeen nor­
malizedbydividingby0.2, asthemaximum valueof
theunsealedfurution iso.2, corresponding toS/4

whose Wilson's complexity isS.

RATIOS 2 3 4 5

HYPERENHARMONIC

56155' 55/54'9/7 13 32 22·5 32 .3846

ENHARMONIC

2812 7' 36/35' 5/4 5 2I 13 21 1.000

3213 1' 31/30' 5/4 5 39 22 39 1.000

46/45. 24123' 5/4 5 34 19·5 34 1.000

CHROMATIC

20119' 19118.615 8 30 19 30 .6250
2812 7' 15114.6/5 8 21 14·5 21 .6250
2612 5' 25124' 16113 13 26 19·5 26 .3846

39/38'1911 8'16113 13 38 25·5 38 .3846

24123' 2312 2. II/9 17 37 27 40 .2941

34/33' 18/17' I 1/9 17 34 25·5 34 .294 1

16115' 15h4'7/6 10 IS 12·5 15 .5000

22/21' 12h I· 7/6 10 21 15·5 2I .5000

DIATONIC

14/I3' 13h 2.8/7 7 23 15 23 '7143

2Iho- 10/9' 8/7 7 18 12·5 18 .7143

28/2 7' 9/8 . 8/7 7 16 11.5 16 .7143

16h5' 1019'9/8 6 II 8·5 II ,8333

256/243 '9/8'9/8 6 IS 10·5 15 .8333
I 2/r I . I i/tc» 10/9 II 19 15 22 ·4545

1351r28. 615, 161r5 . 75/64' 16115,10/9' 10/9' 27125, and 16/r5' 9/8.

10/9' Similarly, all the Pythagorean tunings in the Catalog are at the
j-Iimit.

The second limitation of the largest prime number function when

applied to the whole tetrachord is that it does does not distinguish between

intervals which may be of differing harmonic importance to the composer.

Primary distinctions between genera are determined by the sizes of their

characteristic intervals. Genera with similarly sized CIs may have quite

different musical effects due to the different degrees of consonance of these

intervals. Similar effects are seen with the pyknotic intervals as well, par­

ticularly those due to the first interval which combines with mese or the

added note, hyperhypate, to form an interval characteristic of the oldest

Greek styles (Winnington-Ingram 1936 and chapter 6). In these cases, the

largest prime function must be applied to the individual intervals and not

just to the tetra chord as a whole.

For these reasons, other indices of harmonic complexity have been

developed which utilize more of the information latent in the tetrachordal

intervals. These indices have been computed on a representative set of

tetra chords and their component intervals. The first of the indices is

"Wilson's complexity function which for single intervals may be defined asthe

sum of their prime factors (greater than 2) times the absolute values of their

exponents. For example, the complexities of 3/2 and 4/3 are both 3 and

those of 6/5 and 5/3 are both 8 (3 + 5). Similarly, the intervals 9/7 and

14/9 both have complexities of 13 (3 + 3 + 7). The complexities of the CIs

of some important genera are tabulated in 5-14-

"Wilson's complexity function may also be applied to sets of intervals by

finding the modified least common multiple of the prime factors (with aU

the exponents made positive). The pyknon of Archytas's enharmonic con­

sists of the intervals 28127 and 36/35. The first ratio may be expressed as

7 + 33 and the second as 32 + 5 + 7. The modified least common multiple of

this set is 33 • 5 . 7 and the "Wilson's complexity is 21 (3 + 3 + 3 + 5 + 7).The

average complexity, which is the arithmetic mean of the complexities of the

CI and the pyknon, and the total complexity,which is the joint complexity

of all three intervals, are also shown in 5-14. In most cases the latter index

equals the pyknotic complexity.

An alternative index which may be more convenient in some casesis the

hannonicsimplicity,which isthe reciprocal of the complexity. This function
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s·I S. Eue/idem distIzNa btt1JJeengenera injust
irrtonatWn. The upperJttofnTJ'mlJm isthe distIzNe
CIlku14ttdon the /Ilrgest versus the smallest interuals
ofthetttrlZdHnw. The krwersetisromputtdfrom the
fim tmducrmJ intmJaIs. The But/idem distanc« is
the IfUJlTeroot ofthesum ofthe JljU4raoftbe
diffiren«s bttrDeen corresponding imeruals. VaJua
fIrt incenu.

5-16. Euc/idean tlisttmaJbtt1JJeen temperedgenera.
The I:zcbrrm14tic isthe "mrmg"ftrmcor­
responding tothe intms« cbrrmlllticofArinoxtnoJ.
The equtddiatunicis 166.67 +166.67 +166.67
ctnU.

may be normalized, as it is in 5-14, by dividing its values by 5, which is the

maximum simplicity of a CI or tetrachord (because 5/4 is the simplest

interval smaller than 4/3)'

Euclidean distances between tetrachords

The methods describedin chapter 4 and in the compilations of the historical

authors provide many tetrachords with diverse melodic characteristics. To

bring some order to these resources, some measure of the perceptual dis­

tance between different genera or between different permutations of the

same genus is desirable. While a useful measure of the distance between

genera may be obtained from the differences between the characteristic

intervals, thismeasure does not distinguish between the subgenera (i.e., the

1:1 and 1:2 divisions of the pylmon). A more precise measure is afforded by

the Euclidean distances between genera on a plot of the CI versus the

--

28/17' 15/14.615 25/14' 16115 . 615 n/lI . n/lI . 716 16115' 9/8 . 10/9 t zlt : . IIlIo· 10/9

z8h7 . 36/35 . S/4 72.09 73-99 12 3.59 192.96 227·94
70.67 63-43 1°3·37 162.62 145-59

28/17' 15/14.615 7-71 51.84 Ul.91 159·5°
10.91 35.81 97·54 98.81

25h4' 16115 .615 49.76 II9·04 155·39
4°·14 100.91 96.09

nh I . nllI . 716 7°·26 109.77
61.73 71.56

16/xS' 9/8. 1019
44·45
55.02

1:2 CHROMATIC INTENSE CHROMATIC son DIATONIC INTENSE DIATONIC EQUAL DIATONIC

l!NH.ARMONIC 101.36 II1.80 I5 8.II 206.16 260.87(50 + 50 + 400) 84.89 7°.71 II 1.80 158.II 164 .99
1:2 CHROMATIC 33·33 60.09 105.41 166.67(67 + 133+ 300) 47.14 37.27 74·54 1°5.41
INTENSE CHROMATIC

5°·0(100 + 100+ 300)
100.0 149·°7

5°·0 100.0 94. 28
SOFT DIATONIC

(100 + 150+ 250) 5°·0 106,72
5°.0 68.7 2

INTENSE DIATONIC

(100 + 200 + 200) 74·54
74·54
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5- I 7. Euclidean distances betweenpermutations of
AnhytasSenharmonicgenus. Thefunction tab­
ulated isthedistance calculatedontheplotofthefirst
by thesecond intervalofthetetracbord. Theother
distancefunction, computedfrom thegraph ofthe
greatest versus theleast interual, isalways Ze/'O

betweenpermutations ofthesame genus.

20.07 3 23.66 323.35

3 2 3.66 457-29 4 6 7-43

3 23.55 4 67.43 155·39

337·54 337.84

14.19

smallest interval or of the first versus the second interval.

The distances are calculated according to the Pythagorean relation: the

distance is defined as the square root of the sum of the squares of the dif­

ferences of the coordinates. The Euclidean distance is V[(C1z - CII? + (par­

hypate- -paryhypatel)2] in the first case and v[(firstintervah -firstintervall?

+ (second intervals - second intervall)2] in the second. It is convenient to

convert the ratios into cents for these calculations. The distances between

some representative tetrachords in just intonation are tabulated in 5- I 5 and

some in equal temperament with similar melodic contours in 5-16.

One may also use the second Euclidean distance function to distinguish

between permutations of tetrachords as shown in 5-17 and 5-18.

35°·0

494·97

200.0

100.0

100.0

200 + 200 + 100

300 + 100 + 100

400 + 50 + 50

200 + 100 + 200

5- 18. Euclidean distances betweenpermutationsof

temperedgmera.

INTENSE CHROMATIC 100 + 300 + 100

50 + 50 + 400 350.0

50 + 400 + 50

2812 7 ' 36/35 • 5/4 337·54

2812 7' 5/4 . 36/35

36/35' 5/4' 28127

36/35' 28127 ' 5/4

5/4' 2812 7 ' 36/35

ENHARMONIC 50 +400 + 50

100 + 100 + 300 200.0

100 + 300 + 100

INTENSE DIATONIC

200 + 100 + 200

100 + 200 + 200

SOFT DIATONIC 100 + 250 + 150 150 + 100 + 250 150 + 250+ 100 250 + 100 + 150 250 + 150 + 100

100 + 150 + 250

100 + 250 + 150

15°+100+25°

150 + 250 + 100

250+ 100+ 150

100.0 II 1.8 I

50 .0

15°·0

158.11

212·13

100.0

180.28

15°·0

180.28

II 1.80

141.42

5°·0
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S-19' MinkO'Wski or"city block"distances between
gmerainjust intonation.

Minkowskian distances between tetrachords
The closely related Minkowski metric or cityblock distance function is shown

in 5-19 and 5-20 for the same sets oftetrachords. The two functions shown

here are defined as the sum of the absolute values ofthe differences between

corresponding intervals. For the upper set ofnumbers, the function is ( ICl2
- CII' + lparhypatej - paryhypatell) and for the lower set, (I first intervah­

first interval I I + Isecond intervals - second interval I l), These computations

have also been done in cents throughout for ease of comparison.

The distances between permutations may also be compared by means

of the second distance function (5-21 and 5-1.2).

3°5.78
2°3.9 1

220.91

133·1.4

21 3.1.0

133-24

1°9·77
84·47

77.81
60.41

1211I . r r/ro . 1019

1.45-36
1.°3.91

160.50
133·1.4

15 2 .79
133.24

94. 16
84·47

151.21

II9.44

66·35
48.77

58.64

48.77

22/21 • 1211I . 716

92.57

70 .67

7.7 1

15·41.

1.2/21 • u/I! . 716

S-1.0. MinkO'Wski or"city block" distances betuuen temperedgmera.

1:2 CHROMATIC INTENSE CHROMATIC SOFT DIATONIC INTENSE DIATONIC EQUAL DIATONIC

ENHARMONIC

(50 + 50 + 400)

1:2 CHROMATIC

(67 + 133 + 300)

INTENSE CHROMATIC

(100 + 100 + 300)

SOFT DIATONIC

(100 + IS0 + 250)

INTENSE DIATONIC

(100 + 1.00+ 200)

1I6.67
100.0

15°·0 200.0 25°·0 35°·0
100.0 15°.0 200.0 233-33

33·33 83-33 I33-33 233-33
66.67 5°·0 100.0 200.0

5°·0 100.0 200.0

5°·0 100.0 133-33

5°.0 IS°·
5°.0 83-33

100.0
100.0

S8 CHAPTER 5



-

50 .0

323.35

660.90

675·°9

351.73

14.19

15°·0

25°.0

15°·0

200.0

250 + IS0 + 100

200.0

337·54

646.7 1

660·9°

337·54

30 0 .0

100.0

250 + 100 + ISO

28.3 8

337·54

323·35

150 •0

5°·0

15 0.0

ISO + 250 + 100

400 + 50 + 50

35°·0

7°°·0

100.0

100.0

100.0

:WO.o

4°°·0

100.0

200 + 200 + 100

300 + 100 + 100

150 + 100 + 250

337·54

35°.0

200.0

200.0

100.0

50 + 400 + 50

200 + 100 + 200

100 + 300 + 100

100 + 250 + ISO

ENHARMONIC

28/27' 36/35' 514

28/27' I5!I4' 615

25/24' I6!I5 .615

nIH' rr/r r . 716

16115'918 . 1019
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5-1I. MinktnVski or"city block" distances betweenpermutations of
Archytos's enharmonicgenus.

INTENSE CHROMATIC

50 + 50+ 400

100 + 250 + IS0

INTENSE DIATONIC

SOFT DIATONIC

100 + 100 + 300

100 + 300 + 100

100 + 200 + 200

200 + 100 + 200

5-:U' MinktnVski 0/' "city block" distances betwem
pelmutatiOl'lS oftempered genera.

100 + IS0 + 250

100 + 250 + ISO

ISO + 100 + 250

IS0 + 250 + 100

250+ 100 + IS0



5-13' TmmypitdJ tmd harmonic distlmce fundons
on theintervals oftm-achords injustintonation.

C.I.'S MID SMALL

56/55' 55/54' 9/7 0.109 .0080 .°°78
1.799 3473 3489

18/27' 36/35 . 5/4 .°969 .0158 .0111
1.301 1.879 poo

32/31 . 31/30' 5/4 .°969 .0141 .0138
1.301 1.968 1.997

46/45 . 1411 3 . 5/4 .°969 .0184 .°°9 6
1.301 1.741 3.156

101t9' 191t8 . 6/5 .°791 .0135 .0113
1-477 1·534 1.580

18117.15114.6/5 .°791 .°3°0 .0158
1-477 1.311 1.878

16115' 15114' 16113 .0901 .0177 .017°
1.318 1.778 1.813

39/38. 19/18. 16!I3 .0901 .0135 .0113
1.318 1·534 3.171

14113' 13111 • 11/9 .0871 .0193 .0185
1.996 1·704 1.741

34/33' 18/17' 11/9 .0871 .0148 .013°
1.996 1.486 3.050

161tS' 15114' 7/6 .0669 .°3°0 .0180
1.613 1.311 1.380

1111 I • 11/11 . 7/6 .0669 '°378 .0101
1.613 1.111 1.664

141t3 . 13/11. 8/7 '°580 '°348 .°311
1.748 1.193 1.160

11110' 10/9.8/7 '°580 '°458 .0111
1.748 1.954 1.613

18/17' 9/8. 8/7 '°580 .°511 1.580
I.748 1.857 1.879

16!IS' 10/9' 9/8 .°511 '°458 .0180
1.857 1.954 1.380

1561143'9/8. 9/8 .°511 .°511 .0116
1.857 1.857 4.794

11/11 . 11110. 10/9 '°458 .°414 '°378
1.954 1.041 1.111

Tenney's pitch and harmonic distance functions

The composer James Tenney has developed two functions to compare

intervals (Tenney 1984), and has used these functions in composition,

particularly in Changes: Sixty-four Studies for Six Harps. The first function

is the pitch-distance function defined as the base-z logarithm of (Jib where

a and bare the numerator and denominator respectively of the interval in

an extended just intonation. This function is equivalent to Ellis's cents

which are 1 zoo times the base-l logarithm. The second function is his

harmonic distance, defined as the logarithm of a . b.This distance function

is a special use of the Minkowski metric in a tonal space where the units

alongeach of the axes are the logarithms of prime numbers. Thus the pitch

distanceof the interval917 is log (917) and the harmonic distance is 1 . log

(3) + log (7)·
These functionsmaybe used to characterize tetrachords by computing

distances for each of the three intervals. This has been done for the set of

representative tetrachords in 5-2. 3. The upper set of numbers is the pitch

distances; the lower, the harmonic distances. Alternatively, one could also

applyit to the notes of the tetrachord after fixing the tonic and calculating

the notes from the successive intervals.

By a slight extensionof the definition, the pitch distance function may

also be applied to tempered intervals. The pitch distance is the tempered

interval expressed as a logarithm. For intervals expressed in cents, the

formula is pitch distance = cents / 12.00 log (z), other logarithmic measures

could be used. This function will be most interesting for intervals which

are close approximations to those in just intonation. The harmonic dis­

tance function is not welldefined for tempered intervals unless they closely
approximate just intervals.

The Tenney functions alsomay be used to measure the distance between

tetrachords. The pitch distance between the CIs of two genera is the log­

arithm of the quotient of their ratios; i.e., the pitch distance between 5/4,

the CI of the enharmonic, and 615, the CI of the intense chromatic, is the

logarithm of 25124. The harmonic distance is the logarithm of 312, the
product of 5/4 and 615.

The pitch distance and harmonic distance functions on the CIs dis­

tinguish genera quite well, though obviously not permutations of the gen­

era. The Tenney distance functions between representative set of

tetrachords in just intonation are shown in 5-24. One could also apply the
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.0212

.Il21

.°5 12

.1427

·°334
.1249

·°334
.1249

12III . IIlIo . 1019

.°45 8

.1481

.0280

.13°3

.ol80

·13°3

.0158

.II81

n/ll' ra/r r . 716

INTENSE CHROMATIC SOFT DIATONIC INTENSE DIATONIC EQUAL DIATONIC

100.0 15°·0 200.0 233-33
7°°.0 65°·0 600.0 566.67

0.0 5°·0 100.0 133·33
600.0 55°·0 5°0.0 466.67

5°·0 100.0 133-33

55°·0 5°0.0 466.67

5°·0 83-33
45°.0 416.67

33-33
366.67

100.0

7° 0 .0

1:2 CHROMATIC
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Tenney distance functions on the pyknotic intervals to distinguish sub­

genera with the same CI.

The distances between tetrachords in equal temperament may also be

measured by the Tenney functions. The pitch distance of the CIs is simply

the difference in cents or tempered degrees. The harmonic distance is the

sum of the CIs. Data on representative tempered tetrachords are shown

in S-:zS.

16/rS . 9/8. 1019

ENHARMONIC

50 + 50 + 400

5-1.5. Tenney pitch andbarmonic distances between tempered genera.

22121· IllI1 . 716

S-l4' Tenney pitdi andharmonic distances between genera injust intonation.

1:2 CHROMATIC

67 + 133 + 300

INTENSE CHROMATIC

100 + 100 + 300

SOFT DIATONIC

100 + 150 + 250

INTENSE DIATONIC

100 + 200 + 200



5-2.7.Barlmu 'sspecific harmonicityfunction on
tetracbords andtetradiordal scales. Thespecific
barmonicityfunction isthesqual'e ofthenumberof
tones in thescale divided byrumofthereciprocals of
thebarmonicitiesofthecombinatorial intervals
(EadQw 1987) without l'egard tosign. Forthe

tetracbord, thenumber oftones is4, n 2
- 16, and

there aresixcombinatorialinteruals (see 5-2 8). The

specific barmonicityoftheDorian mode isdefinedas
above rave thatn = 8 (including theoctave), n 2 = 64,

andtbereare28 interualsiti- (n-rj/a),

RATIOS TETRACHORD DORIAN

1. 56/55' 55/54' 9/7 .1063 ·°973
2. 28/27' 36/35 . S/4 .1859 .1633

3· 31/31 . 31/3° . 5/4 .°7 24 .0660

4· 46/45' 2412 3 . S/4 .0885 .081S

5· 201I9' 19118. 6/5 .1°42 '°946

6. 28127 ' 15II4' 6/S .19II .172I

7· 26/25' 2S/24' 16/13 .I062 '°998
8. 39/38. 19118. 16/13 .°7 19 .0677

9· 2412 3 . 23/22 • II/9 .°767 .0698
10. 34/33' 18II7 . 11/9 .0848 .08°7
II. 16IIS' 15114' 7/6 .217° .1879
11. 22/21 . 12/II . 7/6 .1375 .1274

13· I4 II3 . 13/12 .8/7 . 1247 .1143

14· 21120 . IO/9 . 8/7 .1739 .1627

IS· 28/27' 9/8 . 8/7 .1101 .1885
16. 16IIS' IO/9 . 9/8 .2658 .2363

17· 2S6h43 . 9/8. 9/8 .2212 .2025
18. U/II . IIlIo . IO/9 .16°9 .1437

19· 11110· IIIIo . 400/363 .0829 ·°797
20. 16IIS' 25/24.6/5 .2374 .2133

factor of 2 • ~(hcj), where hefis the highest cormnon factor, must be sub­

tracted from the denominator of the formula.

Barlow's harmonicity function is applied to set of tetrachords in just

intonation in 5-26. The harmonicities of the three intervals are computed

separately. The harmonicity of 4/3 is the constant -<l.2143. The har­

monicities of the pykna are also included to complete the characterization

of the tetrachords.

In the case of the general tetrachord a . b . c, where c= 4/3ab, there are four

ratios, III, a, a- b, and 4/3. The n . (n - 1)12 =6 combinatorial intervals are

a, ab, 4/3, b, 4/3a, and 4/3ab. For example, Archytas's enharmonic, 28127 .

36/35' 5/4, yields the tones III, 28127, I6II5, and 4/3. The combinatorial

intervals are 28127, 16II5, 4/3,36/35,9/7, and 5/4 the six non-redundant

differences between the four tones of the tetrachord. The definition of

these intervals for equally tempered tetrachords is shown as the Polansky

set in 5-48. In just intonation, the sums and differences become products

and quotients and the zero and 500 cents are replaced by III and 4/3

respectively.

For scales and other sets of ratios, Barlow defined a third function,

termed speafic barmonicity. The specific harmonicity of a set of ratios is the

square of the number of tones divided by the sum of the absolute values of

the reciprocals of the harmonicities of the combinatorial intervals (Barlow

1987). For the tetrachord, 11 = 4 and n2 =16. The specific harmonicities are

presented in 5-27-29 for various sets of tetrachords.

Similarly, the specific harmonicities ofscales generated from tetrachords

may be computed. In the case of heptatonic scales, there are eight tones

including the octave (211) and 28 combinatorial relations, which are defined

analogously to the six of the tetrachord. The specific harmonicities of the

same set of tetrachords as in 5-26 are given in 5-27. The specific har­

monicities ofboth the tetrachords and a representative heptatonic scale are

included in this table.

The Dorian mode was selected for simplicity, but other scales could have

been used as well (see chapter 6 for a detailed discussion ofscale construction

from tetrachords). It is the scale composed of an ascending tetrachord, a

9/8 tone, and an identical tetrachord which completes the octave. Abstractly,

the tones are III a ab 4/3 312 3ah 3abh 2II, where a . b . 4/3ab is the gener­

alized tetrachord in just intonation. The set of combinatorial intervals is a,

ab, 4/3,3/2, 3ah, 3abh, 211, b,4/3a, 312a, 312, 3b12, ita, 4/3ab, 3hah, 3hh,
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S-z8. Barlow'sspecificbarmonicityfunction onthe
permutotionsof Ptolemy's intense diatonicgenus.

RATIOS TETRACHOllD DOlUAN

I. I6hS . 9/8. 10/9 .2794 .2567
2. I6hS' 10/9' 9/8 .2658 .2363

3· 9/8. 10/9 . 16/15 .2658 .2535

4· 9/8 . I6hS . 10/9 .2586 .24°7

5· 10/9' I6h5 . 9/8 .2586 .2398

6. 10/9' 9/8 . 16/15 .1794 .2486

3h, zlab, 9/8, C)fl/8, C)flb/8, 312., 0, ob, 4/3, b, 4/30, 4/30b. The repeated

intervals are a consequence of the modular structure of tetrachordal scales.

Ascan be seen from 5-2 7, the specific harmonicity function distinguishes

different tetrachords and their derived scales quite well. 5-28 shows the

results of an attempt to use this function to distinguish permutations of

tetrachords from each other. Although the specific hannonicity function

does not differentiate between intervallic retrogrades (0 . b . cversus c-b . a)

ofsingle tetrachords, it is quite effective when applied to the corresponding

heptatonic scales.

Finally, since the specific harmonicity function is basically a theoretical

measure of consonance, it would be interesting to use it to determine the

most consonant tunings or shades (chroai) of the various genera. Accord­

ingly, a number of tetrachords whose intervals had relatively "digestible"

prime factors were examined. The results are tabulated in 5-29. It is clear

that while the diatonic genera are generally more consonant than chro­

matic and theyin turn are more harmonious than the enharmonic, there is

considerable overlap between genera and permutations.

In particular, the most consonant chromatic genera are more consonant

than many of the diatonic tunings.

-

5-z9. Themostconsonantgenera eaordingtoBarlow'sspecificharmonidtyfunction.

RATIOS TETRACHORD DORIAN 6A. 9/8 . 64/63 . 7/69 .H37 .1937

ENHARMONIC 6B. 7/6. 64/63 . 9/8 .2137 .19°3

IA. 256/243 . 81/80· 5/4 .1878 .1669 7A. 10/9 . 36/35 . 7/6 .20p .1783

ra. 5/4.81/80.256/243 .1878 .1715 7B• 7/6 . 36/35 . 10/9 .2032 .1797

lA. 28/27' 36/35' 5/44 .1859 .1633 DIATONIC
2B. 5/4' 36/35 . 28/27 .1859 .1667 IA. 9/8. 28/27 . 8/7 .2176 .2027

3A. 25/24' n8/u5 • 5/4 .1806 .155° m, 8/7' 28127 ' 9/8 .2176 .1914

3B• 5/4' n8/u5 . 25/24 .1806 .1556 2A. 10/9 • 2Iho . 8/7 .2104 .1888

CHROMATIC 2B. 8/7 . 21120' 10/9 ,2104 .1856

IA. I6hS' 25/24.6/5 .2374 .2133 3A. I6h5 . 9/8. 10/9 .2794 .2567

ra, 6/5' 25/24' I6h5 .2374 .2145 3B. 10/9' 9/8 . I6!I5 .2794 .2486

2. 16!I5' 75/64' 16/15 .2JI7 .2008 ¥. 1561243' 9/8. 9/8 .2H2 .2025

3A. 10/9·81/80. 32/27 .2290 .2°46 4B, 9/8· 9/8. 2561243 .2212 .2105

3B• 32/27.81/8°' 10/9 .2290 .2035 5· 10/9' 27125 . 10/9 .2251 .1993

¥. 25124' 27/25' 32127 .19 26 .1745
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Euler's gradus suauitatis function

A function somewhat similar to Wilson's, Tenney's, and Barlow's functions

is Euler's gradus suaoimti: (GS) or degree of harmoniousness, consonance,

or pleasantness (Euler 1739 [1960]; Helmholtz [1877] 1954). Like the other

functions, the GS is defined on the prime factors of ratios, scales, or chords.

Unlike Barlow's functions, the GS is very easy to compute. The GS of

a prime number or of the ratio of a prime number relative to I is the prime

number itself, i.e., the GS of 3h is 3. The GS of a composite number is the

sum of the GSs of the prime factors minus one less than the number of

factors, The GS of a ratio is found by first converting it to a section of the

harmonic series and then computing the least common multiple of the

terms, The GS of the least common multiple is the GS of the ratio,

Sets of ratios such as chords and scales may be converted to sections of

the harmonic series by multiplying each element by the lowest common

denominator, For example, the harmonic series form of the major triad

RATIOS INTERVAL A INTERVAL B CI PYKNON

1. S6/S5' 5s/S4 ' 9/7 24 22 II IS (28127)
5-3°, Euler'sgradus suauitatisfunction 011 tetra- 2, 28127 ' 36/3S' S/4 IS 17 7 II (16/I S)

cbords injust intonation. (1) isa hypel'enharmonic 3' 32/31' 31/30' S/4 36 38 7 II (I6hS)

genzLr, (2)-(4) areenharmonic, (5)-(12) and (20) 4' 46/4S ' 2412 3 . 5/4 32 28 7 II (I6/I 5)

arechromatic, and (13)-(19) arediatonic. Thetet- 5· 201I9' I9II8 . 6/5 25 24 8 10 (10/9)

racbords arein theirstandard'[orm with the=11 6. 28127 ' IS/14' 6/S IS 14 8 10 (10/9)

intervalsat thebase andthelargest interual at the 7· 26hS' 2S/24 . 16/13 12 14 17 17 (13/12)

top. See S-32 and 5-33/01' otherpermutationsofthe 8. 39/38, I9II8. I6/r3 34 24 17 17 (13/12)

tetrachord. 9· 24123' 23/22 ' 11/9 28 34 IS IS (I2/r I)
10, 34/33 . I 8II 7 ' II/9 3° 22 IS IS (I2II)

II. I6/rS' ISII4' 7/6 II 14 10 10 (8/7)

12. 22121 . r a/r r . 7/6 20 IS 10 10 (8/7)

13· I4/r3' 13/12 ' 8/7 20 17 10 10 (7/6)

14· 21120' 10/9' 8/7 IS 10 10 10 (7/6)

IS· 28127 ' 9/8 . 8/7 IS 8 10 10 (7/6)

16. I6/rS' 10/9' 9/8 rr 10 8 12 (32127)

17· 2S61243 . 9/8 , 9/8 19 8 8 12 (32127)
18. U/rI· rriio . 10/9 15 16 10 8 (615)
19· IIlIo· rr/ro, 400/363 16 16 35 31 (121/100)

20. 16lrS ' 2Sh4' 6/S II 14 8 10 (10/9)
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5-31. Euler'sgradusSUIlVitotisfunction ontetra­
chordsandtetrlKhorda/scales. (1) isahyper­
enhamumkgenus, (1,)-(4) lire enharmonic, (5)­
(n)and (20)arechromatic, and (13)-(19) arediIJ­
tonic. Theharmonicseriesrepresmtation ofthe

Dorian mode af16!I5' 9/8. 10/9 is30:JZ:36~0:
45=48:54:60. Its least Ctm171l()1J multiple is4320and
itsGSis16.

RATIOS TETRACHORD DORIAN

1. 56/55 . 55/54' 9/7 30 33
2. 28/17' 36/35 . 5/4 1I 24

3· Jl/JI . 31/30' 5/4 42 45
4· 46/45 . 24h 3 . 5/4 35 38

5· 20lr9' I9 lr 8. 6/5 29 32
6. 28h7' ISlr4' 6/5 19 n

7· 26hS' 2Sh4' 16/13 21 30
8. 39/38. I9lr8. 16/r3 39 42

9· 24h3 . 23/n . n/9 40 43
10. 34/33 . I81r" U/9 33 36
II. I6lrS'IS!I4'1/6 17 20
12. nhI . Il/n . 7/6 n 25

13· I4/r3' I3/Il . 8/1 24 21
14· nho. 10/9.817 19 23
15· 28h1 . 9/8 .8/7 16 19
16. I6/rS . 10/9' 9/8 16 19
17· 256h43 . 9/8 . 9/8 19 22
18. Il/n . r r/ro . 10/9 21 24
19· 11/10 . I IlIo . 400/363 35 38
20. 16/rS' 2Sh4' 6/5 11 20

5-po Euler's grl1dus SUIlVitatisfunction on the
permutations ofPta/msy'sintense dilJtonic genus.
(1)istheprimeform. (1,) istheorder given by
Didymos.

III 5/43/2 is 4:5:6. The least common multiple of this series is 60 and the

GS of the major scale thus is 9.

The GSs of the component intervals of the usual set of tetrachords are

shown in 5-30. The GS of III is I and that of 4/3 is 5· In 5-31, the GSs

of both the tetrachords and the Dorian mode generated from each tetra­

chord are tabulated. The GSs of the Dorian mode are 3 more than the GSs

of the corresponding tetrachords, reflecting the structure of the mode

which has the identical series of intervals repeated at the perfect fifth.
The GS seems not to be particularly useful for distinguishing per­

mutations of tetrachords, as evidenced by 5-32. It is noteworthy that the

most harmonious arrangements of Ptolemy's intense diatonic are those

which generate the major and natural minor modes (see the section on

tritriadic scalesin chapter 7).

As with Barlow'sfunctions, the GS ranks the enharmonic the least har­

monious of the major genera, though the most consonant tunings and

arrangement overlapwith those of the chromatic (5-33)' Similarly, the most

harmonious chromatic tunings approach those of the diatonic.

Interestingly, however, the most harmonious enharmonic tuning is

28/27' 5/4' 36/35 and its retrograde which have the largest interval medi­

ally. The same is true for the chromatic 16/x 5 .6/5 . 25124. Ofthe diatonic

forms, the two arrangements of Ptolemy's intense diatonic with the 9/8

medial are the most consonant.

Although the GS is an interesting and potentially useful function, it does

have one weakness. Because the ratios defining small deviations from

ideallyconsonant intervals contain either large primes or large composites,

the GS of slightly mistuned consonances can become arbitrarily large.

Thus the GS would predict slightly mistuned consonances to be extremely

dissonant, a prediction not consistent with observation.

RATIOS TETRACHORD DORIAN

I. 16lrS . 9/8 . 10/9 13 16
2. 16/rS' 10/9' 9/8 16 19
3· 9/8. 10/9 . 16lrS 16 19

4· 9/8. 16lrS . 10/9 16 19

5· 10/9' 16lrS . 9/8 16 19
6. 10/9' 9/8. 16/rS 13 16
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RATIOS TETRACHORD DORIAN This failure, however, is a feature shared by the other simple theories of
ENHARMONIC consonance based upon the prime factorization of intervals. Helmholtz's

IA. 2561243.81/80. 514 23 26 beat theory (Helmholtz [1871] 1954) and the semi-empirical "critical band"
2A. 2812 7 ' 36/3S' 514 21 24 theories ofPlomp and Levelt (1965) and Kameoka and Kuriyagawa (1969a,
2B. 28127 ' S/4' 36/35 19 22

196 9b) avoid predicting infinite dissonance for mistuned consonances, but
2C. 36/3S' 28127 ' S/4 21 24

3A. 2S124' I281r2S' S/4 22 2S are more complex and difficult to use. The prime factor theories are ade-

CHROMATIC
quate for theoretical work and for choosing between ideally tuned musical

IA. 161rS' 2S124' 61S 17 20
structures.

lB. 25/24' 161rS' 61S 18 21
Statistical measures on tetrachordal spaceIC. 161rS' 61S .2S124 16 19

2. 161rS' 7S164' 16/rS 17 20 The concepts of the degree of intervallic inequality and of the perceptual
3A. 1019.81/80. 32h7 18 21 differences between tetrachords may be clarified by computing some of the
3B. P127 . 81/80' 1019 18 21

standard statistical measures on a set of representative tetrachords, The
¥. 2S124' 2712S' 32h7 20 23

arithmetic mean of the three intervals is 500/3 or 166.667 cents in equal
4B• 32127' 2712S . 2sh4 20 23

SA. 161rS' ISIr4' 716 17 20 temperament or 3~(4/3) in just intonation. The mean deviation, standard

SB. 161rS' 716. ISlr4 19 22 deviation, and variance are calculated according to the usual formulae for
6A. 9/ 8 . 64/63 . 716 19 22 entire populations with n = 3. These data are shown in 5-34 for some rep-
6B. 64/63 . 918 . 716 17 20 resentative tetrachords in just intonation and in 5-35 for a correspondingset
7A. 1019 ' 36/3S . 716 18 21 in equal temperament. While not distinguishing permutations, these func-
7 B• 1019 ' 716 . 3613S 19 22

tions differentiate between genera quite well, although the degree to which
7 C' 3613S' 1019' 716 20 23

the mathematical differences correlate with the perceptual is not mown.
DIATONIC

The geometric mean, harmonic mean, and root mean square (or quad-
IA. 9/8.28127.8/7 18 21

lB. 8/7' 918.28127 16 19
ratie mean) may be calculated in a similar fashion. Like the other statistical

2A. 1019' 21120' 8/7 18 21 measures above, these are non-linear functions of the relative sizes of the

2H. 21120· 10/9' 8/7 19 22 intervals and they have considerable ability to discriminate between the

3A• 16lrS . 9/8. 1019 13 16 various genera. The relevant data are shown in 5-36 and 5-37.

3 B• 10/9' 9/8 . 16lrS 13 16 Several properties of these functions are apparent: for a given degree of
¥. 2 s61243 . 918 . 9/8 19 22 intervaUic asymmetry, the root mean square will show the greatest value,
S· 10/9' 27/2S' 1019 17 20

5-33· Themostconsonant ge1ll:m according toEuler'sgradussuavitatisfunction. These
ratios arethemostconsonantpermutations ofthemost consonant tunings ofeach ofthegen­

era. In cases where themostconsonantpermutation according toBarloui j functions is differ­
entfrom theone(s) according toEuler's, both aregiven. ThegradusSUIlvitatis ofasetof
ratios istheGSoftheirleast common multiple afterthesethas been transformed into ahar­

monicseries.
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MEANDEV. STANDARD DEV. VARIANCE

5-3+ Meantkviations, rttmdard deoietions, and 2.8/17' 36/3S . S/4 146.87 ISS·88 2.42.99.3 1

uariancesoftheintervals oftetrfKhords injustinto- 2.8/17' ISII4' 61S 99·7S 108·2.9 lI72.S·73
nation. Thearitbmetitmean has theconsttmtvaJtIl 2.S/14· I6IIS . 61S 99·7S I07·I2. lI474·97
166.67 cmts (SooI3)foraJlgmera.lnjustintona- 2.z12.I . U/lI • 716 67·2.4 76•84 S904·9S

tion itsva/tilisthecube root of'Ii3. The standllrd I6IIS . 918 . 1019 36•19 39.38 1550-44

devitJtian andvariance an computed'With n-3. n/n . niio . 10/9 IO·93 u·99 168,7 0

MEANDEV. STANDARD DEV. VARIANCE

ENHARMONIC ISS'S6 164 .9 9 2.72.2.2.·2.2.

5-35. Meandeviations, standard deviations, and (so +So +400)
1:2. CHROMATIC 88.89 98.13 962.9.62.

variances ofthe intervals oftempered tetrachords.
(67 + 133 + 300)
INTENSE CHROMATIC 88.89 94·2.8 8888.89

(100 + 100 + 300)
SOFT DIATONIC SS·S6 62..36 3888.89

(100+ ISO+2.S0)
INTENSE DIATONIC 44·44 47. 14 2. 2.22..2. 2.

(100 + 200 + 2.00)
EQUAL DIATONIC 0.0 0.0 0.0

GEOMETRIC HARMONIC RMS

5-36. Ge011Utria1Utm, hJm1WTlumean, androot 2.8/17' 36/3S . S/4 IoS·86 76.97 2.2.7·73

mean squar« oftheintervalsoftetrfKhords injust 2.8/17' ISII4' 61S 133.40 109.40 198.2.I

intonation, Porn - 3, the geometrU mean isthe cube 2.S/14· I6IIS ·61S I3S·S8 n4·2.I I97·S 8

root ofa·b.(j'oo - a - b)jthebarmonicmean is31!. 2.2./11' iins . 716 147·9° I3I.S7 182.·94

(IliJ, 'Where Iii - IIa, lib, andrl(50o-a-b)j the 16IIS . 918 . 1019 160·77 ISS·IS 170.62.

rootmeanSlJUlZre is-.J(L(j2)13), where j2 _ a2, b2, n/n . nlIo· 10/9 I6S'SI I6S·0I I66·S2.

(500 -a-b)2.
GEOMETRIC HARMONIC RMS

ENHARMONIC 100.0 7°'S9 2.34·S2.
5-37. Ge011UtrU mean, harmonu mean, and root (so +So +400)
mean SfJUIZrt of tempered tetrachords. 1:2. CHROMATIC 138.79 lI6'38 193.41

(67 + 133 + 300)
INTENSE CHROMATIC 144·2.3 u8'S7 I9I.4 I
(100 + 100 + 300)
SOFT DIATONIC IS5-36 I4S· I 6 I77·9S
(100 + ISO + 2.S0)
INTENSE DIATONIC IS8·74 ISO.O 173.2.I
(100 + 200 +200)
EQUAL DIATONIC 166.67 166.67 166.67
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SECOND INTERVAL

FIRST INTERVAL

THIRD INTERVAL

SECOND INTERVAL

the geometric the next, and the harmonic the least, except for the arith­

metic mean, which is insensitive to this parameter.

The set of all possible tetrachords instead of just representative examples

or selected pairs may be studied by computing these standard statistical

measures over the whole of tetra chordal space. This space may be defined

by magnitudes of the first and second intervals (parhypate to hypate and

lichanos to parhypate) as the third interval (mese to Iichanos) is completely

determined by the values of the first two.

This idea may be made clearer by plotting a simple linear function such

as the third tetrachordal interval itself versus the first and second intervals.

The third interval may be defined as 500 - x - y, where x is the lowest

interval andy the second lowest. The domain of this function is defined by

the inequalities 0 ~ x ~ 500 cents, a ~ y ~ 500 cents, and x +y ~ 500 cents.

5-38 depicts the "third interval function" from two angles. Its values range

from 0 to 500 cents.

The arithmetic, geometric, harmonic, and root mean square functions

are shown in 5-39 through 5-41. The arithmetic mean is a plane of constant

height at 166.667 cents for all values of the three intervals. The geometric

and harmonic means have dome and arch shapes respectively, while the

root mean square somewhat resembles the roofof a pagoda. The shapes of

these latter means may be clearer in the contour plots in the lower portions

of the figures.

One may conclude that the arithmetic mean obscures the apparent dis­

tance between genera, the geometric mean reveals it, the harmonic mean

maximizes it, and the root mean square exaggerates it. This conclusion is

illustrated in 5-43 where a cross-section through the plot is made where the

second interval has the value 166.667 cents and the first interval varies from

THIRD INTERVAL

FIRST INTERVAL

5-38. The thirdinternal'function, seenj"onta/Iy and
obliquely. Thethree intervalsarepa,.hypate to
bypate, licbanos toparhypate, andmese tolicbanos.

They alwayssum500 cents (312 injustintonation).



5-39.Aritbmtticmean ofthethree tetrachordal
intervals. Thearithmetic mean has theconstant

valueofl66.67 cents. The tkrmain ofthisfimction is
thexandyaxes (0<X<500), (0<Y<500), andthe
liney. 500-x, 'Where x tmdyarethefimtmd
second intervalsofthetttrachord. The thirdinterval
1M) also approach zero.

AlUTHMETIC MEAN

a to 333.333 cents. The means are all equal when all three intervals of the

tetrachord are 166.667 cents.

The analogous representation is applied to the mean deviation, standard

deviation, and variance, which are shown in 5-44-46. The variance has

been divided by 100 so that it may be plotted on the same scale as the other

statistical functions.

These functions have a minimum value of zero when all three intervals

of the tetrachord are 166.667 cents each. This is seen most clearly in the

cross-section plot of 5-47.
Based on its properties with respect to the four means and three sta­

tistical measures, the equally tempered division of the fourth appears to be

a most interesting genus. It is the pointwhere the three means are equal and

where the statistical functions have their minima.

FIRST INTEllVAL SECOND INTERVAL

5-40. Geometrk mean ofthethree tttrachordal
intervals.

GEOMETRIC MEAN

5-41• Harmonic mlan ofthethree tetrachordal
intervals.

HARMONIC MEAN

5-4%. Root meansquare ofthe three tetra­

chordal intervals.

ROOT MEAN SQUARE

FIRST INTERVAL SECOND INTERVAL FIRST INTERVAL SECOND INTERVAL FIRST INTERVAL SECOND INTERVAL

500

o
FIRST INTERVAL

500

500

o
FIRST INTERVAL
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MEANDEV.

STAND. DEV.

VARIANcE/roo

VARlANCl!

FIRST INTERVAL
3°0

5-46. Variance of the threetetrachordal

intervals.

o

5-47· Cross-section ofthemeandeviation, sttmdard

deviation, andvariance ofthethreetetrachordal

interuals tuben thesecond intervalequals 166.67

cents.

STANDARD DEVIATION

200

5-45. Standard deviations ofthe three tetra­

chordal intervals.

HARMONIC

GEOMETRIC

ARITHMETIC

RMS

MEAN DEVIATION

4°°
FIRST INTERVAL

30 0

5-43. Cross-sectiansofthe various means ofthe

three tetrracbordalintervals when thesecond

intervalequals 166.67 cents.

5-44. Mean deviation ofthethree tetracbordal

interuals.

FIRST INTERVAL SECOND INTERVAL FIRST INTERVAL SECOND INTERVAL FIRST INTERVAL SECOND INTERVAL

5°0 500 500

~ ~ ~
P'. ~ llIl

§ l<l §~
~ ~ ~
0 0 0c o sl<l l<l
CIl CIl CIl

0 5°0 0 500 0 500
FIRST INTERVAL FIRST INTERVAL FIRST INTERVAL
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5-48. Intervalsetsoftbe abstract tetradiord, 0 a

a-b 500. Injustintonation theabstract tetrachord

maybewrittm III a a-b 413 oro a a-b 498cents,

andthe intervalsadjustedaccordingly.

SUCCESSIVE INTERVALS

0 a a+b 500

a b 500 - a-b

POLANSKY SET

0 a a+b 500

a a+b 500

b 5oo-a

5oo- a- h

DIFFERENCE SET

0 a a+h 500

a h 500 - a- h
h-a 5oo-a- zb

500 - 3b

Polansky's morphological metries

A more sophisticated approach with potentially greater power to dis­

criminate between musical structures has been taken by Larry Polansky

(I987b). While designed to handle larger and more abstract sets of ele­

ments than tetrachords, i.e., the type of scale and scale-like aggregates

discussed in chapters 6 and 7, and even sets of timbral, temporal, or

rhythmic information, Polansky's morphological metric. may be applied to

smaller formations as well.

Morphological metrics are distance functions computed on the notes or

intervals between the notes of an ordered musical structure. A morpho­

logical metric is termed linear or combinatorial according to the number

of elements or intervals used in the computations: the more intervals or

elements used in the computation, the more combinatorial the metric. In
other words, combinatorial metries tend to take into account more of the

relationships between component parts. A strictly linear interval set as well

as two of the possible combinatorial interval sets derived from an abstract,

generalized tetrachord are shown in 5-48. For a strictly linear interval set

ofa morphology (or scale)of length L, there are L - I intervals. The maxi­

mum combinatorial length for a morphology of length L is the binomial

coefficient (£2- L) / 2, notated asLm•

The simplest of Polansky's metries is the ordered linear absolute mag­

nitude (OLAM) metric which is the average of the absolute value of dif­

ferences between corresponding members of two tetrachords. In the case

of two tetrachords spanning perfect fourths of 500 cents, this function re­

duces to the sum of the absolute values of the differences between the two

parhypatai and the two lichanoi divided by four. Given two tetrachords al

+bl+ soo-al-bl and az+hz+ 5oo-az-hz, the equation is:
L

k Ielj3Z; IlL,
;.z

whereL =4 and en; = (0, aI,al +bt, 500) cents and (0, az, az+hz,500) cents.

When not divided by L, this metric is identical to the Minkowski or "city

block" metric previously discussed.Note that the OLAM metric does not

take intervals into account, so it looks at L rather than L - I values.

A simpler formula, ( Iaz- all and Iaz +bz - al - hII )/2, would be de­

fensible in this context aszero and 500 cents are constant for all tetrachords

of this type. If the tetrachords are built above different tonics or their
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28/z7' I 5/r4' 615 25124' I6!IS .6/s 22121 . r a/r r . 716 I6/r5 . 9/8 . 1019 ra/r r . II/IO . 1019

28/27' 36135' S/4 17.67 19.60 34. 25 63.17 72.9°
47.1 I 47.1 I 79.63 135·94 135·94

28/z7' 15/r4' 615 1.93 16·59 45·5° 55.23
5.14 32.5 I 88.83 88.83

25/z4' I6/r5' 615 14-66 43·57 53·3°
32.5 I 88.83 88.83

22/z r . r a/r r . 716 28.92 38.64
56.31 56.Jl

r6/r 5 . 9/ 8 . 1019 9·73
25·94

1:2 CHROMATIC INTENSE CHROMATIC SOFT DIATONIC INTENSE DIATONIC EQUAL DIATONIC

ENHARMONIC 29.17 37·5° 5°.0 62·5° 87·5°
(50 + 50 + 400) 66.67 66.67 100.0 133·33 155.56

1:2 CHROMATIC 8,33 20.83 33-33 58.33
(67+ 133+3°0) 22.22 33·33 66.67 88.89

INTENSE CHROMATIC 8·333 25.0 5°·0
(100+ 100+ 300) 33-33 66.67 88.89

SOFT DIATONIC 12·5° 37·5°
(100+ 150+250) 33·33 55.56

INTENSE DIATONIC 25.0
(roo + 200 + 200) 44·44

S~49' Ordered linearabsolute magnitude (upper)
and ordered linear interuallic magnitude (knuer)

metricson tetracbords injustintonation.

5-50' Orderedlinear absolute magnitude (uppe1)
and ordered linear interualiic magnitude (luwer)

metria ontemperedgene/'a,

fourths spanned different magnitudes, i.e., 500 and 498 or 583, erc., the

first equation must be used.

The next simplest applicable metric is the ordered linear intervallic

magnitude (OLIM) metric which is the average of the absolute values of the

difference between the three intervals which define the tetrachords, In the

case ofthe two tetrachords above, the intervals are al,b},50o-a} -hI and az,

hz,5oo-az-hz. The equation for this metric function is:
L

I I:( Ie};-el;_ll-Iez;-ez;_ll)! /(L-l), L-I =3.
;.z

where i ranges from 2 through L, since intervals are being computed.

In 5-49. these two simple metrics are applied to a group of representative

tetrachords in just intonation. The melodically similar tempered cases are

shown in 5-50. Permutations of genera are analyzed in 5-51 and 5-52. The

OLAM metric distinguishes between these genera quite well; the OLIM

less so, but patterns are suggested which data on a larger set of tetrachords
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5-51. Ordered linearabsolute magnitude (upper) andordendlinear intervallicmagnitude
(Wwer) metriaonArr:byta.s's mharmonicgenus.

84·39
225·°3

7.10

9.46

3-55
9.4 6

87·93
225·°3

80.83
21 5.57

165.22
225·°3

80.83
21 5.57

87-93

225·°3

225·°3
225·°3

161.68
21 5.57

84.3 8
225·°3

84·39
225·°3

165.22

225·°3

3-55
9.46

5-52.. Orderedlinearabsolute magnitude (upper) andordendlinear intervalliemagnitude
(Wwer) mariesonpermuted tempered tetracbords.

ENHARMONIC 50 + 400 + 50

50 + 50 + 400 87.50

233-3

INTENSE CHROMATIC 100 + 300 + 100

100 + 100 + 300 5°.0

13303

100 + 300 + 100

400 + 50+ 50

175.0

233-3

87·5°
233·3

300 + 100 + roo

100.0

133-3

5°.0

133-3

INTENSE DIATONIC

100 + 200 + 200

200 + 100 + 200

SOFT DIATONIC

100 + 150 + 250

100 + 250 + 150

150 + 100 + 250

15°+25°+100

25°+100+15°

200 + 100 + 200

roo + 250 + 150

200 + 200 + 100

5°.0

66.67

150 + 100 + 250

12·5°

33·33

37.50
100.0

150 + 250 + 100

5°. 0

100.0

25.0

33033

37·5°
100.0

250 + 100 + 150

37·5°
100.0

5°.0

66.67

37·5°
100.0

250 + 150 + 100

75. 0

100.0

5°.0

100.0

62·5°
100.0
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5-53· Ordered combinatorial interuallic magnitude
metriconthePolonsky (uppe7) anddiffmm:e (knuer)

intervalsetsfrom tetracbords injustintonation.

may reveal. In particular, the OLIM metric fails to distinguish between

permutations of tempered tetrachords.

In theory, morphological metrics on combinatorial interval sets have

greater discriminatory power than metries on linear sets. Two sets of

combinatorial intervals were derived from the simple successive intervals

of 5-48. The first set, the Polansky set, is that described by Polansky

(1987b). The second set, the difference set, was constructed from iterated

differences of differences (Polansky, personal correspondence).

The ordered combinatorial intervallic magnitude (OCIM) metric is the

average of the absolute value of the differences between corresponding

elements of the musical structure. Its definition is:
L-I~

:r. :r. \A(fIi,fIi+;J-L\.(f2i,ezi+j) IIt.;
j.I i.I

where Lm = the number of intervals in the set (the binomial coefficient,

described above). To apply it to other combinatorial interval sets, it must

be appropriately modified to something like:
L

:r. I(IIi-i.?;) IIx;
i.2

where I ni are the elements of a set like the difference set of 5-48.

As can be seen in S-53 and S-S4,the OCIM metric calculated on the two
sets of intervals from these tetrachords discriminates between genera very

well. Both sets of intervals are roughly equivalent with this metric.

Permutations are studied in S-SS and S-56. On neither interval set does

the OCIM metric distinguish permutations completely.

35·34
94· z3

nllI ,nlrI '7/0

I6lr5 . 9/8. 10/9

36.6z
86·5 Z

3.86
IO.z8

n/ll . r r/r r . 716

6z.05
141 •68

z7·3 I

47·45

zo.03
55. 16

110.08

lZ3·II

74·75
n8.88

15.30
136.59

47-43
81.43

r s/r r . r r/ro . 1019

lIO·57
I84'zO

81.z3
104.01

79·94
100,5 8

53·9z
61.10

7S CLASSIFICATION, CHARACTERIZATION, AND ANALYSIS OF TETRACHORDS



5-5+ OrderuJ ,omJJinatorialintenJalJicmllgnitude metric onthePolansky (upper) and
difference (krwer) intervalsetsfrom tempered utrachords.

1:1 CHROMATIC INTENSE CHROMATIC SOFT DIATONIC INTENSE DIATONIC EQUAL DIATONIC

ENHARMONIC

(50 + 50 + 400)

1:1 CHROMATIC

(67 + 133 + 300)

INTENSE CHROMATIC

(100 + 100 + 300)

SOFT DIATONIC

(100 + 150 + 250)

INTENSE DIATONIC

(100 + 100 + 200)

58.33
83-33

16.67

44·44

8B3
15°.0

3°.56
38.89

108·33
u6.67

55.56
100.0

q6.II

194·44

83·33
100.0

77.78
III.II

5-55. Orderedcombinatorial intervallit magnitude metric onPolansky (upper) and
difference (krwer) intervalsetsonpermutations ofArchytas's enharmonic genus.

168,77

45°·06
168·77
45°.06

9.46
9.46

7.10

18.91

17I.I4
435.87

161.68

431.14

222.66
229.76

161.68
431.14

171.14
435.87

1I5·57
u5·57

168·77
45°. 06

168,77

45°.06

122.66
229.76

7.10
18.91
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5-56. Ordered combinatorial interuallic magnitudemetriconthePolansky (upper) and

diffe1'ence (lower) interualsetsjrQ111. permutedtemperedtetracbords.

ENHARMONIC 50 + 400 + 50

50 + 50 + 400 175.0

4 6 6. 67

50 +4°° + 50

INTENSE CHROMATIC 100 + 300 + 100

100 + 100 + 300 100.0

266.67

100 + 300 + 100

400 + 50 + 50

233·33

233·33

175.0

46 6 .67

300 + 100 + 100

I)J.3 3
133·33

100.0

266.67

INTENSE DIATONIC

100 + 200 + 200

200 + 100 + 200

200 + 100 + 200

5°·0

133-33

200 + 200 + 100

5°.0

133·33

SOFT DIATONIC

100 + IS0 + 250

100 + 250 + IS0

ISO + 100 + 250

150 + 250 + 100

250'" 100 + IS0

100+ 250+ 150

5°·0

133·33

150 + 100 + 150

25.0

66.67

75.0

100.0

15°+25°+100

83-33

150 .0

33·33

33·33

75.0

100.0

250+ 100+ IS0

91•67
116.67

75.0

100.0

66.67

66.67

75.0

200.0

250 + IS0 + 100

100.0

100.0

83-33
15°·0

9I.67
u6.67

5°·0

133·33

15.0

66.67
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Unordered counterparts of the ordered metrics are also defined. Al­

though the unordered linear absolute or intervallic magnitude metrics are

of little use in this context, the unordered combinatorial intervallic mag­

nitude (UCIM) metric is rather interesting when computed on these two

interval sets.
For the Polansky interval set, the metric is:
L-IL-J L-IL-J

/1: !, Ii (el j,el;-tj)/Lm -1:!'1i(e2j, e2;+j)/L", I,L",=6.
j.l i.l j.l i.l

This function is the absolute value of the difference between the aver­

ages of the corresponding intervals. For the difference set, the formula

becomes:
L L

11: (Il;)IL",-'r-(I2i)IL", I,L",=6,
i.2 i.2

where the I,,; are the elements of the set.

S-S7and S-S8 showthe data for the same group of tetrachords as before.

Genera are fairly well discriminated by this metric, especially when cal­

culated on the Polanskyinterval set, but not as well with the difference set

intervals. Neither are particularly successful for distinguishing per­

mutations with this metric (S-59 and 5-60).

5-57. Unordered combinatorial interva//icmagnitude metricontbePolansky (upper) and
difJemue (/qwer) intervalsetsfromtetracbords injustintonation.

21.121' n/II . 7/6

16h5 . 918. 1019

1l.78
47.II

25/24' 16h5 . 615

10·49
44·54

1. 29
2·57

22/21 • 12h1 • 7/6

5.20
26.65

6,48
29.23

25.86
II9·68

14.08
72.57

15.36
75.14

8.88

45-91

12h I . IIlrO • 10/9

19·37
106.71

7·59
59.60

8.88
62.17

2·39
32.94

6.48
12·97

78 CHAPTER 5



f.-58. Unordered combinatorial interuallicmagnitude metriconthePolansky (upper) and
'difference ~(fWer) intervalsetsfrom tempered tetracbords.

1:2 CHROMATIC INTENSE CHROMATIC SOFT DIATONIC INTENSE DIATONIC EQUAL DIATONIC

IENHARMONIC

!50 "l- 50 +400

!~:5!:::"TIC
/

10 0 "1- 100 + 300

SOFT DIATONIC

100 + ISO + 250

INTENSE DIATONIC

100 + 200 + 200

13.889
61.1 I

8·333
50 •0

5.556
II.II

16.67
83-33

2.778
22.22

8,333
33·33

ILl!

55.56

16.67
66.67

8·333
33-33

19·44
116.67

5.556

55.56

I I. II

66.67

2.778
33-33

5.556
0.0

5-59. Unordered combinatorial interuallic magnitude metricon Polansky (uPPt1~ and
difference (lower) interval sets onpermutations of Ar'chytas's enharmonic genus.

56.26
220.30

0.0

4·73

2.36

4·73

53.89
220·3°

53.89
21 5.57

2.36
117.24

53.89
1°7.78

53.89
1°3.0 5

0.0

112.5 I

0.0

1°7.78

56.26

II7· 24

56.26

II2·5 1

222.66
103.0 5

2.3 6
9.46
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5-60. Unordered combinatorial interuallic magnitude metric on thePolrmsky (upper)
anddifference (luwer) intervalsets from permuted tempered tetracbords.

ENHARMONIC 50 + 400 + 50

50 + 50 + 400 58.33

233-33

50+400 + 50

INTENSE CHROMATIC 100 + 300 + 100

roo + 100 + 300 33.33

133-33

100 + 300 + 100

INTENSE DIATONIC 200 + 100 + 200

100 + 200 + 200 16.67

33-33

200 + 100 + 200

400+ 50 + 50

0.0
II6.67

58,33
II6.67

300 + 100 + 100

0.0
66,67

33·33
66.67

200 + 200 + 100

0.0

33-33

16.67
66.67

SOFT DIATONIC

100 + 150 + 250

100 + 250 + 150

ISO + 100 + 250

150 + 250 + roo

250 + 100 + ISO

150 + 100 + 250

8·333
16.67

2.5.0

83-33

150 + 250 + 100

0.0

16.67

25,0
100.0

250 + 100 + ISO

8·333
16.67

25. 0

50 •0

0.0

2.50 + 150 + 100

0.0

50 .0

16.67
16.67

8,333
66.67

16.67

33-33

8·333

33-33
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5-61. Ordered (uppe,~ andunordered (lotoer)

combinatorial interval direction met11CS on
diffe,'em:e sets fiwlI tetracbords injust intonation.

5-61. Ordered (uppe,~ andunordered (lower)
combinatorial interval direction metrics on
diffi,'enasets fi'om tempered gene1'l1,

In addition to absolute and intervallic metrics, directional metrics are

also defined. Directional metrics measure only the contours of musical

structures, i.e., whether the differences between successive elements are

positive, negative or zero. Although these metrics are perhaps the most

interesting of all, they are generally inapplicable to tetrachords because

tetrachords are sets of four monotonically increasing pitches whose dif­

ferences are always positive (or negative if the tetrachord is presented in

descending order). Directional metrics, however, are very applicable to

melodies constructed from the notes of tetrachords or from tetrachordally

derived scales such as those of chapter 6.

The intervals of the tetrachordaI difference set, however, are not

necessarily monotonic and therefore combinatorial directional metrics

may be computed on these intervals. Two such metrics were calculated

for the same set of tetrachords and permutations used above, the ordered

281z7' ISII4' 61S 2S1z4' 16/xS ·61S n/2 I· rz/r r . 716 I61I S . 918 . 10/9 I2/I1 • IIlIo . 1019

2812 7 ' 36/3S . S/4 .16 67 •1667 .16 67 ·sooo .1 667

·3333 ·3333 ·3333 ·3333 ·3333

28127 ' IS!I4' 61S 0.0 0.0 '3333 0.0

0.0 0.0 .6667 0.0

2S/24' 16/xS .61S 0.0 ·3333 0.0

0.0 .6667 0.0

n/z I . r r/r r . 716 ·3333 0.0

.667 0.0

I61I5 . 9/8 - 10/9 .50 0 0

·3333

1:2 CHROMATIC INTENSE CHROMATIC SOFTDIATONIC INTENSEDIATONIC EQUAL DIATONIC

ENHARMONIC .1667 0.0 •1667 .5000 ·3333
(50 + 50 + 400) ·3333 0.0 ·3333 ·3333 .6667

1:2 CHROMATIC .1667 0.0 ·3333 .5000

(67 + 133 + 300) ·3333 0.0 .6667 1.00

INTENSECHROMATIC .1667 .5000 ·3333
(100 + zoo + 300) ·3333 ·3333 .6667

SOFTDIATONIC ·3333 .5000
(zoo + ISO + 2 SO) .6667 1.00

INTENSE DIATONIC ·3333
(100 + 200 + 200) ·3333
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combinatorial intervallic directional (aCID) metric and its unordered

counterpart, the unordered combinatorial intervallic directional (VCID)

metric. The aCID metric is the average of the differences of the signs

of corresponding intervals. The sign (sgn) of an interval is -1,0, or +1

according to whether the interval is decreasing, constant or increasing.

The difference (diff) is I when the signs are dissimilar, otherwise the

difference is zero. The definition of the aCID metric on the difference

set is:
L

1:diff(sgn(h j),sgn(l2;))/L"" Lm=6.
;-2

The UCID metric is the average of the absolute values of the numbers of

intervals with each sign. The definition ofUCID on the difference set is:
L

1: I#el-#el 1)1 Lm,Lm= 6,
i-2

where #env;: the number of intervals in the matrix such that v=sgn (In;); i.e.,

v;: [-1,0, I].

The data from these computations are shown in 5-61 and 5-62. Similar

results were obtained with tetrachordal permutations (5-63 and 5-64).

5-63' Ordered (upper) andunordered (/ower) combinatorial intervaldirection metria on
difference setsfrompermutationsofArchytas's enharmonicgenus.

.50 0 0

·3333
.50 0 0

·3333

0.0

0.0

.1667
·3333

·3333
.6667

·3333
.6667

.1667

·3333

·3333
0.0

·3333
0.0

·3333
.6667

0.0

0.0

.50 0 0

·3333

.50 0 0

·3333

.1667
·3333

.1667
·3333
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5-64. Ordered (uppel)andunordered (lower) combinatorial intervaldirection metricson
dijfel'ence setsfi'om permuted tempered tetracbords.

INTENSE CHROMATIC 100 + 300 + 100

100 + 100 + 300 .5000

.6667

·3333

.6667

·3333
0.0

.1667

·3333

.1667

·3333

·3333
0.0

250 + 150 + 100

.1667

·3333
.5 0 0 0

·3333

.50 0 0

·3333

0.0

0.0

250 + 100 + 150

.5 0 0 0

·3333

·3333
.6667

0.0

0.0

150 + 250 + 100

·3333

·3333

·3333

·3333

·5°00

·3333

.5 0 0 0

·3333

·3333
·3333

·5°00

.6667

.50 0 0

·3333

.1667
·3333

300 + 100 + 100

400 + 50 + 50

200 + 200 + 100

ISO + 100 + 250

·5°00

.6667

.5 0 0 0

·3333

·3333
.6667

50 + 400 + 50

200 + 100 + 200

100+25°+ 15°

ENHARMONIC

50 + 400 + 50

50 + 50 + 400

100 + 300 + 100

INTENSE DIATONIC

100 + 200 + 200

200 + 100 + 200

SOFT DIATONIC

100 + 150 + 250

250+100+15°

100 + 250 + 150

150 + 100 + 250

150 + 250 + 100
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Rothenberg propriety

David Rothenberg has developed criteria derived from the application of

concepts from artificialintelligence to the perception ofpitch (Rothenberg

1969, 1975, 1978; Chalmers 1975, 1986b). In Rothenberg's own words

(personal communication): "These concepts relate the intervallic structure

of scales to the perceptibility of various musical relations in music using

these scales.Only the relative sizes of the intervals between scale tones, not

the precise sizes of these intervals are pertinent." These concepts are ap­

plicable to scales of any cardinality whether or not the intervals repeat at

some interval of equivalence. In practice, most scales repeat at the octave,

though cyclesof tetrachords and pentachords are found in Greek Orthodox

liturgical music (Xenakis1971; Savas 1965).

To apply Rothenberg's concepts, the first step is to construct a difference

matrix from the successive intervals ofan n-tone scale. The columns of the

matrix are the intervals measured from each note to every other one of the

scale.The rows tn of the matrix are the sets of adjacent intervals measured

from successive tones. These intervals are defined conventionally: the row

of seconds (tv comprises the differences between adjacent notes; the row

of thirds (tv consists of the differences between every other note; etc., up

to the interval of equivalence (t,J. Row to contains the original scale.

Anumber of functions may be calculated on this matrix. The most basic

of these ispropriay. A scale is strictly proper if for all rows every interval in

row tn- 1 is less than everyinterval in row tn'Ifthe largest interval in any row

tn- 1 is at most equal to the smallest interval in row tn, the scale is termed

proper. These equal intervals are considered ambiguous as their perception

depends upon their context. A familiar example is the tritone (F-B in the

C major mode in 1z-tone equal temperament), which may be perceived as

either a fourth or a fifth.

Scaleswith overlapping interval classes, i.e., those with intervals in rows

t" -1 larger than those in rows tn, are improper. These contradictory in tervals

tend to confound one's perception of the scale as a musical entity, and im­

proper scales tend to be perceived as collections of principal and orna­

mental tones. Improper scales may contain ambiguous intervals as well.

5-65 illustrates these concepts with certain tetrachordal heptatonic

scalesin the 11- and 24-tone equal temperaments. The first example is the

intense diatonic of Aristoxenos. The scale is proper and the tritone is am­

biguous. The second scale is Aristoxenos's soft diatonic which is also
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INTENSE DIATONIC IN 12-TONE ET: PROPER INTENSE CHROMATIC IN U-TONE ET: IMPROPER

to 0 2 4 6 7 9 II 12/0 to a z S 7 8 9 u/o
t 1 I 2 MAX (t3) = MIN (t4) = 6 t 1 [3] [z] [3] MAX (tV> MIN (tv
t2 3 4 4 3 3 4 3 t2 [z) 4 [S] 3 [2) 4 4 MAX (tV> MIN (t3)
t3 S (6) S S S S S t; S (6) (6) (4) S S S
t4 7 7 7 7 (6) 7 7 t4 7 7 7 7 (6) (6) [8]

tr 8 9 9 8 8 9 9 tr 8 8 10 8 (7) 9 10

t6 10 II 10 10 10 II 10 t6 9 II II 9 10 II II

t7 12 12 U U 12 I2 U t7 12 12 12 12 12 IZ 12

SOFT DIATONIC IN 24-TONE ET: PROPER ENHARMONIC IN 24-TONE ET: IMPROPER

to 0 2 S 10 14 16 19 24/0 to 0 I 2 10 14 IS 16 24/0

t1 3 (S) 4 3 (S) MAX (tv = MIN (tv t1 [8] 4 I (8) MAX (tv> MIN (tv
t2 (S) 8 (9) 6 (5) 8 (5) MAX (tV = MIN (t;) t2 (2) 9 (12) S [2] 9 9 MAX (tv> MIN (t;)
t3 10 (12) II (9) 10 10 10 MAX (t;) = MIN (t4J t; 10 [IJ] [I3J [6] 10 10 10 MAX (t;) > MIN (t4)
t4 14 14 14 14 (12) 13 (I S) MAX (t4) = MIN (tsJ t4 14 14 14 14 [II) [II] [18]
t s 16 17 (19) 16 (IS) 18 (19) ETC. ts IS IS 22 IS [12J 19 22

t6 (19) 22 2I (19) 20 22 2I t6 16 23 23 16 20 23 23
t7 24 24 24 24 24 24 24 t7 24 24 24 24 24 24 24

NEUTRAL DIATONIC IN 24-TONE ET: STRICTLY PROPER

to 0 3 7 10 14 17 2I 24/0

t1 3 4 3 4 3 4 3 MAX(tn-V < MIN (t,,)
t2 7 7 7 7 7 7 6

t; 10 II 10 II 10 10 10

t4 14 14 14 14 13 14 13

t r 17 18 17 17 17 17 17

t6 21 21 20 21 20 2I 20

t7 24 24 24 24 24 24 24
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5-65. Rothenbergdiffennce matrices. Theraw

indexistn.Max (t,,) isthelargest entryin raw tn.

Min (t,J isthesmallest enry in mw tn- Theintense
diatonic tetracbordis I +2 +2 degrees or6+ 12+ 12

parts. The.roft diatonic derivesfrom. 2 +3+5 or6+9

+15parts.The neutraldiatonic is3+4 +3 degree.r, a
permuta tionof9 +9 + 12 pal"ts. The intense

chromatic isI + I +3 degrees. Theenharmonic
tetracbord is r + I +8 deg7·eeJ. Internals in

parenthesesareambiguous; those insquarebrackets

are contt'lldiet01y.

proper, but replete with ambiguous intervals. A composer using this scale

might prefer to fix the tonic with drone or restrict modulation so as to avoid

exposing the ambiguous intervals. The next scale is patterned after certain

common Islamic scales employing modally neutral intervals, It is strictly

proper, a feature it shares with the more familiar five-note black key scale

in ra-tone equal temperament.

The final two examples, Aristoxenos's intense chromatic and his en­

harmonic, are improper. The majority of the intervals of these scales are

either ambiguous or contradictory. These scales are most likely to be heard

and used as pentatonic sets with alternate tones or inflections.

Because the major (0 400700 cents, 4:5:6 in just intonation), minor (0

300 700 cents, 10:12:15), subminor (0 250 700 cents, 6:7:9), and supra­

major (0 45°7°0 cents, 14:18:21) triads are strictly proper, they can serve



5-66. Proprietylimitsoftetrtuhordr. The
differtn(tS lin!incnustmdlin underlyingzero

modulo 12 e'lUilI ttmpertnnmt is1IJ1'UnUd. The
resultsftrjust intonation lire virtUllJJy identitlll

except thatthejourth0[498.045 cmtsandawhole
tone 0["03.91ctntsrepltue the5oo-tmdzoo-eem
intmJm in thecomputations.

ROWS DIFFERENCE MATlUX

tl a b SOO-II-b

t2 II +b 500-11 soo-b
t) 500 500 500

CONSTRAINTS: 0< II < 1 So; °< b < 150; "50 < II

«b « 500.

VERl1CES:O,150j15o,Oj 150,150.

5-67.Propriety limitsftr isoltmd tetrtuhordslind

~unet chains0[tanuhords.

30 0

30 0

as sets of principal tones for improper scales. The various sets of principal

tones would be used as the main carriers of melodies, while the auxiliary

tones would be used as ornaments. This topic deserves more extended

discussion than is appropriate here and Rothenberg's original papers

should be consulted (Rothenberg 1969, 1975, 1978).

The fact that the minor and septimal minor triads are strictly proper may

explain certain musically significant cadential formulae in the Dorian

modes of the enharmonic and chromatic genera. These consist of a

downward leap from the octave to the lowered submediant (trite), then

down to the subdominant (mese) before ending up on the dominant (par­

amese). This formula may be repeated a fifth lower, beginning with a leap

from the subdominant (mese) to the lowered supertonic (parhypate) and

then down to the subtonic (hyperhypate) before ending on hypate (chapters

6 and 7). Minor triads are outlined in the chromatic genus and septimal

minor triads in the enharmonic. The latter chords contain the important

interval of fivedieses called eklysis by the Greek theorists, and in fact, the

jump from parhypate to hyperhypate is seen in the Orestes fragment

(Winnington-Ingram 1936). The upper submediants (lichanos and par­

anete) may be substituted in both genera; the major triad appearing in the

chromatic genus is also strictly proper.

As has been seen above, the propriety criterion separates those scales

derived from chromatic and enharmonic tetrachords from those generated

by diatonic genera. Aswill be seen later, the situation is somewhat more

complex; under certain conditions, some diatonic tetrachords yield only

improper scales, while some chromatic genera can combine with diatonic

tetrachords to generate proper mixed heptatonic scales.

Propriety may be computed for abstract classes of scales or subscalar

modules rather than for specific instances by replacing one or more of the

intervals by variables.If the three subintervals of the tetrachord are written

as a, b, and S0D - a - b (a, b, and tfh/3a in just intonation), one can calculate

the Rothenberg difference matrix and determine the propriety limits for

isolated tetrachords or conjunct chains where the interval of equivalence is

the fourth. Such chains were present in the earlier stages of classical Greek

musicand are still extant in contemporary Greek Orthodox liturgical music

(chapter 6 and Xenakis 1971).

The computation is performed by solving the inequalities formed by

setting each of the elements of rows t" less than each of those in rows t" + 1.
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5-68. Prop7'iety limitsof'pentacaords.

ROWS DIFFERENCE MATRIX

t 1 a b 500 - 0 - b 2.00

t : o+b 500-0 700-0-b 2.00+0

t s 500 700-0700-b 200+0+b

t4 700 700 700 700

CONSTRAINTS: 0<0 < 250; ° < b < 250; 250 < 0

+b < 500i 2.0 + b < 700; 0 + ib < 700; b - a <

200; 300 < ia + b.

VERTICES: 2.50,0; 50, 200i 33.3,233.3; 100,

300; 2.33-3, 233.3; 250, 2.00.

5-69. Prop7"iety limitsfo7' isolatedpentacbords and

conjunct tbainsofpmtoch07·dJ.

300

In practice, the work may be minimized because only the elements in the

first (n + I) /2. rows of an n-tone scale need be considered. One may also

ignore relations that are tautological when all the intervals are positive.

The result is a set of constraints on the sizes of intervals a and b, shown

in 5-66. Tetrachords and conjunct chains of tetra chords spanning perfect

fourths, are strictly proper when intervals a and b satisfy these constraints.

The tetrachords and chains are proper when their intervals equal the ex­

trema ofthe constraints. For values outside these limits, the tetrachords and

conjunct chains are improper.

Because the three intervals a, b, and 500 - II - b add to a constant value,

there are only two degrees of freedom. Therefore, the domain over which

tetrachords are proper may be displayed graphically in two dimensions.

The region in the a . b plane within which tetrachords are strictly proper is

shown in 5-67. The vertices define an area in the a . bplane within which the

constraints are satisfied. Points on the edges of the triangular region cor­

respond to proper tetrachords, The two points on the axes are also proper

as tricbords, which are degenerate tetrachords with only three notes.

Similarly, the propriety limits for pentachords consisting of a tetrachord

and an annexed disjunctive tone (200 cents or 9/8) may be determined. The

difference matrix is shown in 5-68. As all circular permutations of a scale

have the same value for propriety, it is immaterial whether the disjunctive

tone is added at the top or bottom of the tetrachord. The region satisfying

the propriety constraints for isolated pentachords and pentachordal chains

is shown in 5-68.

Similar calculations may be carried out for complete heptatonic scales

consisting of two identical tetrachords and a disjunctive tone. This tone

5-70. Propriety limitsforbeptatonic scales with identical tetracbords.

IJ b 500-0-b 200 a b 500-0-b

a-vb 500-0 700-0-b 200+a o+b 5°0-0 500-b

5°0 7°0-0 7oo-b 2oo+a+b 5°0 5°0 5°0

7°0 7°° 7°° 7°° 5°0+0 5oo+ b 1000 -IJ-b

CONSTRAINTS: 100<0< 250; ioo-cb « 2.50; 2.5o<o+b<400.

VERTICES: 100,150; 100,250i 150,100; 150,250; 250,150i 2. 5°,100.

5-71. Propriety Jimitsfor beptatonicscales

with identical tetracbords.

3°0 _

3°0
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5-7z. Propriety limitsfor trtrlKhordranJtetra­
chordalchains. These limitsareforchainsofconjuna
tetnll:hordssudJ asareftund in Greek Orthodoxli­
turgicalmusic(Xmalcir I97I).

II

500

I:-II-b

500

I:

o
b

500

may be placed between the tetrachords or at either end to complete the

octave (chapter 6). The results of the calculations are given in 5-70. The

region of propriety is shown in 5-71.

Complete tetrachordal space

An alternative mode of graphic representation may be clearer. Physical

chemists have long been accustomed to plotting phase diagrams for three

component mixtures on equilateral triangle graphs. The three altitudes are

interpreted as the fractions of each component in the whole mixture. There

are only two degrees of freedom as the sum of the composition fractions

must equal unity. The data from 5-66, 5-68, and 5-70have been replotted

in 5-72.-73.
5-72. shows the range over which the intervals a, b, and 500 -II - b may

vary and still result in proper tetrachords. Pentachords are shown in 5-73
and heptatonic scales in 5-74.

The advantage ofthe triangular graph over the conventional rectangular

type is most evident with the heptatonic scales of 5-74. All points in the

interior of the semi-regular hexagonal region correspond to strictly proper

scales, while the edges are sets of intervals that define scales that are merely

II

500
c
o

II

500
I:

o

5-73· Propriety limitsfurpentllChordsanJpen­
tachordal,hains.

5-7+ Properheptlltonicsales.
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5-75. Non-diatonic genel1l.

89 CLASSIFICATION, CHARACTERIZATION, AND ANALYSIS OF TF.TRACHORDS

proper. The three triangular spaces lying between the long sides of the

hexagon and the edge of the space contain diatonic genera which yield

improper heptatonic scales. In certain cases to be discussed later, some of

these tetrachords may be combined with other genera to produce proper

mixed scales.

The six vertices of the central hexagon in 5-74 are the six permutations

of the soft diatonic genus ofAristoxenos, 100 + 150 + 250 cents. The center

of overall symmetry is the equal diatonic genus, 166.667 + 166.667 +

166.667 cents. The intersection of the altitudes of the triangle and the

midpoints of the long sidesof the hexagon are the three permutations of the

intense diatonic, 100 + 200 + 200 cents, while the intersections with the

midpoints of the short sides define the arrangements of the neo­

Aristoxenian genus, 125 + 125 + 250 cents. This genus lies on the border of

the chromatic and diatonic genera, but sounds chromatic because of the

equal division of the pyknon.

The non-diatonic or pyknotic genera are portrayed in 5-75. The empty

border around the filled regions delimits the commatic (25 cents) and

subcomrnatic intervals. The small triangular regions in dark color near the

vertices are the hyperenhannonic genera whose smallest intervals fall be­

tween 25 and 50 cents in this classification (see the neo-Aristoxenian clas­

sification above for more refined limits on the boundaries between the

hyperenharmonic, enharmonic, and chromatic genera). Next are the trap­

ezoidal enharmonic and chromatic zones which flank the unmarked central

diatonic area. The enharmonic zone contains pyknotic intervals from 50 to

100 cents and the chromatic from 100 to 125 cents.

These data are summarized in 5-76.The diatonic tetrachords generating

proper and strictly proper scalesmap into the central zone. The three tri­

angular zones flanking the central region along the long sides of the hex­

agon are diatonic tetrachords which contain one of the small hyper­

enharmonic, enharmonic, or chromatic intervals. These diatonic genera

yield improper scales. As in 5-75, the chromatic tetrachords lie in the large

trapezoidal regions, with the enharmonic and hyperenhannonic beyond.

The outer belts of the chromatic zones depict genera with enharmonic and

hyperenharmonic intervals. Similarly, the enharmonic regions are divided

into realms of pure enharmonic and enharmonic mixed with hyper­

enharmonic intervals.

b
500

c
o

c~ll-b

500

c~ll-b

500

II

500

5-76. Complete tetracbordal space.



5-77.Pr()jJriety Hrnitsfor heptatunic scaleswith
mixed tetrtUhords. (OnfJ thefirstfour rowsare
shuwnJ

Propriety ofmixed scales

The computation of the propriety limits for heptatonic scales containing

dissimilar tetrachords is a more complex problem. Since there are now four

degrees of freedom, two for each of the tetrachords, the graphical methods

used for the single tetrachord case are of limited use. It is possible, however,

to consider the upper and lower tetrachords separately and to calculate

absolute limits on the intervals of each. Ifa, b,and 500 - a - b are assigned

to the intervals of the lower tetra chord and c,d, and 500 - C- d to the upper,

one can compute the range ofvalues for a and bover which it is possible to

find an upper tetrachord with which aproper scale can be generated. Similar

computations may be done for cand d. These results of these calculations

are tabulated in 5-77 and are graphed in 5-78 and 5-79. These graphs use

only those relations which are solely functions of a and bor cand d.

Triangular plots of the same data are depicted in 5-80 and 5-81. The

union of the the upper and lower tetrachord regions corresponds to the

pentachordallimits of 5-68 and 5-73, and their intersection is the proper

diatonic region of 5-74. The upper and lower tetrachord regions are also

the intervallic retrogrades of each other as propriety is unaffected by ret­

rogression or circular permutation of the intervals.

The solution to the general case of finding the limits for mixed tetra­

chordal scales must satisfy all the inequalities that relate a, b, c, and d. It is

difficult to display this four-dimensional solution space in two dimensions.

One can, however, choose tetrachords from the lower or upper absolute

•

5oo - c - d
500-c-d +11

S0D-c-d +11 +h

Iooo-c-d

11 b 500 - 11 - h 200 C d

11 +b 500 -11 700 -11 - h 200 +C C+ d 500 - C

500 700 -11 700 -II - h +C 200 + C+ d 500 500 - c + 11

700 700 -11+ C 700 - 11 - b+ c + d 700 500 + II 500 - c + 11 + b

CONSTRAINTS ONI1ANDh: 0<11 < 250; 250 <11 +h < 500; 211 +h <700; 11 + 2h<700.

VERTICES: 100, 150;100,!J00;250,200; 250, 0; 2!J!J.!J, 2!J3.3.

CONSTRAIN'fSONCANDd: c < 250; 250 <C +d <400; d-« «200;!J00 <2C +d.

VERTICES:50, 200;!J!J.!J, 233.3; 100,300; .25 0, 150; 250,0.

MUTUALCONSTRAINTS ONII, h,c,ANDd:11 «cwd;h <C+d;C<11 +h;d <11 +h;C<.2I1;1l +C<500;h - cc 500; 11 +d<500;b-c <200,'2C-11 <

!J00;I1-C < IDO; c+d-11«qoo; 11 +h +e< 700; .2c+d-11<500;c +.2d-11 < 500; 11 +b+d<700; 211 +w-c< 700; 11 +b-c-d < 100;300 <11

+c+d;c+d<211 -b; 200 <211 +2b-c-d; .2c+d-l1-b <!Joo; 211-C-d<500; 200 < 211 +b-c; c+b +d-11 < 500; 500 <11 +b+c+d;300 <

2C+2d-l1; 211 +b-2,-d<200.
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30 0 -

INTERVAL 0 300

5-78. Absolute propriety limitsfOI" lotuer
tetracbords.

INTERVAL 0 30 0

5-79. Absolutepropriety limitsf01' uppel"
tetracbords,

propriety regions of 5-80 and 5-81 and find companion tetrachords which

produce proper heptatonic scales when joined to them by a disjunctive

tone. These computations are performed in the same way as in 5-70 and

5-77, except that the variables in one of the two tetrachords are replaced

by the cents values of the intervals. The result of the calculations will be a

range of values for the companion tetrachord.
The three permutations of the intense diatonic genus in r z-tone equal

temperament (100 + 200 + 200 cents, 200 + 100 + 200 cents, and 200 + 200

+ 100 cents) as well as the neochromatic form of the syntonic chromatic

(100 + 300 + 100 cents) were selected as lower tetrachords. The propriety

limits for the upper companion tetrachords were then computed. These

results are shown in 5-82.

Points in the interiors of the regions yield strictly proper scales, while

those on the peripheries produce scales that are merely proper. The neo­

chromatic tetrachord has only a one-dimensional solution space; the up­

permost point corresponds to a mode of the harmonic minor scale.

Similar calculationswere performed for an additional 23 tetrachords and

the results are tabulated in 5-83. In agreement with previous results (5-74

and 5-78), no proper scalescould be formed from lower tetrachords whose

first intervals were microtones.

c=(J-b
5°0

c=(J-b
500

5-80. Absolutepropriety limitsfOI" knner
tetracbords.

C

o
(J

500
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5-8I. Absolutepropriety limitsfor upper
tetrofbol"ds.

C

o
a

500



Work of other investigators

Several other investigators have independently developed descriptors

functionallyidentical to Rothenberg's strict propriety. Gerald Balzano has

used the notion of "coherence" in his work on microtonal analogs of the

diatonic scalein rz-tone equal temperament (Balzano 1980). Though not

tetrachordal, Balzano's scales are homologous to the tritriadic scales dis­

cussed in chapter 7. Ervin Wilson (personal communication) has applied

the term constant structure to scalesin which each instance of a given interval

subtends the same number of subintervals, but not necessarily subintervals

of the same magnitude or order. This property is also equivalent to

propriety.

Upper tetrachords may also be chosen and lower companion ranges

subsequently calculated to yield scales that are the intervallic retrogrades

or octaveinversions of those above.

A number of interesting conclusions may be drawn from these data.

Proper heptatonic tetrachordal scales containing microtones are only pos­

sible under certain conditions. The microtonal intervals may be present in

either the upper or lower tetrachord provided they are not in the extreme

positions, i.e., not intervals a or 5oo-c-d.
Proper hexatonicscalesalsoexistwhen tetrachordal intervals bor d equal

zero and a and care 250 cents. These scales may be analysed as containing

a tetrachord, a disjunctive tone, and a trichord. .

The tetrachordal genera which appear as vertices of the propriety re­

gions are of great interest. In particular, the equal division 166.667 +
166.667 + 166.667 accepts as upper companions both chromatic and im­

proper diatonic genera, including some with subcommatic intervals. Other

new tetra chords occurring as vertices are the improper diatonic genera

33-333 + 233.333 + 233-333; this is very close to Al-Farabi's 49/48 .8/7 . 8/

7, and 50 + 250 + 200, which is approximated rather well by 40/39' 52/45 .

9/8.

30 0

-I:l

~

§
INTERVALIZ 30 0

30 0

-I:l

~

§
INTERVALIZ 30 0

30 0

-I:l

I
INTERVALIZ 30 0

30 0

-I:l -.I
INTERVALIZ 30 0

5-81. Proprittyrtmgesftrupptrcompankmtetra­
churd!: limitsftrthe tetrllChord! (IZ) IOO +200 +200

cents, (b) 200 + IOO +200 cents, (q 200 +200 + IOO

cents, (tQ IOO +300 + I 00 cents..
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5-83' Proper mixedtetracbordscales, in cents. These
tetratbords can combine withadisjunctive tone and
any tetracbordin theregion defined by thevertices to

yieldproper orstrictlyproperscales. Theretrogrades
of these tetracbords can also serve astheuppertetra­

chords ofproperscales. Thethirdintervalofeach tet­

racbordmay befoundby subtracting thesum ofthe
two tabulated intervalsfrom roo cents. Theneo­

chromatic tetracbordnumber4 istheupper tetra­
chordoftheharmonic minormode. Itsregion ofpro­
prietyisreduced toalineratherthananareain the
tetracbordalintervalplane. Temubords II, 12, and

26 cannotformproperscales withanyupper
tetracbord.

LOWER. TETRACHORD

I. 100200200
2. 200100200

3· 200200100

4· 100 3°0100

5· 10015° 250
6. 10025° 150

7· 150 10025°
8. 150 250 100

9· 250 100 150
10. 250 150 100
II. 50 250 200
12. 5°20025°
13· 20°5° 250
14· 20025° 50

15· 25°5° 200
16. 250 200 50

17· 12512 5 25°
18. 125 25° 125
19· 25° 125 125
20. 15°15°200
21. 150 200 150

22. 20015° 150

23· 100275 125
24-. 125275100

25· 233033 233.33 33·33
26. 3J.33 233·33 233-33
27· 166.7166.7166.7

VERTICES

5°,200;50,25°; 200,200; 200, 50
100,15°; 100,3°0; 200, 200j 200,50

100,200; 100,300i 250,15°; 25°,5°
100, 200; 200, 100

5°,25°,5°,20°; 150,150; 150, 100
100,15°; 100,25°;200, 150; 200,5°

50,200; 50,250; 150, 150; 150, 100

100,275; 100,200; 15°,25°; 225, 175; 225,75

15°,150; 15°,25°; 250, 150;25°,50

15°,150; 15°,250; 250, 15°;25°,5°
NO PROPER SCALES

NO PROPER SCALES

100, 150; 100, 200; 150, 150; 150, 100
200,15°; 200,200; 250, 150; 250, 100
150,15°; 150,250; 200,200j200, 100

200,15°;200,200; 250,15°; 250, 100

5°,200; 50,25°; 150, 150; 150, 100
87'5, 187.5; 87.5, 287.5; 212.5, 162.5; 212,5,62,5

150,15°; 15°,25°;25°, 15°;25°,50
50,200;50,250;200,200; 200,50

75,175; 75, 225; 83,3, 283.3; 150,250; 225, 175;
225,25
100, 150j 100,300; 250, 150j 250,0

87.5, 187,5; 87·5, 237·5; 200, 125; 200, 75
100,175; 100,25°; 212.5, 137.5; 212·5,62·5
233.33, 133.33; 233,33, 166.67
NO PROPER SCALES

66.67,183'33; 66.67,266.67; 88.89,288.89;

133.33,266.67; 233.33, 166.67; 23J.33, 16.67
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6 Scales, modes, and systems

THE FORMATION OF heptatonic scales from tetrachords was mentioned

briefly in chapters I and 5. In the present chapter, scale construction will

be examined at greater length-in particular, the formation of non­

traditional and non-heptatonic scales from tetrachordal modules. Before

introducing this new material, however, a brief review of the salient features

of the Greek theoretical system is necessary as an introduction to scale

construction.

The hierarchy of scalar formations

The ancient Greek theorists recognized a hierarchy of increasingly large

scalar formations: tetrachord, pentachord, hexachord, heptachord, oc­

tachord, and system. The canonical forms of each of these scalar formations

may be seen in o-r. The smaller formations were finally absorbed into the

Perfect Immutable System which with its fifteen pitch keys or tonoi was the

highest structural level of the Greek theoretical doctrine. As the tetra­

chordal level has been introduced in earlier chapters, the discussion will

focus on the pentachord and larger structures. '

The pentachord

Pentachords may be considered as tetrachords with disjunctive tones added

at either extremity. They divide the perfect fifth into four subintervals and

occur in several forms in the various modes of heptatonic scales. The two

forms of greatest theoretical importance are described in 6-1. 'While of rel­

atively minor musical prominence, the pentachord has considerable ped­

agogicalvalue in explaining how certain tunings and scales may have arisen.
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6-1. Thehierarcby ofscalarfim1tlJtions. The

tetrachord11tIJy heanyofthethose listed in chapter9.
Theintervalofequivalence isthe#3. Thetwo
canonicalforms ofthepentllchordaregiven. Other

forms occur inthevariouS11wdes ofbeptatoni« scales
ofdifferentgenera and11tIJy havethe918
interpolatedbetween thetetrachordill intervals.

With theaddition oftheoctave 2II, theheptachord
becomes theMixolydian mode ofthecomplete

beptatonicoroaacborda!scale. Ifthe 819 isadded

belo'W the III thesCille becomes theHypodorian mode

transposed downwards bya whole tone(g18). The

nexthighest structural levelisthatofasystem which

containsalltheluwer ones. Theoctacbord isthe
heptatonic Dorian mode.

For example, Archytas's complex septimal tuning system can be best

understood by considering not just the three species of tetrachord, but the

pentachords formed with the note a whole tone below. These would be the

note hyperhypate for the meson tetrachord and mese for the diezeugmenon

(Wmnington-Ingram 1932; Erickson 1965). By the use of the harmonic

mean between hyperhypate (8/9) and mese (4/3), Archytas defined his en­

harmonic lichanos as 16hS. His tuning for the note parhypate (28127) in

all three genera was placed as the arithmetic mean between the 8/9 and

32127, the diatonic lichanos, This construction may be seen in 6-2.

The notes D F G and A form the harmonic series 6:7:8:9 and the notes

D QI,A a minor triad, 10:12:15. The 7/6 which the hyperhypate (D) makes

with parhypate (F) is found in all three of his genera and is duplicated a

fifth higher between mese (A) and trite (C). This interval was very im­

portant in Greek theory and had its own name, ekbole (Steinmayer 1985).

It occurs in the Dorian harmonia shown in 6-4 and in the fragments of

surviving Greek music.

As this interval has the value of 7/6 only in Archytas's tunings and those

others of the 7/6 pentachordal family (chapter 4), it is interesting to con­

sider analogous pentachords with the 28127 replaced by other intervals.

6-2 also depicts such a system, employing a more Aristoxenian r/q-tone

interval, 40/39, which was used by the theorists Eratosthenes, Avicenna,

and Barbour in their genera (See the Main Catalog and 4-3). This system

has a number of interesting harmonic and melodic intervals and could be

played very well in 24-tone equal temperament.

Miscellaneous pentachordal structures

According to Xenakis, chains of conjunct tetrachords and pentachords

(troches) are used in the liturgical music of the Greek Orthodox church

FORM NOTES

TETRACHORD III a b 4/3
PENTACHORD I: III a b 4/3 3/2

1: 8/9 III a b 4/3

HEXACRORD I: III a b 4/3 3/2 3b/2

1: III a b 4/3 3/2 3a/1

HEPTACHORD III II b 413 411/3 ¥13 1619

OCTACRORD III a b 4/3 311 3a/1 3b/2 11I
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6·2. Pentacbordal systems.

ARCHYTAS'S SYSTEM

D E F GU. Gj, G A

8/9 III 2812 7 I6!IS 9/8 32127 4/3

6/S S/4

7/6 9/7

7/6 8/7

4°/39 SYSTEM

D E F GU. Gj, G A

8/9 Ih 40/39 16/IS 10/9 p h 7 4/3

6/5 S/4

ISh3 13/10

S/4 6/5

ISh3 52/45

(Xenakis 1971, and chapters 2 and 5). These chains exhibit cyclic per­

mutation of their constituent intervals. Most importantly, they are ex­

amples of those rare musical systems in which the octave is not the modulus

or interval of equivalence.

Additionally, more traditional heptatonic modes (echoi), some ofwhich

appear to have genetic continuity with classic Greek theory, ifnot practice,

are employed. These may be analyzed either as composed of two tetra­

chords or as as combinations of tetrachord and pentachords. A number of

tetrachords from these modes are listed in the Catalogs.

Some irregular species of Greek and Islamic origin are also listed in

chapter 8 along with Kathleen Schlesinger's harmoniai to which they bear

some resemblance. These divide the fourth into four parts and the fifth into

five. The Greek forms are merely didactic patterns taken from Aristoxenos

and interpreted by Kathleen Schlesinger as support for her theories, while

the Islamic scales were apparently modes used in actual music. 8- or o-rone

pseudo-tetrachordal octave scales may be formed by combining these with

appropriate fifths or fourths.

The hexachord, heptachord, and gapped scales

The hexachord and heptachord generally appear as transitional forms be­

tween the single tetrachord and the complete heptatonic scale or oc­

tachord. The hexachord appears as a stage in the evolution of the

enharmonic genus from a semitonal pentatonic scale similar to that of the

modernJapanese koto to the complete heptatonic octave. This 5-note scale

is often called the enharmonic of Olympos (6-3) after the legendary musi­

cian who was credited with its discovery by Plutarch (perrett 1926). This

and other pentatonic scales may be construed as two trichords combined

with a whole tone to complete the octave. The two intervals of the trichord

may be a semi tone with a major third, a whole tone with a minor third, or

any other combination of two intervals whose sum equals a perfect

fourth.

At some point the semi tone in the lower trichord was divided into two

dieses. This produced the spondeion or libation mode which consisted of

a lower enharmonic tetrachord combined by disjunction with an upper

trichord consisting of a sernitone and a major third (6-3). This hexachord

or hexatonic scale evolved into the spondeiakos or spondeiazon tropos.

Eventually the semitone in the upper trichord was also split and a hep-
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6-3' Gapped orirregular scales. The notation used
here reproduces that oftherefermces. The plussign
indicates a tone t/s-tone higherthan normal.
Unless otherwise noted, noparticular tuning is

assumed, buteitherPythagorean orArchytas's
supplemented asrequired with undecimalratios
would beIlppropriate historically,

Pentatonic forms
ENHARMONIC OF OLYMPOS

e f abc (e')

SPONDEION (WINNINGTON-INGRAM 1928)
e f a b c+ or e f+ a b c+

III I1III 4/3 3/1 IS/II (2h)

SPONDEION (HENDERSON 1942)
fa b d# e+ore e+ fa b

SPONDEION (MOtlNTFORD 1923)
IIr 28127 4/3 312 r8/II (111)

Hexatonic forms
SPONDEIAKOS or SPONDEIAZON TROPOS

(WINNINGTON-INGRAM 1928)
e e+ f abc

with b+ d' & c' in theaccompaniment
DIATONIC OF WElL II: REINACH

(WINNINGTON-INGRAM 1928)
efgabd

with hi. c & e' in theaccompaniment

GAPPED SCALE OF TERPANDER II: NICOMACHOS

(HELMHOLTZ 1877, 266)

e f gab d (e')

DIATONIC OF GREIF

(WINNINGTON-INGRAM I92S)
d e f a b, c# (d')

SCHLESINGER (1939,183)
III r r/ro II/9 II/S II/7 1/6 (21r)

Heptatonic form

CONJUNCT HEPTACHORD

cfgab,cd

tatonic scale in the enharmonic genus resulted. This transformation may

have been completed about the time ofPlato, who writes as if he distrusted

these innovations. In later times, the ancient pentatonic and hexatonic

melodic patterns were retained in compositions for voice and accompani­

ment (Winnington-Ingram 1936).

In principle, a hexachord can be obtained from a heptatonic scale in four

ways by omitting one tone in either tetrachord, 6-3 lists the versions found

in the literature. In these cases, the omitted note is the sixth degree, though

the second version which lacks the seventh instead is a plausible inter­

pretation in some cases. Schlesinger's version is based on her theories which

are described in detail in chapter 8.

Some controversy, however, exists in the literature about the tuning of

these early gapped or transilient scales. The arguments over the relative

merits of enharmonic or diatonic tunings were discussed by Winnington­

Ingram (1928) whose scales and notation are reproduced in 6-3. Notable

are his and Mountford's undecimal or II-limit tunings for the pentatonic

forms. Winnington-Ingram's un decimal neutral third pentatonic could be

the progenitor of the hemiolic chromatic genus (75 + 75 + 350 cents) and

diatonics similar to the equable diatonic such as IS0 + IS0 + 200 cents.

Henderson (1942.) has also offered two quite different non-standard in­

terpretations of the enharmonic pentatonic based on etymological

considerations.

The hypothetical diatonic versions of these scales according to the

suggestions of several scholars are listed in this table as well. Weil and

Reinach provide a conventional diatonic form (Winnington-Ingram 1928).

The version of Greif appears to be derived from the Lesser Perfect or

Conjunct System with the addition ofa tone below the tonic as seen in the

Dorian harmonia of 6-4 (ibid.), It should be compared with the ancient

non-octaval heptachord which may also be formally derived from the

conjunct system (6-1).

The medieval diatonic hexachord of Guido D'Arezzo, c d e f g a c', may

be included with these scales too, although it is much later in time. In just

intonation, it is usually considered to have the ratios IIr 9/8 5/44/3 312

5/3, derived from the Lydian mode of Ptolemy's syntonic diatonic instead

of the Pythagorean III 9/8 81/644/3 312 271r6. In the septimal diatonic

tuning of Archytas it would have the ratios r/r 8/7 9/7 4/3 3212 I 17./7'

98 CHAPTER 6

F



6-4' The oldest barmoniai in three genera.

Dorian
ENHARMONIC d e f- gil. a b c- d'l.Io e'

CHROMATIC de f g, abc d', e'

DIATONIC defgabcd'e'

Phrygian
ENHARMONIC de f- gil.a b c- d'l.Io d'

CHROMATIC de f g,abc d', d'
DIATONIC de f gab c d'

Lydian
ENHARMONIC f- gil> a b c- d'l.Io e' f-'

CHROMATIC f g, abc d', e' f'
DIATONIC f gab c d' e' F

Mixolydian
ENHARMONIC B c- dI.Io d e f- gil.b

CHROMATIC B c c4 d e f g, b
DIATONIC Bcd e f (g) (a) b

Syntonolydian
ENHARMONIC B C- dI.Io e g

CHROMATIC B C d;e g

DIATONIC C d e f g

2ND DIATONIC BCd e g

Ionian (lastian)
ENHARMONIC B C- dI.Io ega

CHROMATIC B C d~ ega
DIATONIC c e f g a

2ND DIATONIC Bed ega

The octachord or complete heptatonic scale

The union of a tetrachord and a pentachord creates an octachord or com­

plete heptatonic scale. There is evidence, however, that initially two di­

atonic tetrachords were combined by conjunction, with a shared note

between them, to form a 7-note scale less than an octave in span (6-1). The

later addition of a whole tone at the top, bottom, or middle separating the

two tetrachords, completed the octave gamut. Traces of this early hep­

tachord may be seen in the construction of the Lesser Perfect System and

in the irregular scales of 6-3 and 6-4.

Similarly, two enharmonic tetra chords were joined by disjunction with

the 9/8 tone between them to create the Dorian harmonia to which a lower

tone was added (6-4). An alternative genesis would connect two pen­

tachords whose extra tones were at their bases to produce the o-tone

Dorian harmonia to which other tones might accrete, By analogy, both the

enharmonic and diatonic proto-scales converged to the same multi-octave

structures later called by the name of system. In the fifth century BeE the

wide ditone or major third of the enharmonic genus was gradually nar­

rowed to a minor or subminor third by a process termed "sweetening."

Eventually, this process resulted in the chromatic genus which was raised

to the same status as the diatonic and enharmonic genera.

The Greater and Lesser Perfect Systems

However the early evolution of the Greek musical system actually oc­

curred, the result came to be schematized as the Perfect Inunutable System.

Its construction was as follows: two identical tetrachords of any genus and

a disjunctive tone (9/8) formed a central heptatonic scale which became the

core of the system. Another identical tetrachord was then added by con­

junction at both ends ofthe scale and disjunctive tone was patched on at the

bottom of the whole array. A fifth tetrachord, synemmenon, was inserted

conjunctly into the middle of the system to recall the ancient heptachord

and to facilitate commonly occurring modulations at the fourth. This su­

pernumerary tetrachord was also a useful pedagogical device to illustrate

unusual intervals (Erickson 1965; Steinmayer 1985).

The final results consisted of sets of five tetrachords linked by conjunc­

tion and disjunction into arrays of fifteen notes spanning two octaves.

These systems, in turn, could be transposed into numerous pitch keys or

tonoi, at intervals roughly a semitone apart according to the later authors.
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The subset of four alternately conjunct and disjunct tetrachords (hypa­

ton, meson, diezeugmenon, and hyperbolaion) was termed the greater

perfect (or complete) system (mvO"'tEj.l.<X 'tEA£WV j..l£t~ov). The three conjunct

tetrachords (hypaton, meson, and synemmenon), was called the Lesser

Perfect (or Complete) System (mvO"'tT1j.l.<X 'tE1.£tOV £A.<xnov or EN:xO"O"OV). Their

union was called variously the Changeless System or the Perfect Immutable

System (cruO"'tT1~1:£A.etaV <Xj..l£'t<X~OA.ov) by different authors.

The Perfect Immutable System

By the fourth century BeE, the Greek theorists had analyzed the scales or

hannoniai oftheir music into sections of this theoretical two octave gamut.

This 15-note span is conventionally transcribed into our notation as lying

between A and a'. The Perfect Immutable System could be tuned to each

of the three genera, and while in theory all five of the tetrachords must be
the same, in practice mixed tetrachords and considerable chromaticism

occurred. Not only was the diatonic lichanos meson (D in the Dorian or

E mode) added, but other extrascalar notes led to successions of more than

two semitones (Winnington-Ingram 1936).

6-5 depicts the Perfect Immutable System in its theoretical form and in

its two most historically important intonations.

The fixed notes (hestotes) of the Perfect Immutable System were

proslambanomenos, hypate hypaton, hypate meson, mese, paramese, nete

diezeugmenon, nete hyperbolaion, and nete synemmon. The moveable

tones (nvoopevoi) were the parhypatai, the lichanoi, the tritai, and the

paranetai of each genus.

Lichanos hypaton, also called hyperhypate, a diatonic note a whole tone

(9/8 in Archytas's and most other just tunings) below the tonic, was added

to the Dorian octave species in the chromatic and enharmonic genera in the

harmoniai of Aristides Quintilianus, certain planetary scales, and the Eu­

ripides fragment (ibid.).

Erickson (1965) and Vogel (1963,1975) have shown that a number of

interesting tetrachords occur in the region where the synemmenon tetra­

chord overlaps with the diezeugmenon tetrachord in Archytas's system.

These include the later and historically important I6/I 5 . 9/8 . 10/9 (ptol­

emy's syntonic diatonic), 16/I5' 10/9' 9/8 (Didymos's diatonic), the three

permutations of the Pythagorean diatonic, 2561243 . 9/8 . 9/8, (90 + 204 +

204 cents), the Pythagorean chromatic 32/27.218712°48. 2561243 (294 +
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6-5. ThePerfect Immutable System in thediatonic,
chromatic, andenharmonicgenera, tunedaccording

toArtbytas': andPythagorean tuning.The
transcription isin thenaturalkeytoavoidacadentals

andthemistaken lateshiftofemphasisfrom Dorian
toHypo/ydian (Henderson 1957). The-andJl,
indicate thatthese aredifferent pitches in the
enharmonicgenus. Erickson (1965) proposes 6.,145
asanalternative tuningfortritesynemmenon.

1I4+ 90 cents), and Avicenna's chromatic 7/6. 36/35 ' 10/9 (167 +49 + 181

cents). Some unusual divisions such as 18h7 .81/70' 10/9 (63 + 253 + 181

cents), 18h7' 118711791 . 156/143 (63 + 345 + 90 cents), 16!IS' 3S/32 ' 8/7

(112+ 155+ 1JI cents), 16115' 12 I 511014' 256/243 (111 + 296 + 90 cents),

7/6 . 81/80 . 9/8 (267 + 11 + 204 cents), 31/17 . 81/80· 1019(194 + 21 + 181

cents), 18h7·64/63 .81/64(63 +12 +408 cents), 615 "135/118,1561243 (316

+92+ 90 cents), and :1561243.81/8°' 514(90+ 11 +386 cents) are alsofound

here. Notable are the intervals of 253 cents, another possible tuning for the

ekbole, the neutral third of 345 cents, the three-quarter tone 35/32 (155

cents), and the minor whole tone 10/9.

The alternate tunings I 6/r 5 and 28/1 7 for the first interval of the syn­
emmenon tetrachord may have been used in order to obtain the spon­

deiasmos, an interval of three dieses approximating 150 cents, mentioned

by Bacchios (Steinmayer 1985; Winnington-Ingram 1932).These intervals

would measure 35/31(155 cents) as the difference between 14/9 and 64/45,

or 243/114 (141 cents) as the difference between I I 1/81 and 311.The in-

TRANSCRIPTION ARCHYfAS PITHAGOREAN

DIA. CHR. ENH. DIA. CHR. ENH. DIA. CHR. ENH.

PROSLAMBANOMENOS A A A 2/3 2/3 2/3 2/3 2/3 2/3

HYPATE HYPATON B B B 3/4 3/4 3/4 3/4 3/4 3/4

PARHYPATE HYPATON C C c- 7/9 7/9 7/9 64/81 64/81 384/499

L1CHANOS HYPATON D D, Di!o 8/9 27/32 4/S 8/9 27/31 64/81

HYPATE MESON E E E III III III III III III

PARHYPATE MESON F F F- 28127 28/27 28/27 2S6h43 2S6/243 SIl/499

LlCHANOS MESON G ~ G!I. ]2 127 9/8 I6IIS p h 7 9/8 256/143

MESE a a a 4/3 4/] 4/3 4/3 4/3 4/3

PARAMESE b b b 3/z ]/2 312 3/2 3/2 3/2

TRITE D1EZEUGMENON C C c- 14/9 14/9 14/9 n8/81 Il8/8I 768/499

PARANETE DIEZEUGMENON d ~ ~ 16/9 2711 6 8/S 16/9 271I6 IlS/8I

NETE DIEZEUGMENON e e e 211 2II 2II 2II 21I 21I

TRITE HYPERBOLAION f f f- 56/27 56127 56127 5n h43 5Ilh43 1024/499

PARANETE HVPERBOLAION g glo glj. 64/27 9/4 phS 64h7 9/4 SIlh43

NETE HYPERBOLAION a
,

a' a' 8/3 8/3 8/3 8/3 8/3 8/3

TRITE SYNEMMENON (28h7) b, b, b,- I n/8I I n/8I I n/8I 1024/729 1024/729 204BII497

PARANETE SYNEMMENON C q. ~ 128/81 3/z 64/45 u8/8I 312 1024/729

NETE SYNEMMENON d d D 16/9 1619 16/9 16/9 16/9 1619
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6-6. Scales in CO'11tf1l(m use according toPtolemy. In
the text, thenamesofthetunings arealwaysgivenin
pluralform. (I), nottheditonic orPythagorean, ap­
pears tohave been the standarddiatonic. On theki­
tbara, inthe Hypodorian mode itwascalled tritai;in
the Phrygian, hypenropa. (2a) isgivenin twoforms
indifferentplaces intheHarmonics,' theintense
chromatic (I:84),where it ismistranslatedas"di­
atonic chromatic,"andthe soft chromatic (2:208).
The tables (2:178) use theintense chromatic; thesoft
chromaticfitsthesense ofthename better. Ontheki­
thara, (2b) in theHypodorian mOM iscalled tropoi
ortropikoi. In theDorian mode onthekitbara, (J) is
calledparypatai. (4) isintheHypophrygian mode.
(5), intheDorian mode, isgiven variouslyaseither
pure tonic diatonic oramixture oftonic diatonic and
intenseandisalso referredtoIlSmetaholika. (6) is
fromAvicenna (D'Erlanger 1935,2:239), who
sometimes approximatedcomplex ratios like72/65
with superparticulars ofsimilar magnituM such as
n/z1, buttheexaaratio isclearfrom thecontext.

312. The interval of three dieses also appears in Archytas's chromatic as the

difference between the 28127 and the 9/8. In many cases the scales con­

taining these tetrachords would be mixed, but deliberately mixed scales

were not unknown. 6-6 lists some varieties of mixed scales recorded by

Ptolemy in the second century CEo

The scales actually employed in Greek music are a matter of some

confusion because of the paucity of extant musical examples and the variety

of theoretical works from different traditions written over a period ofsev­

eral centuries (fourth century BCE to fourth century CE). In the theoretical

treatises, the seven octave species or circular permutations of the basic

heptatonic scale are singled out and given names derived from early tribal

groups. These scales are notated in all three genera in 6-7. Their intervals

and notes are in shown in ratios for both Archytas's and Pythagorean tuning

in 6-8 and 6-9. 6-ro gives the diatonic form in Ptolemy's syntonic diatonic

(I6!IS' 9/8.10/9), and 6-11 gives the retrograde of this genus (10/9' 9/8.

I6IrS). The Lydian mode in the former tuning is the standard just in­

tonation of the major scale, and the latter is that of the natural minor mode

(see chapter 7).

For the Pythagorean tuning of the enharmonic, I have used Boethius's

much later arithmetic division of the pyknon, as the actual tuning prior to

Archytas is not known. Since the division of the semitone in both tetra-

I. STERM, A LYRA TUNING: TONIC DIATONIC

IIr 28127 ph7 4/3 312 14/9 16/9 zlI

2. MALAKA, A LYRA TUNING: SOFT OR INTENSE CHROMATIC AND TONIC DIATONIC

A. rII 28127 10/9 4/3 312 14/9 r6/9 2II
B. rii 2212 I 8/7 4/3 312 r4/9 r6/9 zlr

3. METABOLlICA, ANOTHER LYRATUNING: SOFT DIATONIC AND TONIC DIATONIC

III zrho 7/6 4/3 312 r4/9 16/9 2II

4. IASTI-AIOLlICA, A KITHARA TUNING: TONIC DIATONIC AND DITONIC DIATONIC

IIr 28127 32127 4/3 312 27II6 r6/9 2II

5. IASTIA OR LYDIA, KITHARA TUNINGS; INTENSE DIATONIC AND TONIC DIATONIC

rii 28127 32127 4/3 312 8/5 9/5 2II

6. A MEDIEVAL ISLAMIC SCALE OF ZALZAL FOR COMPARISON

u: 9/8 8r/64 4/3 40127 130/8r r6/9 2II
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6-7. The octaue species in all threegenera. The

traditionalnamesan givenfirst and alternate ones

subsequently. The Hypermixolydian wasdenounced

by Ptolemyas otiose and by the cityofArgos as

illegal(Wi7l11ington-Ingt'am 1936). This
transcription uses thenatural keyfor clarity. Late

theorists mistakenlybuilt thesystem and notation

about the F mode (Hypolydian) rather than the

correct E mode (Dorian) (Henderson 19)7).

Although the Dorian, Phrygian, and Lydian modes

have distinctiue tetrachordal forms, these forms

urere never namedafter theirparent modesbyany
of the Greek theorists. In the chromatic and

enharmonic genera the tonics of the species are

transformed. An altematiuenomenclature for the

enharmonic tetracbord isE E+FA. The mese kata

thesin isfour scale degrees above the tonicwith

whichit usually makesan intervalof a perfea

fourth.

chords was completed only near end of the fourth century BCE, the division

may not have been standardized and was most likely done by ear during the

course of the melody (Winnington-Ingram 1928), in which case the ap­

proximate equality of the dieses in Boethius's tuning probably captures the

flavor of the scale adequately. Euler's eighteenth-century tuning (Euler

[1739] 1960, and Catalog number 79) is similar and considerably simpler.

An impractical, ifpurely Pythagorean, solution (number 81) as well as some

other approximations are given in the Main Catalog.

Although these scales are analogous to the "white key" modes, the latter

are named out oforder due to a misunderstanding in early medieval times.

TONIC NAME MESE

Diatonic
(A HYPERMIXOLYDIAN, HYPERPHRYGIAN, LOCRlAN D)
B MIXOLYDIAN, HYPERDORIAN E
C LYDIAN F
D PHRYGIAN G
E DORIAN a

F HYPOLYDIAN b
G HYPOPHRYGIAN, IONIAN C

a HYPODORIAN, AEOLIAN d

Chromatic
(A HYPERMIXOLYDIAN, HYPERPHRYGIAN, LOCRIAN 0.)

B MIXOLYDIAN, HYPERDORlAN E

C LYDIAN F
D, PHRYGIAN ~

E DORIAN a

F HYPOLYDlAN b

Q HYPOPHRYGIAN, IONIAN C

a HYPODORIAN, AEOLIAN DB

Enhannonic
(A HYPERMIXOLYDIAN, HYPERPHRYGIAN, LOCRIAN ~)

B MIXOLYDlAN,HYPERDORIAN E
C- LYDIAN F-

~ PHRYGIAN 0.
E DORIAN a

F- HYPOLYDIAN b

0. HYPOPHRYGIAN, IONIAN c-

a HYPODORlAN, AEOLIAN di4
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1/1

Diatonic (~8!z7 • 8/7 . 918)

MIXOLYDIAN (B - b)

III 28/27 32/27 4/3 I12/S1 12S/S1 16/9 2/1

28/27 . 8/7 . 9/S . 28/27 . 8/7 9/8. 9/8

LYDIAN (C - C)

III S/7 9/7 4/3 32/21 1217 27114 211
8/7 9/8. 28127 • S/7 . 9/8 . 9/8 . 28/27

PHRYGIAN (D - d)

III 9/S 7/6 4/3 3/2 2711 6 7/4 211
9/8 . 28/27 . S/7 . 9/8 . 9/8 . 28/27 . 8/7

DORIAN (E - e)

III 2S/27 32127 4/3 3/2 4/9 16/9 211
28/27 8/7' 9/8 . 9/S . 28/27 8/7' 9/8

HVPOLYDIAN (F - f)

III 8/7 9/7 81/56 3/2 12/7 27114 211
8/7 9/8. 9/8 . 28/27 . 8/7 . 9/8 . 28/27

HYPOPHRYGIAN (G - g)

III 9/8 81/64 21116 312 27116 7/4 211
9/8 9/8. 28127 • 8/7 . 9/8 . 28127 . 8/7

HYPODORIAN (A - a)

7/6 4/3 3/2 14/9
28127 . 8/7 . 9/8 . 28/27

Chromatic (z8/z7 • z43/zz4 . 3Z!z7)

MIXOLYDIAN (B - b)

III 28/27 9/8 4/3 112/81 3/2 1619 211

28/27 . 243/224 . 31/27 . 28/27 . 24312 24 . 32/27 . 9/8

LYDIAN (C - c)

III 2431224 917 4/3 81/56 12/7 27114 211
2431224' 32127 . 28127 . 243/224 . 32/27 . 9/8 . 28/27

PHRYGIAN (D\ - ~)

III 31/27 896/729 4/3 128/81 1619 4481243 211
32/27' 28/27 . 243/224 . 32127' 9/8 . 28127'243/224

DORIAN (E-e)

III 28/27 9/8 4/3 312 14/9 27116 211
28/27' 243/224' 32127 . 9/8 . 28/27' 243/224' 32127

HYPOLYDIAN (F - f)

III 243/224 9/7 81/56 3/2 729/448 27114 211
2431224' 32127' 9/8 '28127' 243/224' 32/27' 28/27

HYPOPHRYGIAN (Q. - gJ,)

III 32127 4/3 112/81 3/2 16/9 448/243 211

32/27' 9/8' 28/27' 243/224' 32127' 28/27' 243/224

HYPODORIAN

III 9/8 7/6 81/64 312 14/9 27116 211
9/8. 28127 . 243/224' 32127' 28/27' 243/224' 32127

Enharmonic (~8/z7' 36/35' . 5/4)
MIXOLYDIAN (B - b)

1/1 28127 16115 4/3 112/81 64/45 16/9 2/1

28/27 . 36/35 . 5/4 . 28/27 . 36/35 5/4' 9/ 8

LYDIAN (C- - C-)

III 36/35 9/7 4/3 48/35 12/7 27114 211
36/35 . 5/4 . 28127 • 36/35 . 5/4 . 9/8 . 2SI27

PHRYGIAN (D\I. - d\!.)
III 5/4 35/27 4/3 5/3 15/8 35118 211

5/4 . 28/27 . 36/35 . 5/4 . 9/8 . 28/27 . 36/35

DORIAN (E - e)

III 28/27 16115 4/3 312 14/9 8/5 211
28127 . 36/35 . 5/4 . 9/8 . 28127 . 36/35 . 5/4

HYPOLYDIAN (F- - f-)

III 36/35 9/7 81/56 312 54/35 27114 211
36/35 . 5/4 . 9/8 . 28127 . 36/35 . 5/4 . 28127

HYPOPHRYGIAN (GIl. - gw,)

III 5/4 45/32 35/24 3/2 15/8 35118 2/1

5/4 . 9/8 . 28127 • 36/35 . 5/4 . 28127 . 36/35

HYPODORIAN (A - a)

1/1 9/8 7/6 6/5 3/2 14/9 8/5 2/1

9/8 . 28/27 . 36/35 . 5/4 . 28/27 . 36/35 . 5/4

+

6-8. The intervals oftheoctave species in all three genera inArchytas's tuning.
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6-9. The intervals of the octave species in Pythagorean tuning. The tuningofthepre­
Arcbytas enharmonic isnotknoum, butatfirst it hadundivided semitones, obtaining the
pykn(m later.Boethius's tuningisused here.

Diatonic (2561243' 9"8 •9"8)

MrXOLYDlAN (B- b)

III 256/243 32/27 4/3 1024/729 128/81 16/9 2II

2561243 9/8. 9/8 . 2561243 . 9/8 . 9/8 . 9/8

LYDlAN (C -c)

III 9/8 8r/64 4/3 3/2 27/r6 243/128 2/r

9/8 . 9/8 . 256/243 . 9/8 . 9/8 . 9/8 . 2561243

PHRYGlAN(D-d)

III 9/8 P/27 4/3 3/2 271r6 r6/9 2/r

9/8 . 256/243 . 9/8 . 9/8 . 9/8 . 256/243 . 9/8

DORlAN (E-e)

1/1 2561243 32127 4/3 312 128/81 16/9 2/r

256/243 . 9/8 . 9/8 . 9/8 . 256/243 9/8. 9/8

HYPOLYDlAN (F - t)

1/1 9/8 81/64 729/512 312 27/16 243/128 2II

9/8 . 9/8 . 9/ 8 . 2561243 . 9/8 . 9/8 . 256/243

HYPOPHRYGlAN (G - g)

rlr 9/8 81/64 4/3 312 27lr6 r6/9 2/r

9/8 . 9/8 . 2561243 . 9/8 ' 9/8 ' 2561243 . 9/8

HYFODORlAN (A- a)

IIr 9/8 ph7 4/3 312 u8/8r 16/9 211

9/8 . 2561243 . 9/8 . 9/8 ' 2561243 . 9/8 . 9/8

Chromatic (256 . n8712028. 32127)

MIXOLYDlAN en-b)

rlr 2561243 9/8 4/3 1024/729 312 16/9 2/1

2561243' 218712048. 31127'2561243'218712048. 32127' 9/ 8

LYDlAN (C - c)

1/1 2187/2048 8r/64 4/3 729/512 27/r6 243/128 2/r

218712°48. 32127 . 2561243 . 218712048 . 31127 . 9/8. 256/243

PHRYGlAN(~-~)

IIr 32127 8r9216561 4/3 128/81 16/9 409611187 211

31/27' 2561143' 218712°48. P 127' 9/8. 256/243' 218712048

DORIAN (E-e)

III 256/243 9/8 4/3 3/2 u8/81 27II6 21r

2561243'218711048. P 117 ' 9/8. 2561143 . 218711°48 . p h 7

HYPOLYDlAN (F - f)

III 218712048 81/64 729/512 3h 6561/4°96 243/u8 2/r

218711°48. 31117 . 9/8.2561143' 2187/2048 . 31/27'2561143

HYPOPHRYGlAN (Q- gI.)

III ph7 4/3 729/512 311 16/9 409612187 2/1

32117' 9/8.2561243.218711048, P 127 ' 2561143'218711048

HYPODORlAN(A-a)

IIr 9/8 32/27 81/64 312 128/81 27lr6 21r

9/8. 2561243'218712°48. P 127' 2561243.218711°48. P 127

Enhannonic (s12/499' 499"486.81/64)

MIXOLYDlAN (B- b)

1/1 5u/499 2561243 4/3 2048/r497 1024/729 16/9 2/1

512/499 . 499/486 . 81/64 . 512/499 . 499/486 . 81/64 . 9/8

LYDlAN(C--c-)

1/1 499/486 499/384 4/3 99 8/7 29 4991288 4991256 2/r

499/486.81/64' 512/499 ' 499/486 . 81/64' 9/8 ' 512/499

PHRYGlAN~ - <4)

IIr 81/64 648/499 4/3 271r6 243/u8 9721499 21r

8r/64 . 5r2/499 . 499/486 ' 81/64 . 9/8 ' 512/499 ' 499/486

DORIAN (E - e)

1/1 5U/499 256/243 4/3 3/2 768/499 128/81 2/r

5I2/499 . 499/486 . 81/64 . 9/8 . 5u/499 . 499/486 . 81/64

HYPOLYDlAN (F- - f-)

IIr 499/486 499/384 I497/r024 312 499/324 4991156 2/1

499/486 . 81/64 . 9/8 . 512/499 . 499/486 . 81/64' 512/499

HYPOPHRYGIAN (QI,- gll.)

IIr 81/64 729/512 729/499 3/2 243/128 972/499 2/1

81/64 . 9/ 8 ' 5U/499 . 499/486 . 81/64' 5u/499 . 499/486

HYPODORlAN (A- a)

IIr 9/8 576/499 ph7 3/2 768/499 128/81 2/1

9/8. 5I2/499' 499/486.81/64' 5u/499' 499/486.81/64



6- IO. Theintervals oftheoctave species ofPtolemy 's
intense diatonic genus. Seefigures6-3 and6- 6for
namesofnotes. Thediatonic tetrachord isI 6!IS .

9/8. 10/9' TheLydian71UJde in thistuningisthe
majormode injust intonation, TheHypodcrian orA
mode isnottheminormode asthefourth degree is

27120 insteadof413.

6-II. Tbeinteruals oftheoctave species ofthePtol­
emy's intense diatonic genus, reversed. Thediatonic

tetracbord is10/9' 9/8. 16!IS. TheLydianorC
71UJde in thistuningistheminormodeinjust in­
tonation. TheDorian orE 71UJde isnotthemajor

71UJde astheseconddegree is10/9 insteadof9/8. This
scale transposed toCisJohn Redfield'S tuningfor the
'11UJj01'scale (Redfield 1928).

Although they are conventionally presented as sections of the two octave

gamut, they were actually retunings of the central octave so that the se­

quences of intervals corresponding to the cyclic modes fell on the notes of

the Perfect Immutable System (hypate meson to nete diezeugemenon, e to

e'). These abstract sequences of intervals are shown in 6-u. Thus, in the

Dorian tonos, the interval sequence of the Dorian mode filled the central

octave; in the Phrygian, the Phrygian sequence was central and the Dorian,

a tone higher. In the Hypolydian tonos, the initial A, proslambanomenos,

was raised a semitone, as was its octave, mese, the supposed tonal center

of the whole system.

From the original set of seven pitch keys (tonoi), a later set of thirteen

or fifteen theoretical keys at more or less arbitrary semitonal intervals de­

veloped, irrespective of genus (Crocker 1966; WInnington-Ingram 1936).

In Roman times, the theorists moved the entire system up a semitone so

MIXOLYDIAN (B - b)

l/r 16/rS 6/S 4/3 64/45 8/5 16/9 1/r
16/rS . 9/8 . 10/9 . 16/IS . 9/8 . 10/9 . 9/8

LYDIAN (C - c)

l/r 9/8 S/4 4/3 3/1 5/3 IS/8 1/r
9/8 . 10/9 . 16/rS . 9/8 . 10/9 . 9/8 . 16/IS

PHRYGlAN (D - d)

it: 10/9 31/17 4/3 4°/17 S/3 16/9 1/r
10/9 . 16/IS . 9/8 . 10/9 . 9/8 . 16/rS . 9/8

DORIAN (E - e)

s/: 16/rS 6/5 4/3 3/1 8/S 9/S 1/r
16/15 . 9/8 10/9' 9/8 . 16/r S • 9/8 . 10/9

HYPOLYDIAN (F - f)

it: 9/8 S/4 4S/32 3/1 17/r6 IS/8 1/r
9/8 . 10/9 . 9/8 . 16/r 5 . 9/8 . 10/9 . 16lrS

HYPOPHRYGlAN (G - g)

l/r 10/9 S/4 4/3 3/1 5/3 16/9 1/r
10/9 . 9/8 . 16/15 . 9/8 . 10/9 . 161r5 . 9/8

HYPODORlAN (A - a)

1/1 9/8 6/S 17120 3/1 8/S 9/S llr
9/8 . 16lrS . 9/8 . 10/9 . I6/rS . 9/8 . 10/9

106

MIXOLYDIAN (B - b)

l/r 10/9 5/4 4/3 40/17 S/3 16/9 11r
10/9 . 9/8 . 16lrS . 10/9 . 9/8 . 16lrS . 9/8

LYDIAN (C - c)

IIr 9/8 6/5 4/3 3/1 8/5 9/5 11r
9/8 . I6lrS . 10/9 . 9/8 . 16lrS . 9/8 . 10/9

PHRYGIAN (D - d)

1/1 16lrS 31/17 4/3 64/45 8/5 16/9 1/r
16lrS . 10/9 . 9/8 . 16lrS . 9/8 . 10/9 . 9/8

DORlAN (E - e)

IIr 10/9 5/4 4/3 3/1 S/3 15/8 1/r
10/9 . 9/8 . 16/rS . 9/8 . 10/9 . 9/8 . 16/rS

HYPOLYDlAN (F - f)

IIr 9/8 6/S 17/10 3/1 17/16 9/5 11r
9/8 . 16lrS . 9/8 . 10/9 . 9/8 . 16lrS . 10/9

HYPOPHRYGlAN (G - g)

IIr I6/rS 6/S 4/3 3/1 8/5 16/9 11r
16lrS . 9/8 . 10/9 . 9/8 . 16/rS . 10/9 . 9/8

HYPODORlAN (A - a)

IIr 9/8 5/4 45/31 3/1 5/3 15/8 1/r
9/8 . 10/9 . 9/8 . 16lrS . 10/9 . 9/8 . 16lrS

CHAPTER 6



6- I 1.. Intervalsequences oftheoctaue species ofthe

abstract tetracbord a- b· c.a .b· c=4!3 (c=4/3ab)
injust intonation or a+ b +500 - a - b with the
disjunctiue tone equaling 200 cents in thezero
modulo 12 equaltemperaments. In theMain
Catalog, c isequaltotheCL

MIXOLYDIAN

a . b . c . /I ' b . c . 9/8

LYDIAN

b . c . a . b . c . 9/8 . a

PHRYGIAN

C ' a . b ' c . 9/8 . a ' b

DORIAN

a ' b . c . 9/8 . a . b ' c

HYPOLYDIAN

b . c . 9/8 . a . b . c . a

HYPOPHRYGIAN

c- 9/8 ' a . b . c . a ' b

HYPODORIAN

9/8 . a . b ' c•a . b . c

that the central octave began on either E or F in modern notation. In this

final form, however, the central octave had the interval sequence of the

Hypolydian mode rather than the Dorian.

The modal retunings could also be considered as transpositions of the

entire Perfect Immutable System. The order of the keys ran in the opposite

direction to that of the homonymous octave species and the octave species

could be described either by the positions of their interval sequences in

relation to the untransposed Dorian or by the relative pitch of the entire

Perfect Immutable System. This duality is reflected in the two no­

menclatures employed by Ptolemy, the "onomasia kata thesin" (by posi­

tion) and "onomasia kata dynamin" (by function). The thetic nomenclature

in the natural key is used in the tables of this chapter and chapter 8 as it is

the same for all tonoi. The dynamic refers all notes to the Dorian tonos for

which the thetic and dynamic nomenclatures are identical.

6- I 3. Vogel's transtription oftheGreek notations. NOTE RATIO NOTATION

Only theupper octavefrom mese tonetebyperbolaion
MESE I/I A

issboum. Vogel's German notation hasbeen tran-
TRITE SYNEMMENON 28/27 a-

scribed intotheAmericanform. Hisnoteshavebeen
PARANETE SYNEMMENON 16/r5 (ENHARMONIC) B~+

transposed lip an octave, andthose markedwithabar
PARANETE SYNEMMENON, PARAMESE 9/8 (CHROMATIC) B

in theoriginalaregivena+here. 512/405 (406 TRITE D1EZEUGMENON 7/6 C-
cents) replaces 8r/64 (408cents), in Vogel's tuning.

PARANETE SYNEMMENON 321'27 (DIATONIC) C
In theuppe1" halfofthescale, 204 81r 2 15 replaces

PARANETE D1EZEUGMENON 6/S (ENHARMONIC) C+
2711 6.

896/729 0,-
5121405 (CHROMATIC) ~+

4/3 (DIATONIC) D

NETt SYNEMMENON I n/81 &-
64/45 &

NETE DIEZEUGMENON 312 E

TRITE HYPERBOLAION 14/9 F-
PARANETE HYPERBOLAION 815 (ENHARMONIC) F+

128/81 F

3S8412 187 Q-
PARANETE HYPERllOLAION 2048/12 I 5 (CHROMATIC) Q

1619(DIATONIC) G

4481243 AI-
2S6/13S AI

NETE HYPERBOLAION '2/I A

r07 SCALES, MODES, AND SYSTEMS



6-14. Unusual tetrlJChords in Vogel's tranrcription.

RATIOS

64/63 . 81/80 . 3517.7
81/80 . 1140h 187 . 9/7
36/35' 1140hI87' 81/84

36/35' 2561243' 315h56

64/63' 16/x5 . 3151156
64/63' 1I87h048. 896/729
896/729' 36/35 . 135/n 8

28127'2561243 . n87/x792
16/x5. 224017. 187' 1I87/x792
28h7' n8/105 . IH/n8
6/5 . 35/P .64/63

6/5' 2240 / n 87' 243/224

7168/6561 . 36/35' 11I5/x024
16/x5' nI5/r0l4' 2561243
28h7' 1024/945' U 15/x024
7/6. 1024/945 . 135/u 8

2817.7.81/7°' 10/9
81/70' 224011187 . 9/8

81/70 ' 256h43 . 35/P
135/n8. 7168/6561 .81/70
16/x5' 2801243 . 24317.24
36/35' 9/ 8. 280h43
8/7.81/80, 28017.43

9/8. 7168/6561 . 243h 24

9/8. 4096/3645' IH/n8
35/P . 1024/945 . 9/8

4096/3645 . H/P . 243/224

CENTS

27 + 22 +449
22 + 41 + 435
49 +41 +4°8
49 +90+ 359

27 + I U + 359
27+ I14+ 357

357 + 49 + 92

63 + 90 + 345
IU + 41 + 345

63 + 343 + 92

316+ 155+ 27

316+41+141

IS3 +49+ 296

IU+296+90

63 + 139 + 296
267 +1 39 + 92
63+ 253+ 182

253 +41 + 204
253+90+155
92+ 153+ 253

I12 + 245 + 141

49 + 204 + 245
231 + 22 + 245

204+ 153 + 141
204+ 202 + 92

155+ 139+ 2°4
202 + 155 + 141

The Greeks named the modes from their keynotes as octave species of

the Perfect Immutable System, while the medieval theorists named them

in order of their transpositions (Sachs 1943)' The two concepts became

confused by the time of Boethius. For this reason the names of the ec­

clesiastical modes are different from those of ancient Greece. In more

recent periods, other ecclesiastical nomenclatures were developed.

Greek alphabetic notations

In addition to the thetic and dynamic nomenclatures, which were really

tablatures derived from the names of the strings of the kithara or similar

instrument, there were two alphabetical cipher notations, the vocal and the

instrumental, These were recorded for the each of the tonoi in all three

genera by the theorist Alypius. The independent elucidation of Alypius's

tables by Bellermann (1847) and Fortlage (1847) have permitted scholars to

transcribe the few extant fragments ofGreek music into modem notation.

Vogel (1963, 1967) has translated these cipher notations into a tuning

system based on Archytas's and Pythagoras's genera (6-4). This set of tones

includes a number of unusual tetrachords, most of which occur in several

permutations (6-13). Some of these are good approximations to the neo­

Aristoxenian types: 50 + 100 + 350 cents, 50+ 150 + 300 cents, 50 + 250+ 200

cents, and 150 + 150 + 200 cents of chapter 4.

The Greek notations, however, were not entirely without ambiguity,

and some uncertainly exists over the meaning of certain presumed "en­

harmonic" equivalences, i.e. two notes of the same pitch written differently.

Kathleen Schlesinger developed her somewhat fantastic theories, detailed

in chapter 8, in part from deliberations on the apparent anomalies of these

notations.

Concise descriptions of the notational systems may be found in Sachs

(1943) and Henderson (1957)'

The oldest harmoniai or modes

Although the melodic canons laid down by Aristoxenos (330 BeE) stated

that the smallest interval the melody could move from the pyknon was a

whole tone and that notes four or five positions apart must make either

perfect fourths or fifths, both literary evidence and the surviving fragments

attest to mixed scales and chromaticism (Winnington-Ingram 1936), as

mentioned previously. A late writer, Aristides Quintilianus, gave a list of

what he said were the scales approved by Plato in the Republic. These scales
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are in the enharmonic genus and depart quite strongly from the conven­

tional octave species of 6-7. Since it is known that both diatonic and chro­

matic scales of the same name existed, it is tempting to try to reconstruct

them. 6-4 contains Aristides's enharmonic hannoniai, Henderson's (1942)

diatonic versions, and my own chromatic and diatonic forms. The chro­

matic versions are based on Winnington-Ingram's indication that there is

literary evidence for certain chromatic versions (1936). The diatonic har­

moniai are from Henderson (1942), except in the cases of the Syn­
tonolydian and Iastian where I have supplied a second diatonic which I feel

better preserves the melodic contours. In the enharmonic and chromatic

forms of some of the harmoniai, it has been necessary to use both a d and

either a ~ or dw. because of the non-heptatonic nature ofthese scales. C and

F are synonyms for du. and gJ.I.. The appropriate tunings for these scales are

those ofArchytas (Mountford 1923) and Pythagoras.

These scales are very important evidence for the use ofextra scalar tones

(diatonic lichanos meson, called hyperhypate) and scalar gaps, which were

alluded to by Aristoxenos as an indispensable ingredient in determining the

ethos ofthe mode. Furthermore, one of the fragments, a portion of the first

stationary chorus of Euripides's Orestes, uses hyperhypate and the en­

harmonic in such a way as to prove that the middle tone of the pyknon

(mesopyknon) was not merely a grace note, but a full member of the scale

(Winnington-Ingram 1936).

Ptolemy's mixed scales

Still more remote from the conventional theory are the mixed scales listed

by Ptolemy in the Harmonics. These scales are ones that he said were in

common use by players of the lyra and kithara in Alexandria in the second

century CE (6-6). These scales bear some resemblance to modern Islamic

modes containing 3/4-tone intervals, as does Ptolemy's equable diatonic,

I 2II 1 . I IlIo • 10/9. They offer important support and evidence for the

combination of tetrachords ofvarying genera and species to generate new

musical materials.

Permutation of intervals

Although traditional techniques can generate a wealth of interesting ma­

terial for musical exploration, the Greek writers suggested only a small

fraction of the possibilities inherent in the permutations and combinations

of tetrachords. While Aristoxenos mentioned the varying arrangements of

log SCALES, MODES, AND SYSTEMS



6-15' Permuuuions cfsequentialfourths. See
Wilson 1986fol'fmtherdetai/s. Tbis example begins
withtheDorian mode ofthestandardascending

f07"mfol" clarityandconsistmty with othersections of
thistreatise. ThesizesofthefoUlths rangefrom 6/)

(p6 cents) to 3)/24 (6)3 cents). Interual7 in the
origi1lll1sequence isafixedfourth. Thepairofper­
mutedfourths areinboldface. The lasttetracbord is

Archytas's diatonic.

ORIGINAL SCALE

III 28127 I6II5 4/3 312 14/9 8/5 2II
2812 7 ' 36/35 . 5/4' 9/8. z8h7 . 36/35 . 5/4

FOURTHS SIZE

1. III to4/3 4/3
2. 4/3 to 8/5 6/5

3· 8/5 to I6II5 4/3

4· 16/15 to14/9 35124

5· 14/9 to28127 4/3
6. 28127 to 312 81/56

7· 3/2 to 2II 4/3

ORIGINAL SEQUENCE

3 4 5 6 7
4/3 6/5 413 35124 4/3 81/56 (4/3)

PERMUTED SEQUENCE

3 4 5 6 7
4/3 413 6/5 35124 4/3 81/56 (4/3)

NEW SCALE

III 2812 7 I6/r5 4/3 3h 14/9 16/9 Z/I

2812 7 ' 36/35 . 5/4' 9/8. z8h7 . 8/7 . 9/8

the intervals of the tetra chord in the different octave species, the Islamic

theorists, such as Safiyu-d-Din, gave lengthy tables ofall the permutational

forms of tetrachords with two and three different intervals. However, the

construction of 5-, 6-, and 7-tone scales from permuted tetrachords and

trichords (gapped tetra chords) has been studied most thoroughly by the

composer Lou Harrison (1975). Harrison constructed scales from all the

permutations of the tetrachords and trichords and allowed different per­

mutations in the upper and lower parts of the scale.

In chapter 5, the melodic properties of scales constructed of either

identical or dissimilar tetrachords, irrespective of permutational order, are

analyzed according to the perception theories of David Rothenberg (1969,

1975, 1978; also Chalmers 1975).

Wuson's permutations and modulations

Perhaps the most sophisticated use to date of tetra chordal interval per­

mutation in a generative sense is Ervin Wilson's derivation of certain North

Indian thats (raga-scales) and their analogs (Wilson 1986a; 1987). In "The

Marwa Permutations" (I986a), Wilson's procedure is to permute the order

of the sequential fourths of heptatonic scales constructed from two iden­

tical tetra chords. These sequential fourths are computed in the usual

manner by starting with the lowest note of one of the modes and counting

three melodic steps upwards. The process is continued until the cycle is

complete and one is back to the original tone. The resulting seven fourths

are the same as the adjacent fourths of the difference matrices of chapter

5, but in a different order. In abstract terms, if the intervals of the tetrachord

area -b/a- 4/3b, the scale is III ab4/3 3/2 ph 3b/2,and 2/1. The sequential

fourths from III are thus 4/3, 3ha, 3ahb, 9b/8, 4/3, 4/3, and 4/3' It is clear
that these fourths must be ofat least two different sizeseven in Pythagorean

intonation.

While holding the position of one fourth constant to avoid generating

cyclic permutations or modes, pairs of fourths are exchanged to create new

sequences of intervals in general not obtainable by the traditional modal

operations. Both the choice of the positionally fixed fourth and the ar­

rangement of the tetrachordal intervals affect the spectrum of scales ob­

tainable from a given genus.

6- I5 illustrates this process with the enharmonic genus of Archytas. The

exchange ofthe second and third fourths converts the upper tetrachord into

no CHAPTER 6
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6-16.Modulations bysequentialfourths. Tbis
example beginswiththeDorian mcdeforconsisteney
with othersections ofthistreatise, Thesizes ofthe

fturthsrangefrom 6/) ()I 6cents) to3)h4 (6)3
cents). In theoriginalsequence theexceptionalfourth
isinboldface. In therotatedsequence thescale has
been 'f/U)d4lly permutedtoseparate theexceptional
fourth (inboldface)from therest. In thefirst
'»Wdulatedsequence the6/) (inboldface) hasbeen
interpolatedbetweenfourths 7and I oftheoriginal
series. In thesecondmodulatedsequence the61) (in

boldface) hasbeen interpolatedbetweenfourths3 and
4 oftheoriginalseries. Thenew tetracbord is
Archytas'sdiata;nic.

ORIGINAL SCALE

III 28127 16115 4/3 312 14/9 8/5 1./r

28/27' 36/35' 5/4' 9/8. 28/27' 36/35 . 5/4

FOURTHS SIZE

I. 1/1 TO 4/3 4/3
a. 4/3 TO 8/5 6/5

3· 8/5 TO 16/15 4/3

4· 16/r5 TO 14/9 35/14

5· 14/9 TO z8h.7 4/3
6. 28/27 TO 3/2 81/56

7· 3/2 TO zlz 4/3

ORIGINAL SEQUENCE

1 Z 3 4 5 6 7
4/3 6/5 4/3 35/24 4/3 81/56 4/3

ROTATED SEQUENCE

3 4 5 6 7 z
4/3 35/24 4/3 81/564/3 4/3 6/5

NEW SCALE

III 5/4 35/27 4/3 5/3 15/8 35/r8 zti

5/4' 28/27' 36/35 . 5/4' 9/8. 28/27' 36/35

Archytas's diatonic and yields a mixed scale, half enharmonic and half di­

atonic. Further application of this principle produces additional scales until

the original sequence is restored. Each of these scales could be modally

(cyclically) permuted as well.

Wilson derives a number of the thats ofNorth Indian ragas by operating

on various arrangements of the tetrachords z561243 . 9/8 . 9/8, I 6/r5 .

9/8. 10/9, 28/27.8/7' 9/8, 16/r5' 135/128· 32127, and 10/9' 10/9 '].7 12 5,
He then generates analogs of these scales from other tetrachords, including

those with undecimal intervals.

In his 1987 paper, Wilson described a complementary technique of

modulation ("The Purvi Modulations"). This technique makes use of the

fact that at least one of the fourths differs greatly in size from the rest. The

exceptional fourth may be abstracted from the linear fourth sequence and

interpolated between successive pairs to generate derived scales. At the end

of seven such interpolations, the linear sequence is cyclically permuted by

one position and the process of interpolation continued. After 4Z steps the

THE LINEAR SEQUENCE OF FOURTHS

4/3 35/24 413 81/56 4/3 4/3

MODULATED SEQUENCE I

Z 34567 I
6/5 4/3 35/24 4/3 81/56 4/3 4/3

NEW SCALE I

III 9/8 7/6 6/5 3/2 14/9 8/5 1/r
9/8. z8/27' 36/35 . 5/4' z8h7' 36/35 . 5/4

MODULATEI) SEQUENCE 1

3 1 4 5 6 7

4/3 6/5 35124 4/3 81/56 4/3 4/3

NEW SCALE 2

III 9/8 7/6 4/3 3/2 14/9 8/S 1II
9/8. 18/17. 8/7' 9/8 . z8/17 . 36/35 . 5/4

r r r SCALES, MODES, AND SYSTEMS



6- 17. Complexes ofone tetratbordal[orm.

I. TRANSPOSITION BY 0

III 0 b 20 ab4/3 4'113 2II

2. TRANSPOSITION BY b

III 0 bab ib 4/3 4h13 211

3. TRANSPOSITION BY 4/3, MIXOLYDIAN

III a b4/34'11341'13 16192h

4. TRANSPOSITION BY 312, DORIAN

III a b4/3 3/2 3ah 3b/z 2h

5.TRANSPOSITION BY 2/b

III {I b4/3 z/b alb4/3b 2II

6. TRANSPOSITION BY 210

III It b4/3 2Inbin4/3a 2/I

original scale is restored, but transposed to a new and remote key.Wilson

also provides an alternate derivation which better brings out the trans­

positional character of the process. In this case the linear sequence of

non-exceptional fourths is tandemly duplicated to form a series of

indefinite extent. Successiveoverlapping 6-unit segments of this series are

appended with the exceptional fourth to form octave scales. After seven

operations, the sequence repeats with a new mode ofthe original scale.The

process is illustrated in 6-16.

Non-traditional scale forms

In the remainder of this chapter, some non-traditional approaches to scale

construction from tetrachordal modules will be presented. These ap­

proaches are presented as alternatives to the historical modes and other

types of scales which were discussed in the earlier parts of this chapter.

The first group of non-standard tetrachordal scales is generated by

combining a given tetrachord with an identical one transposed by one of its

own structural intervals or the inversion of one of these intervals (6-17).

This process yields 7-tone scales, including three of the traditional modes

if the interval is 4/3, 3h, or with a slight stretching of the concept, 9/8 and

3h together. The other tetrachordal complexes, however, are quite dif­

ferent from the historical modes.

7. TRANSPOSITION BY 918 & 31z, HYPODORIAN

III 9/8 9nl8 9bl8 312 3nh 3bh 2II

8. TRANSPOSITION BY 4/3b

III {I b 4/3b 4/3 40/3b I61C)b 211

9. TRANSPOSITION BY 4130

III {I b 4/3{1 4/3 41'/3{1 I6I9'J 2/1

10. TRANsposmON BY nib

III a2lb n b 4J113b 4/3 nib 2II

II. TRANSPOSITION BY bin

III bla a b bzla 413 4h/3Q 2II

lU CHAPTER 6



6-18. Complexes oftheprime form ofArchytlls's
enharmonic.

1. TRANSPOSITION BY 0

III 1.8/z7 16II5 784"729448/4054/3 Iu/81 2II
063 112 u6 175 498 561 1200

2. TRANSPOSITION BY b

III 1.8127 16/r5 448/405 256/225 4/3 64/32 211

0631121752234986101200

3.TRANSPOSITION BY 4/3 MIXOLYDIAN

11128127 16II5 4/3112/8164/45 16/9 211

063 1124985616109961200

4. TRANSPOSITION BY 3/z, DORIAN

III 28127 16/r5 4/3 312 14/98/5 2II
063 112 498 701 765 814 1100

5.TRANSPOSITION BY lib

1/128127 16II5 5/44/3 15/8 35118 1/r

063 111 386498 1088 1151 IlOO

6. TRANSPOSITION BY l/a

III 36/3518127 16II5 9/74/317114211
0496311243549811371100

6- I 8 provides examples of the resulting scales when the generating tet­

rachord is Archytas's enharmonic, 28127 . 36/35 . 5/4' In this case interval a

equals 28127 and b is 16115 (28127' 36/35).

As some of these tetrachordal complexes have large gaps, one might try

combining two of them, one built upwards from III and the other down­

wards from 211 to create a more even scale, though there are precedents for

such gapped scales, i.e., the Mixolydian harmonia (6-4)' While the normal

ascending or prime form of the tetrachord-the one whose intervals are in

the order of smallest, medium and largest-is used to demonstrate the

technique, any of the six permutations would serve equally well. In fact, Ar­

chytas's enharmonic and diatonic genera are not strictly of this form as 28/

27is larger than 36/35 and 8/7 is wider than 9/8.

The next class of tetra chordal complexes are those composed of a tet­

rachord and its inverted form. 6-19 lists some simple examples of this ap­

proach; 6-20 lists the resulting notes in Archytas's enharmonic tuning.

These scales have six, seven, or eight tones.

7.TRANSPosrTION BY 9/8 & 312, HYPODORIAN

III 9/8 7/6615 312 14/98/5 1/1

01042673167017658141100

8.TRANSPOSITION BY 4/3b

III 28127 16/155/4351274/3513 zii
063 112 386449498884 rzoo

9. TRANSPOSITION BY4/30

III 28127 16II5 9/74/348/3512/72/1
063 liZ 435498 547933 1200

10. TRANSPOSITION BYalb

III 245/z43 28/27 16II5 351274/3 35!I8 211

01463 1114494981151 1200

I I. TRANSPOSITION BY bla

III 36/35 28127 16115 192II75 4/3 48135 zii
04963 111161498561 IlOO

II] SCALES, MODES, AND SYSTEMS



6-19. Simple complexes ofprimeandinverted
forms. Twouersionsoftbepseudo- ('1'-) Hypodorian
mode areshown toillustrate theeffect ofreuersing
theplacement oftheprimeandinverted'[orms. The
two scalesorenotmodes of'eacb other.

1. TRANSPOSITION AND INVERSION BY a, 6 TONES, A HEXANY

III a b 4Jl/3b 4/3 4Jl/3 2II

2. TRANSPOSITION AND INVERSION BY b,6 TONES, A HEXANY

III a b 4/3 ¥13a ¥13 2II

3. TRANSPOSITION AND INVERSION BY 4/3,7 TONES, IjI-MIXOLYDIAN

its a b 4/3 1619b 16190 1619211

4· TRANSPOSITION AND INVERSION BY 312, 7 TONES, IjI-DORIAN

I/r a b 4/3 312 lIb 210 2/r

5. TRANSPOSITION AND INVERSION BY lib, 8 TONES, AN OCTONY

III a b 4/3 lib 4/3/l 4/30b4/3b III

6. TRANSPOSITION AND INVERSION BY 210, 8 TONES, AN OCTONY

l/r a b 4/3 11a 4/3a2 4/3ab 4/3a III

7. TRANSPOSITION AND INVERSION BY 918 & 312, 7 TONES, IjI-HYPODORIAN I

III 9/8 312b 3ha 312 3a12 3b12 2/r

8. TRANSPOSITION AND INVERSION BY 918 & 312, 7 TONES, IjI-HYPODORIAN 2

III 9/8 9a/8 9b/8 312 21b 21a III

9. TRANSPOSITION AND INVERSION BY III, 6 TONES, A HEXANY

III a b 4/3b 4/3a 4/3 2II

10. TRANSPOSITION AND INVERSION BY 4/3b, 8 TONES, AN OCTONY

III a b 4/3b 4/3 I619bz 16190b 1619b 211

I I. TRANSPOSITION AND INVERSION BY 4/3a, 8 TONES, AN OCTONY

III a b 4/3a 4/3 16190b 1619az 1619a III

12. TETRACHORDAL HEXANY, 6 TONES, A-MODE

III bla b 4/3a 4/3 ¥13a 2/r

13. EULER'S GENUS MUSICUM, 8 TONES, AN OCTONY

III a b ab4/3 4fl/3 ¥13 4Jlb13 111

14. TRANSPOSITION AND INVERSION BY BIA, 8 TONES, AN OCTONY

III blaa b 4/30 4/3 4b13oz ¥13a 2II

15. TRANSPOSITION AND INVERSION BY AlB, 8 TONES, AN OCTONY

Iir a b 4Jl/3/l4/3b 4Jl/3b 4/3 alb 2II
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6-zo, Simple .omplexes oftheprinu andinverted
forms ofAn:hytm's mhamumi&, in ratios andcents.
Two versions of the 'I'-hypodorian mfJde areshuwn
toillustrate theeffect ofreversing thepltKe11Unt of
theprime andinvertedftrms. Thetwo s.ales are
notmodes ofea.h other.

The 7-tone scales are analogous to the traditional Greek modes, whose

names are appropriated with a prefixed '¥ (for pseudo) to indicate their

relationship to the prototypes. Although these 7-tone scales were produced

by pairing a tetrachord with its inversion, in principle any two dissimilar

permutations would yield aheptatonic scale.This degree offlexibilityis not

true of the 6- and 8-tone types for which the pairing ofprime and inverted

forms is mandatory.

r. TRANSPOSITION AND INVERSION Bya, 6 TONES, A HEXANY

III 28/17 16II5 35/174/3 112/81 2II

° 63 I U 449 498 561 1200

2. TRANSPOSITION AND INVERSION BY b,6 TONES, A HEXANY

III 28127 16II5 4/348135 64/45 2II

063 112 498 5476101200

3· TRANSPOSITION AND INVERSION BY 4/3,7 TONES, 'V-MIXOLYDIAN

III 28127 16II5 4/3513 12/7 16/9 1II

0631124988849339961200

4· TRANSPOSITION AND INVERSION BY 312, 7 TONES, 'V-DORIAN

III 28/17 16II5 4/3312 15/827114211
063 112 498702 108811371200

5. TRANSPOSITION AND INVERSION BY 21b, 8 TONES, AN OCTONY

III 28127 16II5 75164 135II12 5/44/3 15/8211
063 1 12 275 323 386498 1088 1200

6. TRANSPOSITION AND INVERSION BY zIa, 8 TONES, AN OCTONY

III 28127 161I5 135IIn 14311969174/327114211
06311232337243549811371200

7· TRANSPOSITION AND INVERSION BY 9/8 8< 312, 7 TONES,

'V-HYPODORIAN I

III 91845132 81/563/1 14/98/5 2II

02° 4 59 ° 639 702 765 814 1200

8. TRANSPOSITION AND INVERSION BY 9/8 I: 312, 7 TONES,

IjI-HYPODORIAN 2

III 9187/6615312 15/8 27114211

02°4267316702108811371200

9. TRANSPOSITION AND INVERSION BY III, 6 TONES, A HEXANY

III 28/27 16/15 5/49174/3 2II

063 112 386435498 1200

10. TRANSPOSITION AND INVERSION BY 4/3b, 8 TONES, AN

OCTONY

III 28127161155/44/3 25II6 451285/32/1
063 112 386498773 821 8841200

I I. TRANSPOSITION AND INVERSION BY 4/3a, 8 TONES, AN

OCTONY

III 28/27 16II5 9174/345/2881/4912/7211
063 112 435 498 821 87°933 1200

12. TETRACHORDAL HEXANY, 6 TONES, A-MODE

III 36/35 161I5 9174/348/35 21I

°49 IU 435 498547 12 0 0

13. EULER'S GENUS MUSICUM, 8 TONES, AN OCTONY

III 28127 161I5 448/405 4/3112/8164/45 179z1u15 21I

063 112 175498561 610673 1200

14. TRANSPOSITION AND INVERSION BY bla, 8 TONES, AN OCTONY

III 36/35 28127 16II5 917 P41145 4/348/35 2II

° 49 63 112 4 35 484498561 1200

15. TRANSPOSITION AND INVERSION BY alb, 8 TONES, AN OCTONY

III 28/2716115 175II44 5/4 35127 4/335118 21I

063 IU 338 38644949811511200
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6-2.1. The 1 3 5 7 tetradic hexany. Thefactor I may
be omittedfrom thethree toneswhichcontain it. This

diagram wasinventedby E1'Vin Wilson andrepre­
sents thesix tones ofthehexanymapped overthesix
vertices oftheregularoctahedron (Wilson 1989).

&ch tl'iangularface isan essentialconsonant chord
ofthehexanyharmonic system andeverypairof
tonesseparatedby aprincipaldiagonal isII dis­

sonance. Thekeynote is]·5.

5'7

I' 5

NOTES AND INTERVALS OF HEXANY

III 7/6 4/3 7/5 8/5 ~8II5 ~/r

-------
7/6 8/7 lIho 8/7 7/6 I5II4

c b a b c d

6-22. Consonant chords of the 1357 hexany.

Tetrachordal hexanies

The 6-tone complexes are of greater theoretical interest than either the

seven or 8-tone scales. Because of their quasi-symmetrical melodic struc­

ture, which is a circular permutation of the interval sequence cbabc d (a,

b, c, and d not necessarily different intervals), they are members of a class

of scales discovered by Ervin Wilson and termed combination product sets

(Wilson 1989; Chalmers and Wilson I98~; Wilson, personal communica­

tion). The same structure results if interval a is replaced with interval d and

intervals band care exchanged. A combination product set of six tones is

called a hexany by Wilson.

The notes of the hexany are the melodic expansion of the intervals of a

generating tetrad or tetrachord. They are obtained by forming the six

binary products of the four elements of the generator. If these four ele­

ments are labelled x,y, z, and w, the resulting notes are x .y, x ' z, x .w,y . z,
y . w, and w ' z. In the case where the generator is the dominant seventh

tetrad, IIr 5/43/2 7/4, written in factor fonn as I 3 5 7, the resulting hexany

is that of 6-21, where it has been mapped over the vertices of a regular

octahedron, This diagram has been named a "hexagram" by Wilson,

It is convenient to choose one of these tones and transpose the scale so

that it starts on this note. The note 3 ' 5 has been selected in 6-2 I, This note,

however, should not be considered as the tonic of the scale; the combination

product sets are harmonically symmetrical, polytonal sets with virtual or

implicit tonics which are not tones of the scale. Although the hexany is

partitionable into a set of rooted triads (see below), the global III for the

whole set is not a note of the scale. In this sense, combination product sets

are a type of atonal or non-centric musical structure in just intonation,

The four elements of the generator are related to the melodic intervals

asx = III ,y= b, z =b-c, and w =a .1Jl., c, although the actual tones mayhave to

be transposed or circularly permuted to make this relationship clearer,

CHORD HARMONIC SUBHARMONIC

I 35 1'7 3'7 5'7 3'5 1'5 1'3
137 1'5 3'5 5'7 3'7 1'7 1'3
157 1'3 3'5 3'7 5'7 1'7 1'5

357 1'3 1'5 1'7 5'7 3'7 3'5
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The six tones of the hexany may be partitioned into four sets of three

tones and their inversions. In the hexagram or octahedral representation,

the j-tone sets appear as triangular faces or facets. The triads of 6-2 I are

tabulated in 6-22. These chords are the essential consonant chords of the

hexany, and all chords containing pairs of tones separated by diagonals are

considered dissonant.

Armed with this background, one can now proceed to the generation of

hexanies from tetrachords. Starting with the tetrachord III a b 4/3 (the

generator of complex 12 in 6-19), the generative process and the re­

lationships between the notes may be seen in 6-23. Archytas's enharmonic

(III 28127 I6II5 4/3; 28h7' 36/35' 5/4; a= 28h7, b » I6II5) is the specific

generator (see also 6-20, complex 12). This hexany has been transposed so

that the starting note I·a is xt«.
Tetrachordal hexanies are melodic developments of the basic intervals

rather than harmonic expansions of tetrads. The triangular faces of tetra­

chordal hexanies are z-interval subsets of the three intervals of the original

tetrachord. Since this is basically a melodic development, the faces will be

referred to as essential subsets rather than consonant chords. (For the same

reason, the terms harmonic and subbarmenic are replaced by prime and in­

verted.) These hexanies may be partitioned into essential subsets as shown

in 6-24.

The generator of complex I of 6-19 and 6-20 (inversion and trans­

position by a) is the permuted tetrachord III b/a b 4/3 (III 36/35 I6h5

4/3; 36/35. 28h7' 5/4; a =36/35, b =I6IIS)' The generators of complexes

2 and 9 are III b/a b 4b/3a (III 36/35 I6II5 48/35; 36/35 . 28h7' 9/7) and

XNVERTED

ah h a

40/3 4/3 II

4B/3 413 b
41'/3 40/3 ab

448/4°5 r6II5 z8h7
IIl/8r 4/3 1.811.7

64/45 4/3 16/15
64/45 IIz/SI 448/405

PRIME

4/3 4Il!3 4bh
b ab 4b/3
a fib 40/3

a b 4/3

4/3 IU/SX 64/45

16II5 448/4°5 64145

z8h7 448/405 Iu/8x
28/27 16/15 4/3

II7 SCALES, MODES, AND SYSTEMS

SUBSET

III a b

III a 4/3
III b 4/3

ab4/3

III 18/17 16/15
1/1 18/Z7 4/3

III 16/15 4/3
28h7 16IIS 413

I . b

NOTES AND INTERVALS OF HEXANY

36/35 z8/"7 I351II Z 28h7 36/35 35/"4
c b abc d

a·b

III blab 4/3a

III 36/35 I6II5 917

6-:t3. The tetrlJChordm haany. Based onthe
Igemrllting tetrad III a b #3. Aftertransposition
Ilry a, it isequivalent to complex 12 of 6-19 and
6-20.

6-:t4. Essential rubsets ofthe bexanies based em the
tetracbords III a b#3and III 28h7I6!IS 413
(Archytas's enha7monic). For the sake ofcillrity,
thefactor 1 (III) has been omittedfrom Jo3, r-b,
and 1·413. The· signs are also deleted. Both
bexanies are given in their untransposedjiJrms.

----------



6-::'5, The 1357 tetradic octony. Thisstructure is
also an Euler's genus (FoUer 1966; Euler 1739),

III

6-::.6, Essential tbords of tbe 1357 tetradic
OL'tony,

CHORD PRIME INVERTED

FACE III 1'3 1'53'7 5'7 1'5 3'5 3'5'7
I/r 1'5 1'5 3'5 1-7 S-7 3'7 3'5'7
I/r 1'71'5 5'7 1'3 3'73'5 3'5'7

VERTEX III 1'3 1'5 1'7 3'5'73'53'75'7
1-7S'7 I/r 3'7 1-5 1'33'5 3'5-7

1'5 I/r 5'73'5 3'7 1'3 1 '7 3'5'7
1'33'5 3'7 III 5'7 1'7 1'5 3"5'7

DIAGONAL III S'7 3'5 3'7 3'5'7 1'5 1'3 1'7

III b/ab4/3a (III 36/35 16/I5 917; 36135 ' 28127' 135II 12) respectively.In
these hexanies, the tetrachordal generators are bounded by augmented and

diminished fourths rather than 4/3'S,but the subset relations are analogous

to those with perfect fourths,

Tetrachordal Euler genera

The 8-tone complexes represent a different type of scale which may be

called an interual symmetric set (Chalmers and Wilson 1982; Chalmers

1983). These scales have the melodic sequence deb abc d e which is ho­

mologous to the c b II bed sequence of the hexany, However, these 8-tone

scales lack some of the harmonic and structural synunetries that char­

acterize the combination product sets,

Wilson has pointed out that these sets are members of a large class of

scales invented by Leonhard Euler in the eighteenth century and pub­

licized by A. D, Fokker (Wilson, personal communication). While they

have been given the generic name of octony in analogy with the hexany

and other combination product sets, the terms Euler genus or Euler­

Fokker genus would seem to have priority as collective names (Fokker

1966; Rasch 1987).

The generation of an octony from the 1 3 5 7 tetrad is shown in 6-25. In
this representation, the eight tones have been mapped over the vertices of

a cube. This diagram may be called an "octagram." The octony may also

be partitioned into inversionally paired subsets, but the chords are gener­

ally more complex than those of hexanies derived from the same generator

(6-16), Chords considered as the essential consonances of a harmonic

system based on the octony appear not only as faces (face chords), but also

as vertices with their three nearest neighbors connected by edges (vertex

chords) or by face diagonals (vertex-diagonal chords) (Chalmers 1983).

Essential dissonances are any chords containing a pair of tones separated

by a principal diagonal of the cube.

With the exception of the generator itself and its inversion, each of the

4-note chords consists of the union of a harmonic and subharmonic triad

of the form III x y and X y x·y. Ananalogous chord in traditional theory is

the major triad with the major seventh added, III S/43/:z 15/8, which could

be construed as a major triad on IIx fused with a minor triad on 5/4.

As in the case of the hexany, octonies may be constructed from tetra­

chords and their inversions (6-27), The clearest example is complex 13 of
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6-1.7. The tetrachordol octony.This 8-tone Euler's
genusisgeneratedfrom thegeneralized tetracbord

ala a b¥3.

6-18 which is generated by the tetrachord III a b 4/3. Its subset structure

is shown in 6-28. The generating tetrachord and its inversion appear as face

chords. The other chords are more complex intervallie sets. Like the

hexany above, the octony should be viewed as a melodic rather than a

harmonic development of the tetra chord.

The other 8-tone complexes of 6-19 are also octonies. The complexes

generated from Archytas's enharmonic genus are listed in 6-20.

Tetrachordal diamonds

The next group of non-traditional tetrachordal scales is even more complex

than the previous constructions. The first of these are based on the Partch

diamond (Partch [1949] 1974) which is an interlocking matrix ofhannonic

b NOTEANDINTERVALSOFOCTONY

III a b ab 4/3 40/3 4b/3 4Ob/3 2II

III 28127 16115 448/405 4/3 lu/81 64/45 1792/12I 5 2/1
-----

28127 36/35 . 28127 . I}SlIu 28127 36/35 . 28h7 . 1215/896
a d c b a b c d e

SUBSET PRIME INVERTED

6-18. Essentialsubsets ofthetetracbordal octonies

III ab#3 andl/I 28/27 16/154/3 (Archytas's
enharmonic). The termessentialsubsetrather
than consonant chord isempkyedasthe

tetracbordaloetony isprimarily amelodicstructure.

FACE III 4/3 4O/3a

III 4/3 41'/3b
III a b ab

VERTEX III a b 4/3

4/3 III 40/3

40/3 a 4/3
41'/3 4/3 b

DIAGONAL III 41'/3 40/3 ab

FACE III 4/3 IIdSI 28127

III 4/3 64/45 16!I5
III 28/27 16II5 448/4°5

VERTEX III z8h7 16IIS 4/3

4/3 III IIl/81 64/45
II2/81 28h7 4/3 16II5

64/45 413 16!I5 28h7
DIAGONAL III 64/45 IIl/81 448/405
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4Ob/3 ab b 4h/3
4Ob/3 ab a 411/3

¥b/3 41'/3 40/3 4/3

4Ob/3 41'/3 411/3 ab
41'/3 ab 4Ob/3 b a
4Ob/3b 4b/3 ab III

4Ob/3a ab 4'1/3 III

4Ob/3 a b 4/3

1792/1215 448/405 16/15 64/45
17911Ill5 448/405 28127 r r r/Br

179211215 64/45 Ill/81 4/3

1792II 115 64/45 112/81 448/405

448/405 1792IIlIS 16IIS 28127

64/45 448/405 1/1 1792/1215
448/405 Ilz/81 III 1792/1215

1792/ 12 15 28127 16II5 4/3



6-29. Tttrachordal diamonds. The
octave modular tetradiorda! diamond in
A,'chyto,f',f enharmonic tuning isshown

in 6-33-

chords built on roots that are the elements of the corresponding sub­

harmonic ones. An example of what is called a 5-limit diamond may be seen

in 6-30. This example has been constructed from harmonic I 3 5; major

triads and subharmonic I 3 5; or minor triads, The structure is referred to

as having a 5-linut because the largest prime number appearing among its

ratios is five. Diamonds, however, may be constructed from any chord or

scale of any cardinality, magnitude, or limit.

The simplest of the tetrachordal diamonds consists of ascending tetra­

chords erected on the notes of their inversions. Either the octave or the

4/3 (numbers I and z of 6-29) may be used as the interval of identity in the

diamond. In the latter case, the resulting structure is one of the rare ex­

amples of musical scales in which the octave is not the interval of

equivalence.

The second group ofdiamond-like complexes employs entire heptatonic

scales in place of triads or tetrachords as structural elements. Four examples

are given, all derived from scales of the Dorian or 'I'-Dorian type in which

prime or inverted tetrachords appear in either or both positions relative to

the central disjunctive tone (6-29, numbers z , 4,5; and 6-34). The prime­

prime and inverted-inverted diamonds have prime or inverted tetrachords

in both halves of the generating scales. Because of the inversional symmetry

r. THIRTEEN TONE OCTAVE MODULAR DIAMOND

III b/a a h 4/3h4/311 4/3 312 301l 3hh zlh zla olb zt:

z, EIGHT TONE FOURTH MODULAII DIAMOND

xiI a h 4/3h4/30 4'l13h4/3 4h/30

3. PRIME-PRIME AND INVERTED-INVERTED HEPTATONIC DIAMONDS, Z7 TONES

III b/«a B 9/8 90/8 9b/8 4/3h 4/30 4'l13h 4/3 ¥13a 4'l13 31lh¥13 3h.a 3ah.h 312 3bho 3012
3bh 1619b 16190 1619 zlb zlo alb zII

4. PRIME-INVERTED HEPTATONIC DIAMOND, Z5 TONES

III b/aa h a2ab 9/8 h2 4/3b 4/3a 4/34'113 3/2b¥133ho 3h 30h 3bh zlh21619 zloh zl02 21b
zlo olb zII

5. INVERTED-PRIME HEPTATONIC DIAMOND, Z5 TONES

III bin II h 9/8 90/8 9b/8 902/8 90h/84/3h 9b2/8 41304/3 3/2 3012 I619b2 3blz I6190b 16/902
I619b 1619a I6I9zlb zlo olb zII
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6- 30. Five-limitPartch diamond, after"TheIn­

cipient T07IIIJity Diamond" (partch [194911974,

110). Based onthe13 S tn4jor triadIII S/4 312and
itt inversion, thesubharmoni, 1 3 5 minortriatJ 211

815413.

6-3 I. Eighttonefourthmodulardiam0n4. Based on
thetetrachord III a b4!3, with4!!J astheinterval

ofequivaknce.

6-3:1. Thirteen-tone oasuemodular tetracborda]

diamond.

6-33. Thirteen-time octave modulartetracbordal
diamond based onArchytIJs's enhamumic genus.
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6-34' Tetracbordal beptatonic diamonds. These
tables maybe rotated45 degrees clockwise tobdng
the diagonal of211 'sintoverticalposition andcam­

pared tofigll1"eS 6-30-33. The scale deriuedfrrnnthe
primef017n ofthe tetracbord isseen inthel'ightmort
column anditsinversion in thebottom I'CW.

of the diamond, both scales are identical. The prime-inverted and in­
verted-prime diamonds are constructed from the corresponding tetra­

chordal forms and are non-equivalent scales, as in general, tetrachords are

not inversionally symmetrical intervallic sequences. 6-35 and 6-36 show

examples of these diamonds based on Archytas's enharmonic genus and its

inversion.

Stellated tetrachordal hexanies

The last of the non-traditional tetrachordal complexes to be discussed are

two examples ofstellated hexanies. Hexanies may bestellated by adding the

eight tones which complete the partial tetrad or tetrachord on each face

(Wilson 1989; Chalmers and Wilson 1982). The result is a complex of four

PRIME-PRIME PRIME-INVERTED

2II bla b 9bl 8 312 3hh a 3hh 211 hla 4/30 3h a dab 21a2 zla

alb 2II 0 90/8 3all b 3h 3all /lIb 211 4/3b 3/2h 21b2 2lab dh

21b 21a 2II 9/8 3h b 3h a 3/2 3ah 3hh 2II 9/ 8 3h b 3h o 312

1619b 1619a 1619 2II 4/3b 4/3a 4/3 4Il/3 4iJ/3 1619 2II 4/3b 4/3/1 4/3

4/3 <+h13a <+h13 3hh 2II bla h ah h2 <+h13 3b/2 2/1 bla h

4'l13b 4/3 4Il/3 3all alb 2II a a2 ah 40/3 3ah alh 2II a

4/3h 4/3a 4/3 312 2Ib 21a III a h 4/3 312 21h da III

INVERTED-INVERTED INVERTED-PRIME

2II bla 4/3b 312a 312 3hh a 210 211 bIn h 9bl8 9/1bl8 9h2/8 3bh

olh 2II 4/3b 3h b 30h h 312 21h alh 211 /I 90/8 9a2/89abl8 3012

3ah 3bh 2II 9/ 8 94lh 9bla 312 21b 21/1 2II 9/ 8 94/ 8 9bl 8 312

4013 <+h13 1619 2II a b 413 I619h 16190 1619 2II a h 413

4/3 4b/3a 16194 21a 211 hla 4/3/1 16190h 1619a2 1619a 21a 2II bla 4/3a

40/3 b 4/3 I619b 21b alb zII 4/3b I619h2 1619ab I619b 21b alb 2II 4/3h

/I h 4/3 312 3ah 3bh III 4/3h 4/3a 4/3 312 3a12 3hh III
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prime and four inverted tetrachords with a total of fourteen tones, though

certain genera may produce degenerate complexes with fewer than 14 dif­

ferent notes. Wilson has variously termed these structures "mandalas" from

their appearance in certain projections, and "tetradekanies" or "de­

katesseranies" from their fourteen tones. Their topology is that ofK.epler's

stella octangula, an 8-pointed star-polyhedron (Coxeter 1973; Cundy and

Rollett 1961).

The prime form of the tetrachord III a b4/3 generates the hexany tones

a, b, 4/3, 4'l/3, 4h/3 and ab (a = t.n-« or I·a, etc.). This hexany is equivalent

6-35. Tetracborda] diamonds based onArcbytas's enharmonic, in ratios andcents.

q-TONE OCTAVE MODULAR DIAMOND

III 36/ 35 18/27 16115 5/4 9/7 4"3 3/2 r4"9 8/5 rs/8 17114 35118 z/r

° 49 63 III 386 435 498 7°1 765 8r4 r088 II37 lISl 1100

8-TONE TETRACHORD MODULAR DIAMOND

III 18/27 r61I5 5/4 9/7 35/27 4"3 48/35

a 63 III 386 435 449 498 547

PRIME-PRIME AND INVERTED-INVERTED HEPTATONIC DIAMONDS, 17 TONES

rII 36/35 18127 16115 9/8 7/6 6/5 5/4 9/7 35/27 4"3 48/35 IIz/8r

° 49 63 lIZ 2°4 167 316 386 435 449 498 547 561

45/31 64"45 81/56 351z4 3/2 54"35 r4"9 8/5 5/3 U/7 r6/9 15/8 z7/r4 35/r8 1/r

59° 610 639 653 701 751 765 8r4 884 933 996 1088 II37 IIp 1100

PRIME-INVERTED HEPTATONIC DIAMOND, 15 TONES

III 36/35 28127 r6/r5 784"719 448/405 9/8 lS61zzS 5/4 9/7 4"3 111/8r

° 49 63 III 116 175 2°4 113 386 435 498 561

45/31 6¥45 81/56 3/2 14"9 8/5 215/ 118 16/9 405/214 719/392 15/8 17/r4 35118 zII

59° 610 639 7°2 765 814 977 996 102 5 r074 r088 II37 II51 1100

INVERTED-PRIME HEPTATONIC DIAMOND, 25TONES

1/r 36/35 28127 16IIS 9/8 7/6 6/5 98/8r 56/45 5/4 311z5

° 49 63 Il2 204 267 316 33° 379 386 427

9/7 ¥3 3/2 14"9 2SII6 8/5 45/28 81/49 5/3 11/7 15/8 27/r4 3s/r8 211 16/9

435 498 7°2 765 773 8r4 BlI 87° 884 933 996 ro88 II37 IIp r aoo
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6-36. Tetratbordal beptatonic diamonds based onArchytas's enharmonic. The

genel'ating tetracbords are III 5/4 917¥j and 111281:1.7 I6IIS ¥3.

PRIME-PRIME PRIME-INVERTED

2II 36/35 16II5 6/5 312 54"35 8/5 2II 36/35 9/7 81/56 405/224 729/392 27114

35II8 2/1 28127 7/6 35/24 3/2 14/9 35II 8 2/1 5/4 45/32 225/128 4°512 24 15/8

15/8 27II4 211 9/8 45/32 81/56 3/2 14/9 8/5 z/I 9/ 8 45/32 81/56 312

5/3 12/7 16/9 211 5/4 9/7 4"3 112/81 64/45 16/9 2/1 5/4 9/7 4"3

4/3 48/35 64/45 8/5 2II 36/35 16II5 448/405 25612 25 64/45 8/5 211 36/35 16II5

35/27 4"3 112/81 14/9 35/r8 2II 28/27 784/729 448/405 112/81 14"9 35118 2II 28127

5/4 9/7 4/3 312 15/8 n/I4 III 28127 r6II5 4"3 3/2 15/8 27/14 III

INVERTED-INVERTED INVERTED-PRIME

z/I 36/35 9/7 81/56 312 54/35 27II4 z/I 36/35 16II5 6/5 56/45 32/25 8/5

]S1I8 2/I 5/4 45/31 35/24 3/2 15/8 35/r8 2/1 28/27 7/6 98/81 56/45 14"9

14/9 8/5 2II 9/8 7/6 6/5 3/2 15/8 27/14 2II 9/8 7/6 6/5 312

112/81 64/45 16/9 1/1 18127 16/I5 4"3 5/3 12/7 16/9 211 28/27 16/15 4"3

4/3 48/35 12/7 27/14 2/r 36/35 9/7 45/28 81/49 12/7 27/r4 2/1 36/35 9/7

35127 4"3 5/3 15/8 35II8 211 5/4 25/r6 4512 8 5/3 15/8 35II8 2/1 5/4

28/27 16115 4/3 312 14"9 8/5 III 5/4 9/7 4"3 312 14/9 8/5 III

6-37. Sullatedbexaniesgenel'1ltedby theprimetetracbord III a b413. Thehexanynotesarea, b,413,ab, 4a/j, and4b/3. The
8extra notes are (lII)2"lII, a2, b2, 1619, jabl:1.,4abl3,4a/]b, and4b/3a. Tbesecondstellatedbexany isbasedonnumber 1 of
figul'e 6-29. Instances ofeach are basedonArcbytas's enharmonic. Thefirst isgenerated by prime tetracbord III z8/z 7 16115

413. Thebexany notes are 28127, I6/r 5,4/], 448140S, IlzI8I, and 6¥4S. Thesecond is based on (1) of 6-zo.

FIRST STELLATED TETRACHORDAL HEXANY
III a b 0 2 ab !J2 4O/3b 4/3 ¥/3a 40/3 'lb/3 4Ob/3 3abh 16/9 1II
I/r 28127 16/r5 784/7 29 448/405 256/225 35127 4/3 48/35 112/81 64/45 1792/12 15 224/r35 16/9 2/r
0 63 I12 126 175 223 449 498 547 561 610 673 877 996 1200

SECOND STELLATED TETRACHORDAL HEXANY
III bla b21a2 b b21a b2 4/3a 4/3 ¥/3a 40/3 'lb/3 ¥2/3a 3!J2ha 16/9 211
III 36/35 1196/r225 r6/I5 1921175 25612 15 9/7 4/3 48/35 I n/81 64/45 256II75 288/r75 16/9 2/r
0 49 98 Il2 16r 223 435 498 547 561 610 659 862 996 1200
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III a b 4/3 4/3 4/3a 4/3b III

4"3 ¥/34b/3 16/9 ab b a 311bh.
b ab b:J. 4b/3 40/3 4/3 4O/3b II

II a2 ah 40/3 4b/3 4b/3a 4/3 b
1/1 a b 4/3 4Ob/3 4b/3 40/3 lib

6-38. (a) Essential tetracbords of thefirst stellated
hexany. For thesake ofcta,"ity, thefactor I (III)
hasbeen omittedfrom I . a, I . b, I . tP3, etc. The
. signs arealso deleted. The boldfaced notes in each
chord are the startingnotes of theprimeand

invertedtetracbords, III a b tP3 andtP3 tP3a

#3b IIr.

PRIME INVERTED

to complex 12 of 6-19 when transposed so as to begin on the tone a. The

stellated form of this hexany is the first of 6-37, while complex I of 6- 19

yields the second of 6-37. The eight supplementary tones of the first stel­

lated hexany are IIr, a2, bZ, 1619, 4Jl/3b, 4Jlb/3, 3llbh, and tfb/3a. These notes

may be deduced by inspection of 6-23, the tetrachordal hexany. The first

four extra notes are the squares of the elements of the generator, IIr, 112, b2,
and 1619(X2,y2, z2, and w2) from III a band 4/3. The remaining four notes

are the mixed product-quotients needed by the subharmonic faces. These

have the form x-y-z/tu (3abh.), xy.w/z (4Jl/3b), x·z.wly (tfb/31l), andy.z.w/x

(4JlbI3). Two stellated hexanies based on Archytas's enharmonic are shown

in 6-37.

The notes of the second type of stellated hexany of 6-30 are derived

analogously by replacing a in the prime tetrachord with bla. The tetra­

chord llr 28/27 161r5 4/3 in the first type is thus replaced by III 36/35

16/r54/3'

The essential tetrachords of the first stella ted hexany are seen in 6-38,

and those of the second may be found by analogy. The component tetra­

chords of the first stellated hexany derived from Archytas's enharmonic are

listed in 6-39. Those of the second kind may be derived by replacing the

28/27 of the first tetrachord with 36/35- The other tetrachordal hexanies

of 6-18 also generate stellated hexanies, but their tetrachords are bounded

by intervals other than 4/3.

6-39' Essential tetratbords ofthe III 28/z7 16/r)
tP3 stellated hexany.

PRIME INVERTED

1/1 28127 161I5 4/3 4/3 9/7 5/4 III

4"3 112/81 64/45 1619 448/405 16/r5 28127 :z.:z4J'1 35

I6!IS 448/405 256/Z25 64/45 112/81 4/3 35127 28/z7

28127 784/7 29 448/405 112/81 64/45 48/35 4/3 I6!I5

III 28127 16/15 4/3 1792/ 1215 64/45 112/81 448/405
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7 Harmonization of tetrachordal scales

SCALES BASED ON tetrachords are found in the musics of a large part of the

world. Although much ofthis music is primarily melodic and heterophonic,

this is due neither to the intrinsic nature of tetrachords nor to the scales

derived from them. Rather, it is a matter ofstyle and tradition. Many, if not

most, tetrachordal scales have harmonic implications even if these im­

plications are contrary to the familiar rules of European tonal harmony.

The melodies of the ancient Greeks were accompanied by more or less

independent voices, but polyphony and harmony in their traditional senses

appear to have been absent. "A feeling for the triad," however, does appear

in the later Greek musical fragments, but this may be a modern and not

ancient perception (Winnington-Ingram 1936).

The scales of North Indian music are also based on tetrachords (Sachs

1943; Wilson 1986a, 1987). In this music, drones emphasizing the tonic

and usually the dominant of the scale are essential elements of per­

formance, Their function may be to fix the tonic so that ambiguous inter­

vals are not exposed (chapter 5 and Rothenberg 1969, 1978).

Islamic music of the period of the great medieval theorists Al-Farabi,

Safiyu-d-Din, and Avicenna (Ibn Sina) was likewise heterophonic rather

than harmonic (Sachs 1943; D'Erlanger 1930, 1935, 1938). In recent times,

however, some Islamic groups have adopted certain elements of tonal

harmony into their music.

Harmonizing tetrachordal scales

Many tetrachordal scales are nevertheless suitable for harmonic music. The
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7-1. Endogenous harmonization of tetracbordal
scales. The addition ofthesubtonic 918below I II to
theenbarmonic andtbromatic genera where it WIlS

called hyperhypate isattesttdboth theoretically and

musically (Winnington-Ingram 1936,25). The
dotted lines indicate the low" octave ofthe

dominant ofthe triads ontV3.

..........................._--._---

......................._----

7-1.. EndDgenous barmonizatian ofArchyta.r's
enharmonic.

................................................_-----

...............................................-----

Lydian mode of Ptolemy's intense diatonic genus is the just intonation of

the major mode. The diatonic Arabo-Persian scale hhidjazi, is more con­

sonant than the r z-tone equal-tempered tuning of the major scale

(Helmholtz [1877] 1954)·
Harry Partch pointed out that many of the other tetrachordal genera

also have harmonic implications which may be exploited in the context of

extended just intonation (partch [1949] 1974). As an example, he offered

Wilfrid Perrett's harmonization ofa version of the enharmonic retrachord,

Partch added a repeat to Perrett's progression and transposed it into his

43-tone scale (partch [1949] 1974; Perrett 1926).

Partch also challenged his readers to limit themselves to the notes of the

scale. 7-1 depicts the triadic resources of a generalized tetrachordal scale in

which both tetrachords are identical. The dark lines delimit triads which

are available in all genera while the light ones indicate chords which may

or may not be consonant in certain genera.

The three sub-intervals of the tetrachord are denoted as a, b, and 4/3ab,

resulting in the tones, Ih, a, ab, and 4/3, duplicated on the 3/2. Because

there is both musicaland literary evidence for the customary addition ofthe

note hyperhypate a 9/8 whole tone below the tonic in the enharmonic and

chromatic genera (Winnington-Ingram 1936, 25), it has been included.

The inversion of this interval has also been added to allow the construction

of a consonant dominant triad in some genera or permutations,

The types of these triads depend upon the tuning of the tetrachord. In
Archytas's enharmonic genus, the triads on 4/3 and 8/9 will be septimal

minor, 6:7:9' The triad on a (28/27) is the septimal major triad. 14:18:2 I.

The triad on ab(I6h 5) is a major triad, 4:5:6, and the alternative triads on

4/3 and 8/9, are minor, 10:12:15. The tonal center appears not to be the

i/«, but rather the 4/3 or mese. These chords are shown in 7-1. .

The tonal functions of these triads are determined by the mode or cir­

cular permutation ofthe scale.The Lydian or C mode of Ptolemy's intense

diatonic, in its normal form, 16h5 . 9/8 . 10/9, is the familiar major mode

with 4:5:6 triads on III, 4/3, and 3/2. The reverse arrangement of this

tetra chord, 10/9 . 9/8 . 16h5, generates the natural minor mode with

10:12:15 or subharmonic 4:5:6 triads on these degrees. This scale is not

identical to the Hypodorian or A mode of the first scale because that scale

has a 27120 rather than a 4/3 as its fourth degree. The chordal matrices and

tetrachordal forms of these scales are shown in 7-3.
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7-3. The4:5:6 triadanditsderived tritriadicsea/e.
The tritriadicormatrixformistheCorLydian

11UJde ofthe tetrachorda/sea/e. Thetonic ofthetriad
isdenoted t or III, thethirdormedians, m andthe
fifth ordmninant, d.The tetracbordalfomt istheE
orDorianmodeofthetritriadicsea/e.

SUBDOMINANT 4/3 S/3 2II 2/d mid 2II
TONIC III S/4 3/2 III m d

DOMINANT 3/2 I S/8 9/8 d d-m J2

III 9/8 S/4 4/3 312 S/3 IS/8 2II
9/8 . IO/9 . 16IIS . 9/8 . IO/9 . 9/8 . 16IIS

THE TETRACHORDAL FORM

III 16!IS 6/S 4/3 3/2 8/S 9/S 2II
16IIS . 9/8 . 10/9' 9/8. 16IIS . 9/8 . 10/9

(I6IIS . 9/8 . 10/9)

THE IO:I2:IS TRIAD &: ITS DERIVED TRITRIADIC

SCALE

SUBDOMINANT 4/3 8/S 2II 2/d mid 2II

TONIC III 6/S 312 1/1 m d
DOMINANT 3/2 9/S 9/8 d d-m J2

III 9/8 6/S 4/3 312 8/S 9/S 2II
9/8• 16fIS . IO/9 . 9/8 . 16fIS . 9/8 . IO/9

THE TETRACHORDAL FORM

III 10/9 S/4 4/3 312 S/3 IS/8 2II
IO/9 . 9/8 . I6IIS • 9/8 . 10/9 . 9/8 . 16/S

(IO/9 . 9/8 . 16IIS)

The seven modes or octave species of the reversed tetrachord scale are

the exact inversions of those of the major scale above. The C mode of this

scale is the diatonic scale of John Redfield (1928, 191-197). Redfield as­

signed Hebraic names to these modes and termed the triads with the

conuna-enlarged fifth "Doric."

The mode that is the inversion of the major scale may be harmonized

with three triads built downwards from 2h, 3h, and 4/3' An otherwise

obscure composer named Blainville wrote a short symphony in this scale

and was ridiculed by Rousseau for doing so (perrett 193I; Partch [1949]

1974). This kind of inverted harmony was called the phonic system by the

nineteenth and early twentieth century theorist von Ortingen (Helmholtz

[1877] 1954; Mandelbaum 1961) in contrast to the traditional tonic

system.

Tritriadic scales

The scales derived from tetrachords with 9/8 as their second interval may

be called tritriadics because they may be divided into three triads on the

roots III, 4/3, and 3h. They are harmonizable with analogs of the familiar

I IV (I) V I and I IV (VII) III VI (II) V I progressions (Chalmers 1979, 1986,

1987,1988).

In general, however, the VII and II chords will be out of tune (Lewin

1982) and probably should be omitted in the progressions unless extra

notes are employed. The composer Erling Wold, however, has made a case

for a more adventurous utilization of available tonal resources (Wold

1988). Partch ([1949] 1974) has done so too in a discussion of a letter from

Fox-Strangways concerning the alleged defects of just intonation and their

effect on modulation.

The three primary triads on III, 4/3, and 31z are of the same type, but

the triads on the third (mediant) and sixth (submediant) degrees are of the

conjugate or 3/2 's complement type. For example, the primary triads of

number ra of 7-4 are major, while the mediant and submediant triads are

minor. In number rb, the modalities are just the reverse. In addition to the

principle triads of these scales, triads on other degrees may also be usable.

Similarly, in some tunings, seventh or other chords may be useful.

Phonic or descending harmonizations are alsopossible in certain modes

of tritriadic scales. Lewin, in fact, proposes what might be called both

phonic major and minor harmonizations (Lewin 1982).
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7-4- Tritriadic tetracbords. I standsfir "improper, "
andSPfor "Stl1ct/yproper" (Rothenberg 1969.
1975.1978). Injust intonation, tritriadicscales are
either'm'ict/y proper orimproper.

The generalized triad is denoted as t:m:d, after Lewin (1982), where tis

the tonic, m the mediant, and d the dominant. In principle, any tetra chord

containing the interval 9/8 can be arranged as a tritriadic generator, but the

majority of the resulting triads will be relatively discordant. If the mediant

of a triad is denoted by m, then the tetrachord has the form 4/3m . 9/8 .

8m/9,where 4/3m .8m/9= 31.127. The conjugate tritriadic scale is generated

by the permutation 8m/9 . 9/8. 4/3m. The magnitude ofm may range from

9/8 to 4/3 and generate a seven tone tritriadic scale, though the Ro­

thenberg propriety (chapter 5)of the scale and the consonance of the triads

will depend of the value of m.

Triads with perfect fifths (d = 3h) whose mediants (m) are greater than

32h7 and less than 81/64 generate strictly proper scales (chapter 5; Ro­

thenberg 1969, 1975, 1978; Chalmers 1975). Strictly proper scales tend to

be perceived as musical gestalts and are used in styles where motivic

transposition is an important structural element. Improper scales, on the

other hand, are usually employed as sets of principal and auxiliary or or­

namental tones.

Only a limited number of acceptably consonant triads exist in just in­

tonation and also generate useful tritriadic scales. The most important of

these have been tabulated in 7-4. As indicated above, triads ra and I b

generate the major and natural minor modes, and za and zb generate the

l
I

TRIAD MED. CTS TETRACHORD PROPRIETY
IA. 4:5:6 5/4 386 16/r5 . 9/8. 10/9 SP 8B. 34:42:51 21/17 366 68/63 . 9/8. 56/51 SP
lB. 10:12:15 6/5 316 10/9' 9/8. 16/15 SP 9A. 16:19:24 19/r6 298 64/57' 9/8 . 19/r8
2A. 6:7:9 7/6 267 8/7' 9/8. 28127 9B. 38:48:57 24/r9 404 19/r8 . 9/8.64/57
2B. 14:18:21 9/7 435 28127 ' 9/8 . 8/7 lOA. 64:81:96 81/64 408 256h43 . 9/8. 9/8
3A. 18:22:27 II/9 347 12/r I . 9/8 . 88/81 SP lOB. 54:64:81 p h 7 294 9/8. 9/8 . 2561243
3B. 22:27:33 27h 2 355 88/81 . 9/8 . 12/r I SP IIA. 26:34:39 17/13 464 p/p . 9/8 . 136/II
¥. 26:3 2:39 16/r3 359 13/r2' 9/8· 128/u7 SP I ra, 34:39:51 39/34 238 136/r17' 9/8. 52/51
48· 32:39:48 39/32 342 I28lrI7' 9/8. 13/r2 SP 12A. 14:16:21 8/7 231 7/6 . 9/8 . 64/63
SA. 21.:28:33 14/r1 418 21.121' 9/8. Ill/99 12B. 16:21:24 21/16 471 64/63 . 9/8 . 7/6
5B. 28:33:42 33128 284 II 2/99 . 9/8 . 22/21 13A. 20:23:30 2312 0 242 80/69' 9/8 . 46/45
6A. 10:13:15 r j/ro 454 40/39' 9/8 . 51./45 13B. 46:60:69 30123 460 56/45 . 9/8 . 80/69
6B. 26:30:39 15h3 248 52/45 . 9/8· 40/39 I¥. 18:23:27 23/18 424 2412 3 . 9/8 . 92/81
7A. 21.:26:33 13/r I 289 44/39' 9/8 . 104/99 14B. 46:W69 27123 278 92/81. 9/8 . 24h3
7B. 26:33=39 33126 413 104/99 ' 9/8 . 44/39 15A. 38:46:57 23/r9 331 184/r71 . 9/8. 76/69 SP
8A. 14:17:21 17/r4 336 56/5 I . 9/8 . 68/63 SP 15B. 46:57:69 57/46 371 76/69' 9/8 . 184/171 SP
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7-5· Mixedtritriadicscalls. ThetriIlds are4:5:6
and6:7:9. (poole 1850) . Mixedscales rtMy often be
decomposed intotwo tetrachordsanda disjunctive
tone inmore thanone way. Farnsworth's scale isa
71Wtk ofPoole's. It maybeconstruedasa tonic 11IIJjor
triad, fl dominant seventh chord, oraseptimalminor
triad(6:7:9) onthesupertonic (Farnsworth 1958,

1969).

POOLE'S "DOUBLE DIATONIC" OR

"D1CHORDAL SCALE"

SUBDOMINANT 4"3 5/3 "II ,,/dx "II
TONIC III 5/4 3h III m d
DOMINANT 3h 7/4 90'8 d s tJ2

III 90'8 5/4 4"3 3h 5/3 7/4 "II
90'8 . 10/9' 16115' 9/8 . 10/9' 1Iho· 8/7

ALTERNATE TETRACHORDAL FORM

III 10/9 7/6 4"3 3h 5/3 16/9 "II
10/9' zstzo- 8/7 . 9/8 . 10/9' 16115' 9/8

FARNSWORTH'S SCALE

SUBDOMINANT 11116 'l.7116 "II d·sd3 :lId
TONIC III 5/4311 III m d
DOMINANT 311 15/890'811116 d d·m d2 d·s

1/1 90'8 5/4 21/16 3/2 "7/16 15/8 2/1
9/ 8 . 10/9 . 11110' 8/7 . 9/8 . 10/9' 16115

TETRACHORDALFORM

III 9/8 5/4 4"3 312 5/3 7/4 211
9/8. 10/9 . 16115 • 9/8 . 10/9' 11120' 8/7

corresponding septimal minor and septimal major scales. The septimal

minor or subrninor scale sounds rather soft and mysterious, but the sep­

timal major is surprisingly harsh and discordant. Triads 9a and 9b are vir­

tually equally tempered and sound very much like their rz-tone

counterparts. The scales based on loa and lob are the Pythagorean tunings

of the major and minor modes in which the thirds are the brilliant, if

somewhat discordant, 81/64 and 31127.

Triads with undeci1nl1/, tridecimal, and septendeci11UJ1 thirds (numbers 3a­

8b of 7-4) are less consonant than those discussed above. However, these

triads are still relatively smooth and may be useful in certain contexts.

Their tetrachords are also interesting melodically as they approximate

certain medieval Islamic and neo-Aristoxenian genera (chapter 4), The

tetrachords generated by the even less harmonious triads 14:P:36,

64:75:96, 34:40:51, 30:38:45, and 14:19:36 and their conjugates will be

found in the Main Catalog.

Scales with mixed triads

Tritriadic scales may also be constructed from triads with different med­

iants, provided that J remains 31z. An example where the tonic and sub­

dominant triads are 4:5:6 and the dominant triad is 6:7:9 is shown in 7-5

(Helmholtz [1877] 1954, 474). The tetrachordal structure may be de­

scribed as 9/8 . 8m19 . 4/3m (where m is the mediant of the tonic triad) for

the lower tetrachord and 1x/3 . six· lis (where x and s are the sixth and

seventh of the scale) for the upper tetrachord. However, as 7-5 indicates,

mixed tritriadics may often be divided into two tetrachords and a dis­

junctive tone is more than one way.

Farnsworth's scale, also shown in 7-5, is a mode of Poole's Double Di­

atonic (Farnsworth 1969). It may be construed as a major triad on III, a

dominant seventh chord on 312, and a subminor triad (6:7:9) on 9/ 8. ,

In chapter 5, the limits on the propriety of mixed modes are discussed.

Ellis's duodenes
Composers may find the intrinsic harmonic resources of tetrachordal

scales rather sparse, even with the addition of one or more historically

motivated supplementary tones. Two simple remedies immediately come

to mind. One is to enlarge the chain of chordal roots of tritriadic scales

to encompass four or more triads. This procedure may tend to hide the

tetrachords beneath a mass of chords, but by way of compensation,

131 HARMONIZATION OF TETRACHORDAL SCALES



7-6. Pentatriadic scales. A pentatriadic isan ex­

pansion ofa tritriadic by theaddition of thesub­
dominant ofthesubdominant and thedominant of
thedominant. An alternative form hasa third

dominant inpillce ofthesecond subdominant lind is

a mode ofthe scale above.

more tetrachords are created. The process may be seen in 7-6. The parent

tritriadic scale contains five tetrachords, all of which are permutations of

16hS' 9/8. 10/9 (112 + 204 + 182 cents). Thenewpentatriadicscale contains

42 tetrachords of six different genera.

The second solution is to extend both the d and m axes to generate

structures analogous to A ]. Ellis's duodenes, the twelve note "units of

modulation" in his theory of just intonation in European tonal harmony

(Helmholtz [1817] 1954). The duodene generated from the 4=5=6 triad and

some analogs generated by other triads are illustrated in 7-7. These scales

likewise consist of large numbers of tetrachords of diverse genera in a

harmonic context.

Perrett's harmonizations

Wilfrid Perrett, an English theorist, developed some highly imaginative, if

controversial, ideas about Greek music and its early history. In Some Ques­

tions ofMusical Theory, Perrett harmonized a version of the enharmonic tet­

rachord (2Iho . 64/63 . S/4) which he attributed to Tartini, but it is more

likely that Pachymeres has priority. Perrett used familiar tonic, sub­

dominant, and dominant chord progressions by adding tones, effectively

embedding the tetrachord in a larger microchromatic gamut (Perrett 1926,

1928, 1931, 1934). It is this harmonization that Partch quoted in Genesis of

THE 4:5:6 TRIAD AND A DERIVED PENTATRIADIC SCALE

161910/94/3 21JZ m/JZ 21d
SUBDOMINANT 4/35/3 2II 21dm/d 2II

TONIC III 5/43/2 III m d

DOMINANT 3/2 r5/B 9/B d d-md2

9/B 45/32 27/r6 d2 m·d2 d3

rii 1019 9/B 5/4 4/3 45131 3/2 513 27II6 1619 r5/8 2/r

rol9' BI/80· rol9' 16/r5' r 35/12B. r6II5' rO/9' BIlBo· 256/243' r35II28. r6II 5

T

RATIOS

1. Br/Bo· 2561243 . 5/4

2. 256/243' 135/128.615

3· 135/128. r6h5 . 31/27

4. Br/Bo· 10/9 ' 32 /27

5· r6h5' 9/B. 10/9
6. 256/243 . 9/8 . 9/8

13:1 CHAPTER 7

TETRACHORDS IN SCALE

CENTS

22 + 90+ 396

90+92+3 r6

92 + 1I2 + 294

22+rB2+294

Il2 + 204 + r82

90 + 204 + 204

NUMBER

3
3
8

7
rB

3



7-8. Perrett's harmonization ofPachymeres'sen-
1/1 1.I/7.0 I6/rS 4"3

barmonic. Thenumbersunderthenote ratios repre-
senttheharmonicfaaorsor Partch "Identities"ofthe S 7 8 S

chords. Theuppermost voice contains thetones ofthe 4 6 7 4

tetracbord. The ratios ofeach ofthechordal com- 3 5 6 3
I I I

ponentsareshown belou; Asterisks indicate theroots
ofharmonic chords, "Otonalities" in Partch'sno- S.. z/r 7" u/7.o 8 .. I6IIS S=4/3

menclature. The28II5 does notoccur in thePartch 4= 8/S 6= 9/S 7=28IIS 4 =r6/rs

gamut, buta transposed version isavailable in 3" 6/S S= 31z 6 .. 8/S 3 = 8/S

Partch 'ssystemstarting onIII ..513. The pitches of 1=8/5 1= 6/s I" I6lrS I= I6lr5

the tetracbord then become 513 714 16/9 and10/9· 8/S* 6/5 * I6/rS * I6/r 5 *
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DUODENE BASED ON THE 6:7:9 TRIAD

7/6 7/4
1/1 31z
12/7 9/7

TRADITIONAL DUODEN1! BASED ON THE 4:5:6TRIAD

S/3 5/4 IS/8 4S/32
4/3 III 3/2 9/8

I6/IS 8/5 6/S 9/5

DUODENE BASED ON THE 10:12: I S TRIAD

6/s 9/S
1/1 3/2

5/3 S/4

II Music (Partch [1949] 1974,171). Perrett placed the tetrachord in the so­

prano voice and added sufficient extra tones in the lower registers to obtain

the desired chord progression. 7-8 simplifies Partch's presentation by leav­

ing out the repeated chords under I6IIS, 21120, and III that follow the one

under 4/3, and by transposing the pitches from 5/3to III.

Perrett also devised harmonizations for a number of other tetrachords

listed by Ptolemy. These harmonizations are shown in 7-9 where they have

been transposed to III and tabulated in a standard format.

Perrett also discovered a harmonization of Archytas's enharmonic, 28/

27' 36/35 . 5/4, a much more plausible and consonant tuning than the 21/

20.64/63 . 5/4 he chose initially (perrett 1928, 95). He expressed the so­

lution in the I7I-tone equal temperament and later translated it into a

7-7. Ellis's duodenes. This table isbasedonHelm­

holtz[18771 1954,457-464. Theaxeshavebeenre­
versedfrom theoriginal inwhich thechain ohh 's
warvertical. Notetheinterlockingprime (major)
andcrmjugate (minor) triads. The4:5:6 duodene

contains54 tetrachordsofdiverse genera. 10:12:15
isaconjugate dU()dene which should be compared
with theone above ofwhich it isnota "mode. "It con­
tains48 tetracbords ofdifferent genera. 6:7:9 isa
non-tertian duodene. It contains 62 tetracbordsof
variousgenera.



7-9. Perrett's othertetracbord harmonizations. The
names[01' numbers 3 and4 arePerrett's; the
tetracbord isactually Arcbytas's diatonic and
Ptolemy's tonic diatonicgenusrearranged. In
ascendingform; the tetracbord o[num.benI and 6 is

28127' 15/r4 . 6/5, Ptolemy ssoftchromatic.

I. INVERTED PTOLEMY'S SOFT CHROMATIC

xII 61S 9/7 4/3

5 5 9 7
4 6 7 6

3 4 5 5
2

2. PTOLEMY'S SOFT CHROMATIC

xII 1.811.7 xO/9 4/3
6 7 5 6

5 6 4 5

4 5 3 4

3' PTOLEMY'S "SOFT DIATONIC,"

REARRANGED

xix 1.8117 7/6 4/3
6 7 7 8

5 6 6 7
4 5 5 6

4. PTOLEMY'S "SOFT DIATONIC,"

REARRANGED, ALTERNATIVE CHORDS

xix 28117 7/6 4/3
6 7 5 8

5 6 4 7
4 5 3 6

17-limit just intonation (Perren 1934, 158). This harmonization is shown

as number 7 of 7-9.

I have devised another harmonization, which is noteworthy in that the

movement between the roots oflast two chords of the cadence is by a 401

27 rather than a 312. This example is shown in 7-10.

These harmonizations are rather simple, with few nonharmonic tones

or passing chords. More sophisticated techniques including the use of

subharmonic chords would seem appropriate.

More complex treatment is obviously possible in larger microchromatic

scales such as Partch's 43-tone gamut. With the help of a computer, 4022

occurrences of tetra chords and 1301 heptatonic scales in which both tetra­

chords are identical have been found in this scale. Among these are the in­

stances of the Ptolemaic sequence, Partch's name for the major mode, and a

number of other tetrachords from Ptolemy's catalog. Smaller systems such

as Perrett's 19-tone scale have considerable tetrachordal resources; 269

tetrachords and 52 heptatonic tetrachordal scales occur in this gamut.

5. ARCHYTAS'S DIATONIC

x/x 1.8h.7 31.11.7 4/3
6 14 16 16

5 12 12 12

4 9 9 8
2 4 6 5

6. INVERTED PTOLEMY'S SOFT CHROMATIC,

ALTERNATIVE CHORDS

III 6/S 917 4/3

5 5 9° 20

4 6 7° 15

3 4 63 12

45 10

7. ARCHYTAS'S ENHARMONIC

IIx 1.8/27 I6lxS 413
8-16 12 28 6

5-10 10 24 5
3-7 7 17 4
2-4 4 10
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7-10. Anotherharmonization ofArchytas's en­
harmonic. Theroot ofthechordunder28127 is401
27asyntoniccomma lower than31z.Theseptimal
tetrad on1611Slacksamajor third.

III 2812.7 I61I5 4/3

5 7 8 5

4 6 7 4
3 5 6 3
1

Many of these tetrachords closelyapproximate divisions based on higher

harmonics or equal temperaments, such as those found in Aristoxenian

theory. Because they are composed of secondary or multiple number ratios
whose factors are limited to I I, their tones may be harmonized by com­
parativelysimple harmonic or subharmonic chords in a tetradic or hexadic
texture.

Wilson's expansions
Perhaps the most innovative technique for harmonizing tetrachords is

due to Ervin Wilson (personal communication, 1964). Wilson's technique

is based on sequences of chords of increasing intervallic span linked by a

common tone. Wilson's have the property that the successive differences

between the chordal factors follow a consistent pattern. This pattern is

termed the unit-proportion (up). It controls both the rate of intervallic ex­

pansion and less directly the degree of consonance. For harmonic chords,

it may be expressed as a string of signed, positive integers, i.e., the unit­

proportion of the major triad 4:5:6:8 is +I +1 +2. Subharmonic unit­

proportions are written with prefixed - signs; the unit-proportion of the

chord 8:6:5:4 is -2 -I -1. Sequences of chords with identical unit­

proportions make up an expansion which progresses from a dense, rel­

atively discordant chord through chords of decreasing tension to a stable

consonance, usually a triad with the root doubled.

Sequences of such chords may be used in many musical contexts, and

somewhat similar chordal sequences have been explored by Fokker (1966,

1975).Wilson's expansions are particularly attractive when applied to ret­

rachords and tetrachordal scales.

The application ofWilson's technique to tetrachordal scales is best seen

by example. Wilson's original examples were harmonizations of the in­

verted enharmonic genera, III 5/4 9/7 4/3 (Archytas) and III 5/4 13110

4/3 (Avicenna) approximated in 22- and j r-tone equal temperament.

These examples have been translated into just intonation and are shown in

7-1I. An optional 7:8:9:1 I chord has been added to Wilson's original pro­

gression for the inverted Archytas's enharmonic.

Although one may limit the harmonization to a single tetrachord, it is

more likely that one will want to harmonize all seven tones of the scale.

Several solutions to this rather difficult problem using both harmonic and

subharmonic chords with varied unit-proportions and different common

tones are given in 7-12. In these examples, either the 4/3 or 3/2 is held
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7- I I. Wilson's expansion technique. Thesetof
ratios arethechordal tones relatiue to III. (1) isthe

just intonation version ofWllson'sfirst expansion
harmonization with thetow' addition ofanoptional
7 89 / / chordat thebeginning. Theoriginalwas
quantized to zz-toneequal temperament. (2) isthe
just intonation version of Wilson 'ssecond expansion
harmonization. Theoriginalwasquantizedto31­

tone equal temperament.In both cases, theadded
tomsareilllighw' type. Theoptional chord isin
parentheses.

constant throughout the progression. A passing chord containing intervals

of I 3 and 15is used in number 2 to make the progression smoother. These

intervals are conditioned in part by the unit-proportion of the set and in
part by the intervals of the tetrachord. The major caveat is to limit the

number of chords and extra tones when preservation of the melody of the

tetrachord is important.

Except for octave transposition of some of the chordal tones and ocas­

sional passing chords there has not been much study of harmonic elabora­

tion (Wilson, personal communication). This is true of the endogenous

and tritriadic approaches aswelL The standard techniques, however, would

appear to be applicable here as in traditional practice, but only more ex­

perimentation will tell.

Although the majority of this chapter has been presented from the

viewpoint of just intonation, these scales and their various harmonizations

are equally valid in systems of equal temperament which furnish adequate

approximations to the important melodic and harmonic intervals.

I. INVERTED ARCIIYTAS ENHARMONIC, HARMONIC CHORDS ON 312, UP = +1 +1 +2

III 5/4 9/7 4/3 311. 15/8 1.7/x4 1.1x

(7 8 9 II)

(7/6 413 311. 11/6)

6 7 8 10

9/8 2Ih6 311. 15/8

5 6 7 9
15h 4 9/7 311. 1.7/x4

4 5 6 8
III 5/4 311. 1.1I

2. INVERTED AVICENNA'S ENHARMONIC, HARMONIC CIIORDS ON 312, UP = +3 +3 +6

III 5/4 13lxo 4/3 311. 15/ 8 3911.0 1.II

18 H 1.4 3°
9/8 2Ih6 311. 15/8

14 17 1.0 1.6
H120 51/40 311. 3911.0

11. IS 18 1.4
III 5/4 311. 1.II
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I. DIDYMOS'S CHROMATIC, SVBHARMONIC CHORDS ON 4/3,
UP = -S -3-2

7-n. Trial expansion harmonizations. The successive differences or
unitproportionsarepositive inbarmonic chords, negative insub­
barmonic. The ncn-sCilJaradded tones arein lightertype. Passing notes
are inparentheses.

2. HARMONIC CHORDS, 312 COMMON, PASSING NOTES INSERTED,

UP = +1 +2 +3

IIr. 7/6 5/4 413 311. 7/4 IS/8 zlr.

IS I6 I8 :n

5/4 4/3 311. 7/4

(12) (13) IS (18)
(6/S) (13lrO) 311. (9/S)

9 10 12 IS
9/8 5/4 3/1 IS/8

6 7 9 I%
IIr. 7/6 3/1 1,1I

3.ARCHYTAS'S ENHARMONIC, SUBHARMONIC CHORDS ON 4/3,
UP = +2 -1-1

5.ARCHYTAS'S ENHARMONIC, 4/3 COMMON, HARMONIC CHORDS,

UP =+2 +2 +2

6/5 5/4 413 3/1 9/5 IS/S l./I

%0 22 %5 30

6/5 33 12 S 311. 9/5

IS 17 %0 1.5

9/ 8 SI/40 311. IS/S

I1. IS 1.0

6/5 311. 1.1I

4. INVERTED DIDYMOS'S CHROMATIC, HARMONIC CHORDS ON 312,

UP = +2 +3 +S

III 5/49/7413 311. IS/8 1.7/r4 1.11

20 I8 16 14
6/S 413 311. 12.17

16 14 I1. 10

ISlr4 5/4 311. 15/8

14 12 10 8

2712 6 27/22 3/1 :1.7/14

13 II 9 7
9/8 9/7 3/1 9/S

I1. 10 8 6

IIr. 6/S 3/% 1./1

III 1.8/17 I6II5 413 3/% I419 8/5 1.1I

14 I6 I8 20

7/6 413 3/1 5/3

10 I1. I4 16

10/9 4/3 I419 16/9

8 10 I% 14
I6/IS 4/3 8/5 28lrS

7 9 II 13

%811.7 4/3 44127 S2h7

6 8 10 I%

III 413 S/3 2.1I

6. INVERTED ARCHYTAS'S ENHARMONIC, SUBHARMONIC CHORDS ON

312, UP = - 2-2 -2

I/I

IO
IIr.

4
1,1I

IO
1,1I

1./r.

I/I I6IIS m/9 413 311. 8/5 5/3

30 1.5 22 1.0
IO/9 413 SO/33 5/3

l.S 1.0 17 IS
I6lr.S 413 80/S1 16/9

:1.0 IS I%
III 413 5/3

I/I 1.8/17 I6IIS 4/3 311. I419 8/5

II 9 8 7
Il1II 413 311. 12/7

10 8 7 6
I6/r.S 413 3112 1 16/9

9 7 6 5
1.8/%7 413 I419 28lrS

8 6 S
III 413 8/5
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8 Schlesinger's harmoniai, Wilson's

diaphonic cycles, and other similar

constructs

THE HARMONIAl WERE proposed by the English musicologist Kathleen

Schlesinger as a reconstruction and rediscovery of the original forms of the

modal scales of classical Greek music. Schlesinger spent many years

developing her theories by experimenting with facsimiles of ancient auloi

found in archaeological sites in Egypt, Pompeii, and elsewhere. Later, she

extended her studies to include flutes of ancient and modern folk cultures.

Asa result of her researches, she questioned the accepted interpretation of

Greek musical notation. The results of these studies were previewed in a

paper on Aristoxenus and Greek musical intervals (Schlesinger 1933) and

were presented at length in her major work, The Greek Au/os(1939). Her

writings are a major challenge to the traditional tetrachord-based doctrines

of the Aristoxenian and Ptolemaic theorists. While there are compelling

reasons to doubt that her scaleswere ever a part of Greek musical practice,

they form a musical system of great ingenuity and potential utility in their

own right.

This first part of this chapter is devoted to an exposition and analysis of

her work. Various extensions and additions are proposed and near the end

related materials, including Wilson's diaphonic cycles, are discussed.

The Schlesinger harmoniai

Schlesinger's harmoniai are 7-tone sections of the subharmonic series

between members an octave apart. In theory, they are generated by aliquot

divisions of the vibrating air columns of wind instruments. The same

intervals, however, are obtained by the linear division of half strings. As

string lengths are conceptually simpler than air columns, this discussion
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8- I. The diatonic Perfect ImmutableSystemin the

Doriantonos accm'ding toSchlesinger. Each diatonic
harmoniamaybetakenasan octaue species ofthis
system. (Aselsetubere, at variancefrom Schlesinger,

hypate meson isequatedwith E ratherthanF.)Trite

synemmenonisrequired101' thehypo-modes, in
whichit replacesparamese. Thediatonic
synemmenon tetracbord consists ofthenumbers16
IS 13 and 12.

NOTE M.D. TRANS,

PROSLAMBANOMENOS 32 A

HYPATE HYPATON 28 B

PARHYPATE HYPATON 26 C

LICHANOS HYPATON 14 D

HYPATE MESON 12 E

PARHYPATE MESON 20 F

LICHANOS MESON 18 G

MESE 16 a
TRITE SYNEMMENON 15 b,
PARAMESE 14 b
TRITE D1EZEUGMENON 13 C

PARANETE DJEZEUGMENON 12 d
NETE DJEZEUGMENON II e

TRITE HYPERBOLAION 10 f
PARANETE HYPERBOLAION 9 g
NETE HYPERBOLAJON 8 a'

will refer to the former for clarity. The numbers or modaldeterminants

assigned to each of the notes are to be understood as the denominators of

ratios. The sequence II 10 18 16 is a shorthand for the notes ll/ll iztzo

111r8 12116 or III rr/ro III9 1118 above the tonic note zr.

The octave rather than the tetrachord is the fundamental module of

these scales. Although the scales can be analyzed into tetrachords and dis­

junctive tones, the tetrachords are of different sizes which, in general, do

not equal 413. Furthermore, each interval of the scale is different; the series

of duplicated conjunct and disjunct tetrachords of the traditional theorists

(chapter 6) is replaced by modal heptachords which repeat only at the

octave.

The familiar names for the octave species are retained, but each modal

octave is, in effect, another segment of the subharmonic series, bounded by

a different modal determinant and its octave. 8-1 shows the form the Per­

fect Immutable System in the diatonic genus takes in her theory.

The modal determinants have many of the functions of tonics. Assuch,

they serve to identify and define the harmoniai. Schlesinger also considers

that mese itself has tonic functions, a point which is controversial even in
the standard theory (Winnington-Ingram 1936).

The relations the other octave species have to the central Dorian octave

is shown in 8- 2. The seven harmoniai may also be constructed on a common

tone, proslambanomenos, by assigning their modal determinants to hypate

meson. In this case, there are six additional keys or tonoi which are named

after the homonymous harmoniai. The Dorian and the other modal octaves

are then found at corresponding transpositional levels in each tonos. Con-

PS HH PH LH HM PM LM M TS PM TO PO ND TH PN NH

32 28 26 24 12 20 18 16 15 14 13 12 II 10 9 8
A B C D E F G a b, b c d e f g a

,

8-2. The diatonic bnrmoniai as octave MIXOLYDIAN 28 26 14 11 20 18 16 14
species ofthePerfect Immutable Systemin LYDIAN 26 14 12 20 18 16 14 13
theDoriantones. Othertonoi aredefined PHRYGIAN 24 22 20 18 16 14 13 12

by assigning the;" modaldeterminants to DORIAN 11 10 18 16 14 13 I2 II

hypatemesonandproceeding thl'ough the HYPOLYDJAN 20 18 16 (15) 14 I3 11 II 10
subbarmonicseries. The Dorian, botueuer; HYPOPHRYGIAN 18 16 15 13 12 II 10 9
isthebasisfor Schlesinger's theo,y. HYPODORIAN 16 15 13 I1 II 10 9 8
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8-3' Schlesinger's diatonic barmonialastonol.
Elrewhere shegives differentforms, mostnotably
variants oftheLydian, with27instreadofzti,anti
Dorian, with 21 insteadofz» (Schlesinger 1939,
1-]5, 142).A tritesynemmenon couldbedefined in
each tones, butSchlesinger chose nottodo so.
Schlesinger conceived oftheHypoJydian harmonia in
twoformswith15 alternatingwith14 (ibid.,
26-27). Her theory demands thattheDorion trite

synemmenon (15) be employed inaJJthehypo-modes,
butshe allows thealternatkm intheHypolydian
harmonia.

comitantly, there is a seven-fold differentiation of the tuning of the other

notes of the Perfect Immutable System. These tonoi are shown in 8-3.

Anomalies and inconsistencies

The clarity and consistency of Schlesinger's system, however, is only

apparent. Once one goes beyond the seven diatonic harmoniai, anomalies

ofvarious types soon appear.

Schlesinger explicitly denies harmonia status to the octave species run­

ning from proslambanomenos to mese, calling it the bastard Hypodorian or

Mixophrygian. She rejects it because it resembles the Hypodorian an octave

lower but differs in having 8/7 rather than 1611 5 as its first interval. Yet this

scale had a name (Hypermixolydian) in the standard theory and was

rejected by Ptolemy precisely because it was merely the Hypodorian

transposed by an octave.

Each of the diatonic harmoniai also had chromatic and enharmonic

forms derived by subdividing the the first interval of each tetrachord and

deleting the former mesopyknon. This process is identified with kata­

pyknosis and is analogous to the derivation of the genera in the standard

theory (see chapters 2 and 4). These forms are listed in 8-4 for the central

octave of the Perfect Inunutable System in each homonymous tonos,

It is also here that some of the most serious problems with her theory

occur. Although all of the diatonic harrnoniai occur as octave species of the

Dorian, and of each other, the chromatic and enharmonic forms of the

other harmoniai are not modes of the corresponding forms of the Dorian

harmonia. Rather, they are derived by katapyknosis of the homonymous

ton os. The symmetry is broken and the modes are no longer identical in

PS HH PH LH HM PM LM M PM TO PO ND TH PH NH

B C 0 E P G a b c d e' f g' a
,

A

MIXOLYDIAN 44 4 0 36 32 28 26 24 22 20 18 16 14 13 u 11

LYDIAN 4 0 36 31 28 16 24 11 10 18 16 14 13 Il II IO

PHRYGIAN 36 3 1 18 26 14 21 20 18 16 14 13 r z 11 10 9
DORIAN 3 1 28 16 24 12 10 18 16 14 13 11 II 10 9 8

HYPOLYDlAN 28 26 14 22 20 18 16 15 13 Il II 10 9 8 7
HYPOPHRYGIAN 26 24 22 20 18 16 15 13 12 II 10 9 8 7 13/z
HYPODORIAN 24 21 10 18 16 15 13 u II 10 9 8 7 I3/z 6
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8-4. Schlesinger's chromatic andenharmonic bar­
moniai (Schlesinger 1939.214). It isclear that these
scales are notsimp~y modes oftheDorian chromatic
andenharmonicgenera, butarederivedfrom the

homonymous tonoi. The chromaticandenharmonic

f077nS are derivedbytwo successiue doub/ings ofthe
modaldeterminantfo//awed bynote selection to

obtain the desired melodic contours. Theuppertetra­

chords ofthechromaticandenharmonicformsofthe
DO/ian andHypo/ydiall harmoniaiareidentical, In

theHypolydian harmonia 30 (1s) mayreplace 28

(14). The Hypophrygian and Hypodo,'inn bar­

moniaihave asingle enbarmanic-cbromaticfo7m.

different tonoi, Even the modal determinants of the harmoniai may be

changed in different tonoi.

Other inconsistencies and anomalies may be noted. The chromatic and

enharmonic forms are incompletely separated since the enharmonic and

chromatic forms of some harmoniai share tetrachords. Even these pre­

sumed canonical forms do not agree with the varieties she derives else­

where in The Greek Aulos from her interpretation of the Greek notation.

Because of certain irregularities in the notation, she claims that the

modal determinant of the Lydian harmonia must have been altered at some

period from 26 (13) to 27 and that of the Dorian from 22 to 21. These

changes of modal determinants would not only have disrupted the tonal

relations of the original harmoniai, but would also have affected the tonality

of the rest of the system in all three genera. Since the Dorian harmonia was

the center of the system, this would not have been a trivial change.

The question of modal determinant IS

Another problem is the status of IS as a modal determinant. Schlesinger

strongly denies the existence of a harmonia whose modal determinant is IS,

Yet one of her facsimile instruments plays it easily. She also states that

hypate hypaton could be tuned to 30 in the Hypodorian harmonia where

it generates a perfectly good harmonia of modal determinant IS with the

octave at trite synemmenon (8-2).

The inclusion of modal determinant ISis, on the whole, quite prob­

lematical. It enters originally as the Dorian trite synemmenon (B~), the only

accidental in the Greater Perfect System. Although Schlesinger mentions

what she calls the conjunct Dorian harmonia where IS substitutes for 14,

and elsewhere allows 15 to freely alternate with 14, she uses trite syn-

HARMONIA CHROMATIC ENHARMONIC

MIXOLYDIAN 2827262220191814 5655544440393828
LYDIAN 26 25 24 2° 18 17 16 13 52515°4°36353426
PHRYGIAN 2423 22 181615 1412 4847463632313024
DORIAN 4442403228272622 4443423228272622
HVPOLYDIAN 4038 36 28 26 25 242O 40393828 2625 24 2O

HYPOPHRYGlAN 36 35 34 26 24 23 22 18 3635 34 26 2423 22 18
HYPODORlAN 32313°2422212016 32]I 3°24 22 21 2016
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emmenon mainly to construct the diatonic hypo-modes. This is very much

at variance with the usage of this note by the standard theorists whose

Hypodorian, Hypophrygian, and Hypolydian modes employ only the

natural notes of Greater Perfect System.

For these theorists, trite synemmenon and the rest of the synemmenon

tetrachord are part of the Lesser Perfect System and are used to primarily

illustrate the melodic effect of modulations to the key a perfect fourth

lower. Bacchios also employs it to illustrate certain rare intervals such as the

ekbole, spondeiasmos, and eklysis (chapters 6 and 7)' The combination of

the Greater and Lesser Perfect Systems to form the Perfect Immutable

System is basically a pedagogical device, not a reflection of musical prac­

tice. Furthermore, the Lesser Perfect System terminates with the syn­

emmenon tetrachord, but to complete Schlesinger's hypo-hannoniai the

note sequence would have to switch back into the notes of the Greater

Perfect System. Although chromaticism and modulation occur both in

theory and in the surviving fragments (\iVinnington-Ingram 1936), this use

of synemmenon would seem to be most unusual.

Historical evidence

Much of Schlesinger's case for the harmoniai is based on fragmentary

quotations from classical Greek writers. This evidence is dubious support

at best.

Theorists such as Aristoxenos complain about the unstable pitch and

indeterminate tuning of the aulos (Schlesinger 1939)' Aristoxenos claims

that the intervals of music are determined by the performance skill of the

player on both stringed and blown instruments and not by the instruments

themselves. This polemic may be interpreted either as referring to the

inherent pitch instability of the instrument or to the difficulty of bending

the pitches so as to approximate a scale system for which it is not physically

suited, i.e. the standard tetrachordal theory. Whatever the correct inter­

pretation, the passage does suggest that Schlesinger's harmoniai played

little or no role in Greek musical practice in the fourth century BeE.

The problem lies with our ignorance of the Greek music and its mode

of performance. It is quite possible for an instrument to be musically

prominent and at the same time difficult to play in acceptable tune. Schle­

singer may well have been right about the natural scales of auloi and still

be entirely wrong'about their employment in Greek music ofany period.
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The hannoniai in world music

Schlesinger also tries to bolster her argument by appealing to eth­

nomusicology. Her case for the employment of the harmoniai in non­

European folkand art music givesthe impression of overpleading, especially

in her analysis ofIndonesian tunings. It is true, however, that wind instru­

ments from many cultures often have roughlyequidistant, equal sized finger

holes. For example, the scales of many Andean flutes do appear to resemble

sequences of tones from the various harmoniai, although the scalesmay not

be identical throughout the gamut (Ervin Wilson, personal communica­

tion). The scales on these instruments are usually pentatonic, rather than

heptatonic, Often one or more tones will diverge from the heptatonic pat­

tern, particularly with respect to the vent, which is tuned to bring out the

pentatonic structure. Nevertheless, some of the harmoniai sound very sim­

ilar to the scales heard on recordings of Bolivian and Peruvian music.

Hence, these data mayserve.asat least a partial vindication ofher ideas.

Empirical studies on instruments

In The Greek Aulos, Schlesinger made use of a large body of data obtained

by constructing and playing facsimiles of ancient auloi. She also studied

fipple flutes and other folk wind instruments. These studies deserve critical

attention.

The chief difficulty one has in evaluating this work is its lack of rep­

lication by other investigators. However, there are two published experi­

mental studies which are relevant to her hypotheses.

The first is that of Letter, who made the assumption that two of the

holes on the surviving auloi were 4/3 or 21r apart (Letter 1969). From

measurements on these instruments, he determined the probable reed

lengths. His measurements and calculations yielded a number of known

retrachords, including ulr I . I IlrO' 10/9,9/8.88/81 . r a/rr, 9/8 . r6/r 5 .

10/9, I4/r 3 ·8/7' r31r2, and some pentachordal sequences, but little con­

vincing evidence for the subharmonic series or the harmoniai.

More recently, Amos built modal flutes with holes spaced at increments

of one-eighth the distance from the fipple to the open end and the studied

the resulting intervals (Amos I98r). This procedure, however, is not really

in accord with Schlesinger's work. She employed rather complex formulae

involving corrections for the diameter and certain other physical param­

eters to determine the spacing of the holes of modal flutes.
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The pitches of Amos's flutes were measured by audibly comparing the

flute tone to a calibrated digital oscillator and minimizing beats. Amos's

results show that the resulting intervals are subject to wide variation from

flute to flute and depend upon humidity, wind pressure, fingering, and

other parameters.

"While not strictly comparable to Schlesinger's results, the results of

these investigators suggest that one should be cautious in extrapolating the

tuning of musical systems from the holes of wind instruments.

Schlesinger herself made the same caveat and stated that the aulos alone

gave birth to the harmoniai. She claimed that the acoustical properties of

the aulos are simpler than those of the flute, and therefore, one can accu­

rately deduce the musical system from the spacing of the finger holes of

auloi. People who have made and played aulas-like instruments are less

certain.

Lou Harrison found the traditional Korean oboe, the piri (and the

homemade miguk piri), to be difficult to play in tune and noted its tendency

to overblow at the twelfth (personal communication). Jim French, who has

spent a number ofyears researching the aulas from both an archaeological

and an experimental perspective, has discovered that the type of reed and

its processing are far more crucial than Schlesinger implies. His results

with double auloi indicate that the selection of a particular reed can change

the fundamental by a 4/3 (personal communication). Duplicated tetra­

chords are thus quite natural on this kind ofinstrument. He has also found

that sequences of consecutive intervals from harmoniai such as that on 16

(Hypodorian) are relatively easy to play on these instruments and may be

embodied in historical examples and artistic depictions.

Composition with the hannoniai

The question of whether or not Schlesinger's harmoniai are relevant to

Greek or world music may be of less importance to the experimental

musician than their possible use in composition. Her most fruitful con­

tribution ultimately may be her suggestion that the harmonia be con­

sidered a "new language of music" (Schlesinger 1939).

Schlesinger tuned her piano to the Dorian harmonia in which C (at 256

Hertz) equals the modal determinant 2.2. Thus she used only an 1 r-pitch

gamut. For some unstated reason, she did not give a tuning for the note B~,

which would have had the modal determinant 25, though she did include
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such prime numbers as 17 and 19 and composites of comparable size such

as 22 and 24. One would think that the Phrygian harmonia on 24 would

make more efficient use of the keyboard, unless there are problems with the

altered tension of the piano strings. This, of course, would not be a lim­
itation with electronic instruments.

Schlesinger was fortunately able to enlist the composer Elsie Hamilton

from South Australia in these efforts. Hamilton composed a number of

works in the Dorian diatonic tuning between 1916 and 1929. In 1935,

Hamilton trained a chamber orchestra in Stuttgart to perform in the har­

moniai. Although several orchestral and dramatic workswere composed and

performed during this period, it has been impossible to find further infor­

mation about the composer or discover whether the scores are still extant.

From the excerpts in The Greek Aulos, it would appear that Hamilton

employed a conservative melodic idiom with straightforward rhythms (8­

6). Schlesinger comments that such a simplification was necessary for both

"executant and listener." The quotations from the score of Agave, brief as

they are, seem quite convincing musically in a realization on a retunable

synthesizer.

Hamilton's harmonic system is of considerable interest. Although

familiar chords are scarce in this system, virtually any interval larger than

a melodic second is at least a quasi-consonance. Rather than attempt a

translation of tertian harmonic concepts to this tuning, Hamilton instead

chose to use the tetrachordal frameworks of the modes as the basic con­

sonances (8-5 and 8-6a). In the Dorian mode, this chord would be 22 16

14 I I (III 11/8 11/7 2/I), with 15 (2 zh 5) as an alternative tone.

A melodic line may be supported by a succession of such chords taken

from all seven of the modes. Hamilton augmented this somewhat sparse

8-5. Harmonization ofSeblesinger's barmoniai.

Tetratbordalframw01'k chords. Chordsfrom the
"conjunct" harmoniai in which 15 replaces 14 are
also ShUW11 where applicnble.

DISJUNCT

MIXOLYDIAN 28:22:20:14
LYDIAN 26:20:18:13
PHRYGIAN 24:18:16:12
DORIAN 22:16:14:11,22:16:15:11
HYPOLYDIAN 20:15:13:10,20:14:13:10
HYPOPHRYGlAN 18:I 3:12:9
HYPODORIAN 16:12:11:8
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8-6. ExcerptsfromAgave byElsie Hamilton, with
ratio numbers.

(a) Tetracborda]framework chords ("Sunrise").

..---------------\0

••&
10

I~

LYDIAN HYPODOIlIAN
HVPOPHRYGlAN DORlA.N LYDIAN

lIYPOLYDlAN

(b) Mixedchorus andtetracbords ofresolution
("Funeral March 'j. )

" 13 12 8 15 8 9 8 II 8

tJ #~ "i J,#~ ., j #~"i .' " ..
PHIlYGIAN J DORIAN JII I

HYPOPHRYGIAN
18 I "f I "f J1YPODORIAl'I"r ••

)
,,'\, - ~

-------
»> ~ I 15J.2

-iJ J .. n .. " "
I J I J I RYPOLYDL N ~41o I

IIi IIF' IIi M'XOLYDlAN ~r I

DORIAN HYPOLYDIAN PHRYGIAN

(c) ClJ11thinedframework chords ("Sunrise").

PHRYGIAN MIXOLYDrAN HYPODORIAN HYPOPHRYGIAN

(d)Modal tranposition.
HYPOLYDIAN

'"_.~
I~ 11ft

;~ to 9 ta 8 \0 9 to \3 10 9 13 10 & 13

HVPOPHRYGIAN

PHllYGIAN
_.

\2&8678 91211109878

147 SCHLESINGER'S HARMONIA!

I~



8-7. Chorda] relations between relatedbarmoniai

(Sch/e.ringer 1939, 543-44)·

D ML HL L HP P HD D ML

TETRACHORDAL CHORDS

II 7 10 13 9 6 8 II 7
7 10 I3 9 I2 8 II 7 IO

B II I4 10 13 9 I2 8 II

II I4 20 I3 IB I2 16 II 14

MIXED CHORDS

7 10 13 9 6 8 II 7
10 13 9 12 8 I I 7 10

B II 14 IO IJ 9 12 8
II I4 20 13 I8 12 16 II

INTERVALS OF RESOLUTION

II 7 10 13 9 6 8 II

I4 10 I3 9 I2 8 II 14

vocabulary with chords formed by the union and intersection of chords

from two related harmoniai (8-6b, 8-6c, and 8-7). In the latter case, the

chords are resolved to their conunon dyad.

She also discovered that parallel transposition results in changes of

modality which are musically exploitable (8-6d), although the given exam­

ples are stated to have been approximated to the piano intonation.

One would characterize her harmonic techniques as essentially poly­

tonal and polymodal, rather than "diatonic" or "chromatic."

It is a pity that more examples of Hamilton's use of the harmoniai are

not extant. From this limited sample, it appears that Schlesinger's system

succeeds as a "new language of music."

Schlesinger's harmoniai have inspired other composers, including

Harry Partch and Cris Forster. Partch devoted a large part of his chapter

on other systems of just intonation to her work, citing it as a justification to

proceed on to ratios of! 3 (partch [1949] 1974). He correctly identified her

harmoniai with his Utonalities, with the addition of the Secondary Ratio,

16/15' Forster has constructed several instruments embodying the ratios

of 13 in a Partch tonality diamond context. He has also composed a con­

siderable body of music for these instruments (Forster 1979).

Extensions to Schlesinger's system

Although Schlesinger's system suffers from internal inconsistencies and

omissions, her scales form a fascinating system in their own right, inde­

pendent of their questionable historical status. The most obvious of the

corrections or enhancements is to rationalize her enharmonic and chro­

matic forms so that all three forms of each harmonia are distinct. The next

step is the definition oflocal tritai synemrnenon in each of the tonoi so that

correct hypo-modes and conjunct harmoniai may be constructed. Finally,

new harmoniai based on modal determinants not used by Schlesinger are

proposed. These new modal determinants range from 15 to 33.

Rationalization of the harmoniai

The first and most obvious extension to Schlesinger's system is to furnish

distinct chromatic and enharmonic forms for her diatonic harmoniai. This

may be done by katapyknosis of the diatonic with the multipliers 2 and 4-
To obtain the corrected chromatic versions, the first interval of each

tetrachord of the diatonic harmoniai is linearly divided into two parts. The

two new intervals are retained while simultaneously deleting the topmost
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note of each tetrachord to create the characteristic interval of the genus.

By this process, the old diatonic first intervals become the pykna of the new

chromatic forms.

The enharmonic is created analogously by katapyknosis with four. The

first two new intervals are retained, leading to pykna which consist of the

chromatic first intervals. This procedure is equivalent to performing

katapyknosis with two on the chromatic genera resulting from the oper­

ations above.

Wilson has suggested performing katapyknosis with 3 to produce tri­
chromatic forms (personal communication). Ptolemy used the same tech­

nique to generate his shades. This operation produces two forms, a I + I

form in which the two lowest successive intervals are retained and a I + 2

form in which the lowest and the sum of the two highest are used. The

pykna ofthe I + I and I + 2 forms are thus different and the I + I form tends

to melodically approximate the enharmonic. A third form, the 2 + I,

potentially exists, but would violate Greek melodic canons (chapter 3).

In an analogous manner, katapyknosis by 5 and 6 are possible if the

interval to be divided is large enough. These divisors generate what may

be called pentllchromatic, pentenbarmonic, bexacbromatic, and bexenbarmonic

genera. The forms of the rationalized harmoniai including the two tri­

chromatic as well as the pentachromatic genera, created from a 2 + 3 divi­

sion of the pyknon, are shown in 8-8.

If one generates all the forms of a harmonia which do not violate

accepted melodic canons by katapyknosis with the numbers I through 6,

nineteen genera result. The Hypermixolydian or "bastard Hypodorian"

provides a good example of this process because the first diatonic interval is

the comparatively large septimal tone 8/7 (231 cents). The nineteen kata­

pyknotic genera ofher "bastard Hypodorian" are shown in 8-9.

Local tritai synenunenon

Although all of the diatonic harmoniai can be represented as octave species

of the Dorian harmonia (plus trite synemrnenon) by choosing different

notes as modal determinants, in the homonymous tonoi the central octave

is occupied by the notes of the corresponding harmoniai, Since all of the

tonoi are structurally as well as logically equivalent, the argument which

demanded that 15 replace 14 in the hypo-modes of the Dorian requires

that a local trite synemmenon be defined in each tonos. Otherwise, the
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8-8. Rationalizedbarmoniai. These barmoniai shouldhe compared toSchlesinger's awn assignificantdifferences existbetween

these andsome ofhers in thechromaticandenharmonicgmera.Three newgenera arealsoprovided; these arebasedonkatapybw­

sisby3 and5 insteadof2 and4. To avoidfractions, some numbershavehemdaubled. Inprinciple, 14moyhesubstitutedfor 15 in
thehypo-1tUJdes. 14alternateswith15 in theHypoiydinn. Topreserve melodiccontour; thechromaticandenharmonicformsofthe
Hypodorian arederivedfromthe"bastard"harmonia. Theforms oftheknuer tetracbords ofSchlesinger'spreferredharmonia

wouldhe]2]I 3024,48474636,48474536, and80787560..

Mixolydian TRICHROMATIC I PENTACHROMATIC

DIATONIC 3635342724232218 50484535 65 63 30 25
14 13 12 II 10987 TRICHROMATIC 2

Hypophrygian
CHROMATIC 363533 2724232118

DIATONIC
28272622 20191814 ENHARMONIC

1816151312 II 109
TRICHROMATIC I 48474636)2 31 3° 24

CHROMATIC
42 41 40 33 30 29 28 21 PENTA CHROMATIC

181716131223119
TRICHROMATIC 2 60585545403835 30

TRICHROMATIC I
42 41 39 33 30 29 27 2I Dorian 5452 5039 )6 35 34 27

ENHARMONIC
DIATONIC TRICHROMATIC 2

5655544440393828 111098713611 5452 48 39 363533 27
PENTACHROMATIC

70 68 65 55 5°4845 35
CHROMATIC ENHARMONIC

22 21 20 16 14 27 13 I I 363534 26 24472318
Lydian TRICHROMATIC I PENTACHROMATIC

DIATONIC )332312421414033 908680656058 5545
1312 II 1098713 TRICHROMATIC 2

CHROMATIC 33 32 30 24 2I 2° 39 33
Hypodorian

2625242018171613
DIATONIC

ENHARMONIC
161 5 13 12 II 10 98

TRICHROMATIC I 44434232 28 55 27 22
3938373027262539

CHROMATIC
PENTACHROMATIC

32 30282422 21 2016
TRICHROMATIC 2 55 53 50 40 35 34 65 55

39 38 3630 27 26 2439
TRICHROMATIC I

ENHARMONIC
Hypolydian 48 46 44 36 33 32 F 24

52 5I 5°40 36 35 34 26
DIATONIC TRICHROMATIC 2

PENTACHROMATIC
10987136115 484642 3633 32 3° 24

6563605045434065
CHROMATIC ENHARMONIC

201918 14 13 2512 10 6462604844434232
Phrygian TRICHROMATIC I PENTACHROMATIC

DIATONIC 30 29 28 2I 39 38 37 15 8076706055535040
121110987136 TRICHROMATIC 2

CHROMATIC 30 29 27 2I 39 38 36 15
2423221816151412 ENHARMONIC

4039382826512520
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r,
three hypo-modes in each tonos would be merely cyclic permutations of

the original sequence and would therefore lack modal distinction. These

tritai synemmenon are also needed to to form what Schlesinger would

probably term conjunct hannoniai.

The new tritai synemmenon may be supplied by analogy through kat­

apyknosis of the disjunctive tone by 2. These additions, of course, increase

the number ofpossible scale forms, as the new notes may alternate with the

lesser of their neighbors as 15 alternates with 14 in the Dorian prototype.

This alternation generates fairly wide intervals in the range of augmented

seconds and gives the harmoniai containing them a chromatic or harmonic

minor flavor not present in the corresponding modes of the Dorian

harmonia.

NO. DIVISION MULTIPLIER SPECIES

DIATONIC

8-9. Thenineteen genera ofSchlesinge1''s "bastard Dl 16 14 13 I:Z II 10 9 8 IX 1+1

Hypodo1;an» harmonia. Beyond 6x theintervalsare CHROMATIC

usually too small to be useful melodically. Thenum- CI 16 15 14 12 II 2I 108 2X HI

bers afterthe genus abbreviationsdistinguish the TRICHROMATIC

variousspecies. The multiplierrefers tothemulti- TI 24 23 22 18 33 J2 JI I:Z 3X 1+1

plication ofthe modaldeterminants inkatapyknosis. T2 24 23 2I 1833 32 30 I2 3X 1+2

Thespeciesare defined bytheunit-proportions of ENHARMONIc!CHROMATIC

theirpylma, Tbe sx, sx, and6xdivisions define gen- EI J2 31 3° 24 22 43 2I 16 'IX 1+1

era withboth enharmonicanddircmatic melodic E2 3231292422434116 4" 1+2

properties. E3 J2 31 282 4 22 43 2016 'IX 1+3
PENTACHROMATIC!PEN'i'HNHARMONIC

PI 403938 30 55 2753 20 5X 1+1

P2 4°39373055 27 26 20 5X 1+2

P3 4°39363055 2751 20 5x 1+3

P4 4°3935 30 55 27 25 20 5X 1+4

P5 4038363055 53 51 20 5X 2+2
p6 4°3835 30 55 53 5° 20 5x 2+3

HEXACHRoMATIc!mxENHARMONIC

HI 484746 3633 65 32 24 6x 1+1

H2 4847453633656324 6x 1+2

H3 484744 3633 65 62 24 6x 1+3

H4 484743 3633 65 61 24 6x 1+4

H5 484742 3633 65 30 24 6x 1+5

H6 484643 3633 64 61 14 6x 2+3
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8-10. Conjunct rationalized barmoniai. These barmoniai areformedin analogy tothe

conjunct Dorian ofSchlesinger. The HYPoM7'ian formsarebased on the "bastard"
harmonia. TheIlJWeT tetrachords ofSchlesinger's prefe1Tedform are32 10 30 24,4847

4636,48474536, and 807875 60.

Mixolydian TRICHROMATIC I PENTACHROMATIC

DIATONIC 3635342726253918 5°48457565655550

1413121121987 TRICHROMATIC 2
Hypophrygian

CIiROMATIC 3635 33 5426243918 DIATONIC
2827262221201614 ENHARMONIC

1816151325 II 109
TRICHROMATIC I 4 8474636 35 34 2624 CHROMATIC

4 2 4 140 33 32 3 I 24 2I PENTACHROMATIC
18171613 25 1 2 1°9

TRICHROMATIC 2 6°5855454°3 8 653°
TRICHROMATIC I

4 2 4 1 39 33 3 2 30 24 2 I Dorian 54525° 39 38 37 30 27
ENHARMONIC

DIATONIC TRICHROMATIC 2

56555444434232 2 8
II 1098 15 13 6 II 5452 4 8 39 3 8 3630 27

PENTACHROMATIC
CHROMATIC ENHARMONIC

70 6 8 65 55 53 5040 35 222I 2016151412 II 36 35 34 26 5 I 25 20 18

Lydian TRICHROMATIC I PENTACHROMATIC

DIATONIC 3332312423221833 90868065636050 45

13 12 II 10198713 TRICHROMATIC 2
Hypodorian

CHROMATIC 33323024232II833
DIATONIC

2625242019181413 ENHARMONIC
16151312231098

TRICIiROMATIC I 44434232 3 1 3° 24 22
CHROMATIC

3938373029282I 39 PENTACHROMATIC
32 30 28 24 23 22 18 16

TRICHROMATIC 2 55535°4° 35 33 3°55 TRICHROMATIC I
39 38 36 30 29 27 2I 39 Hypolydian 4846443635 34 27 24

ENHARMONIC
TRICHROMATIC 2DIATONIC

52515°4039382826
201816151312 II 10 4 84642363533 27 24

PENTACHROMATIC
CHROMATIC ENHARMONIC

65 63 60 5 5 5 0 48 4 5 65
20I918I5I4I3II 10 6462604847463632

Phrygian TRICHROMATIC I PENTACHROMATIC

DIATONIC 60585645434133 30 8076706058 55454°

242220181714136 TRICHROMATIC 2

CHROMATIC 60 58 54 4 5 4 3 39 3 3 30

24 23 22 18 17 16 13 12 40393830 292822 20
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8-[I. Synopsis Oftherationalized tonoi. Thetonoi
aretranspositionsoftheDorian modalsequence so
thatthemodaldeterminant ofeach barmoniafaUs
onhypate meson. A local tritesynemmenon hasbeen
defined ineach ofthese barmoniai. In the
Hypolydian, 15alternateswith 14. Wbenmesefalls
on14,tritesynemmenon is27 (27/22). The
Hypodorian also hasa"bastard"formwhich runs
fromproslambanomenos tomese in theDorian tonos.
Thefirrttetrachordis 16141312.

NAME P HH HM M TS P ND

MIXOLYDIAN 44 40 28 22 1I 20 14
LYDIAN 4° 36 26 20 19 18 13
PHRYGIAN 36 32 24 IB 17 16 Il

DORIAN 32 2B 12 16 IS 14 II

HYPOLYDIAN 2B 26 20 15h 14 13 10
HYPOPHRYGlAN 26 24 18 13 2Sh u 9
HYPODORIAN 24 22 16 U 23h II 8

New conjunct forms

The new tritai synemmenon combine with the remaining tones to yield

conjunct forms for each of the harmoniai. In order to preserve genera­

specificmelodic contours, a variation on the usual principle of construction

was employed in the derivation of these scales. The procedure may be

thought of as a type of inverse katapylmosis utilizing the note altemative to

the local trite synemrnenon in some cases. These conjunct harmoniai are

listed in 8-10 in their diatonic, various chromatic, and enharmonic forms.

The tuning of the principal structural notes of the rationalized tonoi is

summarized in 8-1 1 •

New modal determinants

As mentioned previously, one of the most noticeable inconsistencies in

Schlesinger's system is the lack of a harmonia whose modal determinant is

15.Similarly in the new conjunct harmoniai, modal determinants of 17,19,

21,23, and 25 are implied by the local tritai synemmenon of the ration­

alized tonoi. Schlesinger herself stipulates the existence ofharmoniai on 2 I

and 27 as later modifica tions of the Dorian and Lydian harmoniai. She

claimed that these harmoniai were created by shifting their modal deter­

minants one degree lower.

Additional harmoniai on modal determinants 29 and 31 may be added

without exceeding the bounds of the Perfect Immutable System, To these

may be added a harmonia on 33, which, though it exceeds the boundaries

of the Dorian tonos, is included in the ranges of the tonoi of 8-12 and 8­

13. The normal or disjunct forms of these new hannoniai are shown in 8­

12 and the conjunct, which use their local tritai synemmenon, in 8-13. A

summary of these new harmoniai is given in 8-14.

8-u (next page). Newharmoniai. These barmoniaiwere createdtofiBinthegaps in
Schlesinger's system, altbf1Ughsome, such astonoi- I 5,-1.1, and-27,areimplied inhertext.
Three newgenera are alsoprovided; these arebasedonkatapylmosisby3 and5 insteadof2 and4·
In primiple, 14maybe substitutedfor15inthese harmonia, savefur tones-I 5where the
Mixolydian harmoniawouldresult. Simila,"y, 1.1 mayreplace 22 and2 7,26, exceptwhen doing
sowouldchange themodaldeterminant. In thediatonicgenuswhen thefirstintervalabove the
modaldeterminant isroughly asemitone, chromaticalternationwiththenexthighest degree
wouldbemelodicallyacceptable.
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TonOS-IS Tonos-z r Tcnos-sr Tonos-gj

DIATONIC DIATONIC DIATONIC DIATONIC

1513 12 II 10 9 8 15 21 19 18 16 14 13 12 21 272421 201816 14 27 33 30272422201833

CHROMATIC CHROMATIC CHROMATIC CHROMATIC

15 14 13 II 10 19 9 15 21 20 19 16 1427 13 21 5451484036343227 33 3129242221 20 33

TRICHROMATIC I TRICHROMATIC I TRICHROMATIC I TRICHROMATIC I

454443 33 3° 29 2845 63 61 594842 41 40 63 81 7875605452 50 81 99 96 93 72 6664 62 99

TRICHROMATIC 2 TRICHROMATIC 2 TRICHROMATIC 2 TRICHROMATIC 2

45444233 3° 29 2745 63 61 574842 41 39 63 81 78 72 60 54 52 48 81 99 96 90 72 66 64 60 99

ENHARMONIC ENHARMONIC ENHARMONIC ENHARMONIC

30 29 28 21 20 39 19 15 4241403128552721 101 102 40 36 35 34 54 33 Jl 31 24 2243 21 33

PENTACHROMATIC PENTACHROMATIC PENTACHROMATIC PENTACHROMATIC

7571 655550484575 105 101 95 80 706865 105 135129120100908680135 165159150120110106100165

Tonos-I7 Tcnos-aj Tonos-sc Tonos-z r: Schlesingerclaimedthat
DIATONIC DIATONIC DIATONIC theDorian22 waslowered in the

17 15 13 12 I I 10 9 17 2321 201816141323 29262421 20 18 16 29 PIS to2I andthatoftheLydian
CHROMATIC CHROMATIC CHROMATIC from 27 to26; tonos-z t isthusthe

17161512 1121 1017 2322211816151423 292827 II 20 19 18 29 DorianofthePIS.Tonos-zs: It has

TRICHROMATIC I TRICHROMATIC I TRICHROMATIC I proven difficulttoobtain barmoniai

5149473633 32 3I 51 69 67 65 54484644 69 8785836660585687 whose melodicformsarecharacter-

TRICHROMATIC 2 TRICHROMATIC 2 TRICHROMATIC 2 istic ofthegenera. Thistonos

51 49453633 3l 3°5 1 69 67 63 54484642 69 8785816660585487 demands chromaticalternatives (17

ENHARMONIC ENHARMONIC ENHARMONIC for r6,48for47, 23forl2,97for

3433 32 24 22 43 21 17 4645443632 3I 30 23 58575644403938 29
98, etc.). Tonos-zn: Thiswascon-

PENTACHROMATIC PENTACHROMATIC PENTACHRO MATIC
[ectured by SchlesingertobetheSyn-

8581756055535085 Il5 I II 10590807670115 1451411351101009690145
tonolydian. Note21 mayalternate
with 22. It maybedescribedasthe

Tonos-I9 Tonos-ag Tonos-j r LydianofthePIS.Alternative

DIATONIC DIATONIC DIATONIC formsare27241120 18 161427,

19 18 16 14 13 12 II 19 25 21 20 18 16 14 13 25 3I 28 26 23 22 20 18 31 27262S 20 r8 17 I627,and54 53

CHROMATIC CHROMATIC CHROMATIC 524 03 63S 3427. Tonos-zqt In tbe

191817 1413 25 12 19 504721 3632 30 28 25 3I 29 27 23 22 2I 20 31 diatonic, 26 mayalternate with27.

TRICHROMATIC I TRICHROMATIC I TRICHROMATIC I
Tonos-3 I: These barmonisiadmit

575553 42 39 38 3757 75 72 69 5448464475 9389856966646293
severalvariantswhere 24and23.

TRICHROMATIC 2 TRICHROMATIC 2 TRICHROMATIC 2
29and30, 28 and27arealter-

5755514239383657 757 2 6654 48 46 42 75 93 89 81 6966646093
natives. In tonos-33 , thediatonic has

ENHARMONIC ENHARMONIC ENHARMONIC
avariant33 29 27 24, thetbro-

383736282651 25 19 5097473632313025
matic33633° 24, thefirsttri-

3I 30 29 23 21 43 21 3I chromatic999)9172, tbesecond
PENTACHROMATIC PENTACHROMATIC PENTACHROMATIC trichromatic999S 8772,andthe

9591857065636095 125 119 1I0 90 80 76 70 125 155147135115110106100155 pentachromatic 165 IS7 I4S 12O
IIO.
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TonOS-IS Tonos-s r Tonos-s-r Tonos-33

DIATONIC DIATONIC DIATONIC DIATONIC

15 13 12 II 21 18 16 15 2I 19 18 16 15 13 12 21 272421 2019161427 3330272423201833

CHROMATIC CHROMATIC CHROMATIC CHROMATIC

15 14 13 II 2I 20 16 15 2I 20 19 16 15 14 12 2I 54 51 48 4038362827 3331292423221833

TRICHROMATIC I TRICHROMATIC I TRICHROMATIC I TRICHROMATIC 1

45444333 323 1 2445 6361594846443663 81 7875 6058 5642 81 99969372 70 6854 99

TRICHROMATIC 2 TRICHROMATIC 2 TRICHROMATIC 2 TRICHROMATIC 2

45 4442 33 32 30 24 45 6361574846423663 8178726058544281 99969072 70 66 54 99
ENHARMONIC ENHARMONIC ENHARMONIC ENHARMONIC

302928224321 161 5 42414° 32 31 3° 24 21 54105514039382827 333 2 3I 244746 IS 33

PENTACHROMATIC PENTACHROMATIC PENTACHROMATIC PENTACHRO MATI C

75 71 65 55 5350 4°75 105 10195 80 76 706o 105 135 129120100969° 70 135 16515915° 120 116 IIO 90165

Tonos-re Tonos-a j Tonos-so

DIATONIC DIATONIC DIATONIC

17 IS 13 122310917 2321 20 18 17 1413 2] 2926242221 18 1629

CHROMATIC CHROMATIC CHROMATIC

17 161 5 12 23 II 9 17 232221 1817161323 292827222I 20 16 29

TRICHROMATiC I TRICHROMATIC I TRiCHROMATIC I

514947363534 275 1 69 67 65 54 52 5°39 69 8785836664624887

TRICHROMATIC 2 TRICHROMATIC 2 TRICHROMATIC 2

514945363533 275 1 6967635452483969 8785816664604887

ENHARMONIC ENHARMONIC ENHARMONIC

34 33 32 2447 23 18 17 4645443635342623 5857564443423229
PENTACHROMATIC PENTACHROMATIC PENTACHROMATIC

85 81 756058559085 115 11110590868065115 145141135 110 106 10080145

Tonos-rc Tonos-~s Tonos-j r

DIATONIC DIATONIC DIATONIC

191816142712 II 19 2522 201817141325 3128262322201831

CHROMATIC CHROMATIC CHROMATIC

191817142713 II 19 5°4744 3634322625 31 29272322 21 18 31

TRICHROMATIC I TRICHROMATIC I TRICHROMATIC I

57555342414°3357 7572 6954525°3975 93 89 85 69 67 655493

TRICHROMATIC 2 TRICHROMATIC 2 TRICHROMATIC 2

57555142 41 39 33 57 75 72 66545 2 483975 9389816967635493
ENHARMONIC ENHARMONIC ENHARMONIC

383736 2855 54 22 19 5097473635 3436 25 F30 29 23454436F

PENTACHROMATIC PENTACHROMATIC PENTACHROMATIC

9591 85 70 68 65 55 95 125119 1I0 90 86 80 65 125 155147135115 III 1°590155

8- r 3. New conjuncthllT7Jlonwi.ln thiscontext, conjunctmetmf emphyingthekJcpl tones­

specific tritesynemmenon.
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8-I~. Synopsis of thenewtonoi. The tonoi aretrans­
positions oftheDorianmodalsequence sothat the
determinantofeach harmoniafallsonbypate meson.

A local tritesynemmenonfat' each ofthebarmoniai

bas been defined. Certain oddorprime number

modaldeterminants havebern expressedasfractiOlts,
i.e.2Ih, toindicate the bigberoctau« since themodal
determinantsrepresentaliquotparts ofvibratingair
columns orstrings. Madill determinants 14 (28) and
IS (30) an alternates. Tonos-qI: in theconjunct

farm, mese is23, tritesynemmenan is 22.

P HH liM M TS P NO

TONOS-IS ZZ 20 IS I I 2liz 10 ISIz
TONOS- 17 24 Z2 17 12 231z I I 17/2

TONOS- I9 28 26 19 14 27h 13 I9 h

TONOS-2I 32 28 21 I6 IS 14 1I/2

TONOS-23 36 3z z3 18 17 16 23/2

TONOS-2S 36 32 25 18 17 16 2S/2
TONOS-27 40 36 z7 20 19 18 27/2

TONOS-29 44 40 29 22 21 20 29/2

TONOS-3 I 48 ~4 JI 24 22 22 JI/2

TONOS-33 48 44 33 24 23 22 33/2

Harmonizing the new harmoniai .

The new harmoniai may be harmonized by methods analogous to those

Elsie Hamilton employed with Schlesinger's diatonic hannoniai. The tet­

rachordal framework chords of both the disjunct and conjunct forms of the

new hannoniai are shown in 8-15.

The framework chords from the new conjunct forms are particularly

interesting harmonically as they provide a means of incorporating the new

hannoniai with the older system. Because many of the modal determinants

of the new harmonia are prime numbers, their tetrachordal framework

chords do not share many notes with the ones from the older scales. Cer­

tain chords, however, from the new conjunct harmoniai do share notes with

the framework chords of the older forms and thus allow one to modulate

by common tone progressions. These chords may also be used in pro­

gressions similar to those in 8-6c and 8-7.

Moreover, these chords may be used to harmonize the mesopykna of the

chromatic harmoniai and the oxypykna of the enharmonic which seem­

ingly lay outside of Hamilton's harmonic concerns.

Harmoniai with more than seven tones

Although it is quite feasible to define hannoniai with modal deter­

minants between 33 and 44 (the limit of the Mixolydian tonos), it becomes

increasingly difficult to decide the canonical forms such harmoniai might

take because of the rapidly increasing number of chromatic or alternative

tones available in the octave.

Rather than omit the extra tones in these and the harmoniai with smaller

modal determinants, one may define harmoniai with more than seven tones

and utilize the resulting melodic and harmonic resources.

8-15. Harmonization of thenewbarmoniai.
Tetratbordalframework chords.

HARMONIA-IS

HARMONIA-I 7

HARMONIA-I9

HARMONIA-2 I

HARMONIA-23

HARMONIA-2S

HARMONIA-27

HARMONIA- 29

HARMONIA-3 I

HARMONIA-33

DISJUNCT

IS:II:IO:ISIz

I7: rz: n :I7h

I9: I4:I3:I91z

zr:I6:I4: 2I12

23:I8:16:231z

2S:I8:I6:2SIz

27:20:18:2712

29:22 :zo:2912

P:24:22:3IIz,3I:23:ZZ:3Ih

33:24: 2 2:3312

CONJUNCT

IS:II:8:Ish

I7: I 2:9:I71z

I9:1~:1 1:1912
zr:I6:rz:2Ih

Zp8:q:23h
2S:I8:IJ:2SIz

27:20:14:2712

29:22:16:2912

31:23:r8:3IIz,3I:24:I8:311z

33:24:18:3312
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8- I 6. HarmonicformsofthePhrygian barmonia.
Foreach ofthediatonic barmoniai, theharmonic
forms areobtainedbytakingthez/: complementof
each ratio orinterval.

FIRST VERSION OF THE INVERTED PHRYGIAN

DIATONIC

12 13 141618 20 12 24

CHROMATIC

12 14 IS 16 18 22 23 24

ENHARMONIC

243 03I 32 36464748

SECOND VERSION OF THE INVERTED PHRYGIAN

CHROMATIC

24 25 2632 36384048

ENHARMONIC

484950 6472 747696

8-17. Harmonicftrmsofthe conjunct Phrygian
harmonia. For each oftheconjunctdiatonic bar­
moniai, theharmonicfOlmisobtainedbytakingthe
z/i complementofeach ratio orinterval.

FIRST VERSION OF THE INVERTED CONJUNCT

PHRYGIAN HARMONlAI

DIATONIC

12 13 14 17 18 2012 24

CHROMATIC

12 13 16 17 18 12 23 24

ENHARMONIC

24 26 34 35 36464748

SECOND VERSION OF THE INVERTED CONJUNCT

PHRYGIAN HARMONlAI

CHROMATIC

2426272836384048

ENHARMONIC

4852 53 54 72 747696

Another source of new hannoniai has been suggested by "Wilson. One

might insert pyIma above notes other than the first and fourth degrees of

the basic diatonic modal sequence. Interesting variations may also be dis­

covered by inserting more than two pyIma, or any number at any location.

The final result of this procedure is to generate "close-packed" scales with

many more than seven notes.

Harmonic forms of the harmoniai

Schlesinger's original harmoniai and all of the new scales generated in

analogy with hers are 1- or a-octave sections of the subharmonic series.

These musical structures may be converted to sections of the harmonic

series by replacing each of their tones with their zII complements or

octave inversions.

The resulting harmonic forms may be used in exactly the same way as

the originals, save that the modalities of the chords (major or minor) and

the melodic contours of the scales are reversed, Le., the intervals become

smaller rather than larger as one ascends from the lowest tone.

In general, chords from the harmonic series are more consonant

than those from the subharmonic. However, the tones of the harmonic

scales are more likely to be heard as arpeggiated chords than are the

scalar tones of the subharmonic forms.

There is only one form of each of the inverted diatonic harmoniai,

but the chromatic, enharmonic and other katapyknotic forms (8-9)

have two versions. The first forms are the octave complements of the

corresponding subharmonic originals and these forms have their pykna

at the upper end of each tetrachord. The second versions are produced

by dividing the initial intervals of the two tetrachords of the inverted

diatonic forms as in the generation of the chromatic and other kata­

pyknotic forms of 8-9. An example which illustrates these operations

is shown in 8-16. The Phrygian harmonia, of modal determinant IZ,

is inverted and then divided to yield the diatonic, chromatic and

enharmonic forms. Both versions of the chromatic and enharmonic

harmoniai are listed, and the other katapyknotic forms may be

obtained by analogy.

Conversely, the second of the new harmonic forms may be inverted

to derive new subharmonic harmoniai whose divided pykna lie at the

top of their tetrachords. These too are listed in 8-16.

Conjunct harmoniai may also be inverted to generate harmonic
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8-18. Wilson's diapbanic cycles. These diapbonic cycles (diacycles) maybe constructed onsetsofstrings tunedalternately a]/2 and#] apartsince the
lnl-gest divided interual isthe]/2. Tbe orderoftbesegments, nodes, andconjunctions maybepermutedaccording totbefolknuing scbeme: alb· c/d•
a/d- clbc 2!I andcld.alb»c/b .aid =z/s .Aitematiue conjunctionsareindicated by primed nodes, i.e.c',d'. Some diacyclessucb asnumber21 have

two independentsets ofnodesandconjunctions. Thesecond issymbolized by ef gh.

7· 3°..·....·.. 28........... 21 20 19·
a c d b
(312 . 4/3; 10/7 . 7/5)

B. 33 32.......... 24...........22 20.
a c d b
(312 .4/3; I6III . II/B)

9· 36...........32 ..........27........... 24 2I.
fl, c c' d b
(3/2 . 4/3)

10. 39...........36 ..........27 26 22.

a c d b
(3/2· 4/3; 13/9' I8lr3)

II. 42...........4° ..........3° ...........28 23·
a c d b
(312 . 4/3; 10/7 . 7/5)

I. 9 8 7 6
a c b, d
(312 . 4/3)

2. 12 II 10 9 8
0, c d b
(312 . 4/3)

3· 18 17 16 15 14 13 12
a c b,d

4. 21 20 19 18 17 16 15 14
a c d b
(312 . 4/3; 10/7' 7/5)

5. 24 23 22 2I 20 19 18 17 16
~c b d
(3/2 . 4/3)

6. 27 26 25 24 23 22 2I 2 ° 19 18
a c b, d
(312 . 4/3)

12. 45 44· ..· 4° 33 30
a c' c d' b,d
(312 . 4/3; 221r 5 . X51rI)

13· 48 44 36 33 32

a, c' a d' d b
(312 . 4/3; I61r I . 11/8)

14· 51 48 36 34
a c d b
(312 . 4/3; 17/12 . 241r7)

15· 54 52 48 39 36
a ( c ~ ~d

(312 '4/3; 13/9' 18lr3)

16. 57 56 52 42 39 38
II c' c d' d b
(3/2 . 4/3; 19lr4 ' 28/19; I9lr3 . 26119)

17. 60 56 42 4°
a c d b

(312 . 4/3; 10/7' 7/5)

18. 63 60 56 45 42
a c' c d' b,d
(3 12 . 4/3; 10/7 . 7/5)

66 64 60 48 45 44
a c' c d' d b

(312 . 4/3; 22lr5' I5lr I; x6/n· II/8)

6968 64 51 48 46
ace d' d b
(312 . 4/3; 23/16. 31123; 23lr7' 34/23)

72 7° 68 64 515° 4948
a e,g c' c d' h f b, d
(312 . 4/3; 10/7 . 7/5; 24lr 7 . 17/11 )

75 68 51 50
a c d b
(312. 4/3; 25fr7' 34125)

78 76 57 52

a c d b
(3/2 . 4/3; :z 6lr 9 . X911 3)

24· 81 80 77 60 56 55 54
a c,e g d h f b
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8-19. Diacycleson20II3. These diacycles can be
constructedonstrings I3II 0 and20II3 apart.

10°99 96 91 71 7° 6665
aeg c hd! b
(20113'13/10; 10/7' 715i 312 '4/3; I6/II' II/8)

50 49 48 42 4°
a e c, g f, h b, d

(5/4. 615 . 7/6. 8/7)

28 27 24 2I

a, c e d b.]

(4/3' 716 . 917)

Other directions: Wtlson's diaphonic cycles

Ervin Wtlson has developed a set of scales, the diaphonic cycles, which

combine the repeated modular structure of tetrachordal scales with the

linear division of Schlesinger's harmoniai (Wilson, personal commu­

nication).
The diaphonic cycles, or less formallydiaeyc/es, may be understood most

easilyby examining the construction of the two simplest members in 8-18.

In diacycle I, the interval 312, which is bounded by the nodes a and b, is

divided linearly to generate the subharmonic sequence 9 8 7 6 or III 9/8

9/7 312. Subtended by this 312 is the linearly divided 4/3 bounded by the

nodes c and d. This segment forms the sequence 8 7 6 or III 8/7 4/3.

Five-tone scales may be produced by joining these two melodic segments

with a common tone to yield III 9/89/7 3h 12/7 211 (n - b on III, then

c-d on 3/2) and III 8/7 4/3 3/2 12/7 211 (c-d on III, then n-b on 4/3):

9 8 7 (6) and 8 7 (6)

(8) 76 (9) 8 7 6
The tones in parentheses are common to the two segments.

Diaphonic cycle 2 generates two heptatonic scales which are modes of

Ptolemy's equable diatonic genus: III 1211 I 615 4/3 16/II 8/5 16/9 2/1

and III 12llI 615 4/3 312 18/II 9/5 211. The two forms are respectively
termed the conjunctive and disjunctive or tetrachordal form.

As the linear division becomes finer, scales with increasing numbers of

tones are generated. At number 4, a new phenomenon emerges: the exis­

tence ofanother set of segments whose conjunction produces complete

scales. The nodes /I,d and c,b define a pair of diaphonic cycles whose seg­

ments are 10/7 and 7/5.
These diaphonic cycles can be implemented on instruments such as

guitars by tuning the intervals between the strings to a succession of 312's

and 4/3'5. The fingerboards must be refretted so that the frets occur at

equal aliquot parts of the string length. Wilson constructed several such

guitars in the early 1960s.

forms as shown in 8-17. In this case, the disjunctive tone is at the

bottom with the two tetrachords linked by conjunction above.

These operations may be applied to all of the harmoniai described

. above. Similarly, the other musical structures presented in the

remainder of this chapter may also be inverted.

IS
!

16
b,

19 18 17
c d

(4/3 •514 . 615)

20
a,

8-20. Triapbonic andtetrapbonic cycles on-P3 and
5/4' (1) may beconstructed onthree strings tunedto
III, #3, and312. (2)requiresstrings tunedtoIII,
413, and312. u) mayberealizedonfourstrings
tunedto1/1, 6/S,I47IIooand42f2s.

40 39 36 3° 27 26
a c,e g d ! b,h

(20113' 13110; 3/2 . 413; 13/9.18/13)

60 56 52 42 .. 40 39
a,e g c f,h d b

(20113' 13110; 3/2 . 4/3; 10/7 ' 715)

8o .. 78 76 60 57 52
a ~e g d! ~h

(20/13 . 13110; 3/2 . 4/3; 16/19 . 1911 3)
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8-21. Divisionsofthefifth. (I) isdescribedasan
"aulas-scale (phrygian, reconstructedbyKS)" in
Schlesinger 1933. (2) isanotber"autos-scale (Hypo­
dorian), " identified with anotherunnamedscale of
Aristoxmos (Nfeibomius 1652,72). (3) isan "aulas­

scale (Mixolydian), "identifiedwith another

unnamedscale of'Arisuxcmos. (4) isidentifiedwith
yet anotherscale of'Aristoxmos. (5) spansan aug­
mentedfifth andappears also in ber interpretation of
thespondeion. (6) isthe "singularmajorl> ofSafiyu­

d-Din (D'Et'langer 1938,281). TheIslamicgenera
arefrom Rouanet 1922. (8), Isfahan, spans only the
4/3.19) islabeled "ZirafkendBouzourk. I> Rouanet's

lastgenus isidentical toSnfiyu-d-Din'sscale ofthe
somename.

SCHLESINGER'S DIVISIONS

I. 14/23' 13/21' 11/9' 9/8
2. 16II5' IS/14' 7/6. 9/8
3· 28/27' 9/8 . 8/7 . 9/8

4· 2 Iho . 10/9 . 9/8 . 8/7
5· r r/ro- 10/9' 9/8 . 8/7

ISLAMIC GENERA

6. 14/13' 8/7 . 13/I 2 • 14/I 3 . II 7/I 12

7· 13/12 ' 14113 . 13/u . 287/271
8. 13/12 . 14/13 . IS/I4' 16115

9· 1411 3 ' q/u . 36/35' 9/8. 10/9

Wilson has also developed a set of simpler scales on the same principles

under the general name of "Helix Song." They consist of notes selected

from the harmonic series on the tones III and 4/3' These have been used

as the basisof a composition by David Rosenthal (Rosenthal 1979).

Triacycles and tetracycles

For the sake of completeness, some new diacycles have been con­

structed on the interval pair 2oh3 and 13ho. These are listed in 8-19. As

zoh3 is slightly larger than 3/z, some new diacycleson 312 are generated

incidentally too.

Larger intervals and their octave complements might be used, but the

increased inequality in the sizes of the two segments would probably be

melodically unsatisfactory. This asymmetry may be hidden by defining

three or four segments instead of merely two. A few experimental three­

and four-part structures, which may be called triacytles and tetracycles, are

shown in 8-20.

Linear division of the fifth

As a final note, it must be mentioned that both Schlesinger (1933) and the

Islamic theorists also recognized scales derived by linear division of the

fifth instead of the fourth or octave (8-2 I). Not surprisingly, Schlesinger's

are presented as support for the authenticity of her harmoniai.

It is likely that the Islamic forms had origins that are independent ofthe

Greek theoretical system. The genus from Safiyu-d-Din (D'Erlanger

1938) may be rationalized as being derived from the permuted tetrachord,

14!I 3 ' 8/7 . 13/12 , by dividing the disjunctive tone, 9/8, of the octavescale

into two unequal parts, 14!I3 and II 7!I I2. Characteristically, a1124 per­

mutations of the intervals were tabulated.

Rouanet's scales deviate even more from Greek models, though the

tetrachordal relationship may still be seen (Rouanet 1922).
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9 The Catalog of tetrachords

THIS CATALOG ATTEMPTS a complete and definitive compilation of all the

tetra chords described in the literature and those that can be generated by

the straightforward application of the arithmetic and geometric concepts

described in the previous chapters. While the first of these goals can be

achieved in principle, the second illustrates Aristoxenos's tenet that the

divisions of the tetrachord are potentially infinite in number. It seems

unlikely, however, that any great number ofmusically useful or theoretically

interestingtetrachords has been omitted. Figures 9-1 through 9-6 show that

the two-dimensional tetra chordal space is nearly filled by the tetrachords in

the Catalog. The saturation ofperceptual space is especially likely when one

considers the finite resolving power ofthe ear, the limits on the accuracy and

stability ofanalog and acoustic instruments, the quantizing errors of digital

electronics, and our readiness to accept sufficiently close approximations to

ideal tunings.

Nevertheless, processes such as searches through large microchromatic

scales(chapter 7) and proprietycalcu1ations (chapter 5) will occasionally turn

up new genera, so perhaps one should not be too complacent. The great

majority of these new tetrachords, however, will resemble those already in

the Catalogor be interchangeable with them for most melodic and harmonic

purposes.

Organization of the Catalog

The tetrachords in the Main Catalog are listed by the size of their largest

interval, which, in lieu of an historically validated term, has been called the
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9-2. Tetracbords injustintonation:fit'S! vs.second
interuals. Theoblique lines are theuppel'andlower
limits ofthesecond interualfor each valueofthefirst.

This f5"aph islimited tothe tetracbords in themain,
l'eduplicl1ted, andmiscellaneous lists.

9- I. Tetrachonls injustintonation: smallest V.I.

largest intervals. Units incents. Theoblique lines
are the upperandlotuer limitsofthe/nrgen interval

fal' each value ofthesmallest. Thisgrapb islimitedto
thetetrachords in themain, reduplicated, andmis­
cellaneous lists.

characteristic interval (CI). The term apyknon would have been used except

that it has been traditionally employed to denote the sum of the two lower

intervals of the diatonic genera. In diatonic tetrachords, this sum is greater

than one half of the fourth.

Those tetrachords with CIs larger than 425 cents are classed as

hyperenharmonic (afterWilson) and listed first. Next come the enharmonic

with their incomposite CIs approximating major thirds. Chromatic and

diatonic genera follow, the latter beginning when the CI falls below 2.50
cents.

For each CI, the genera derived from the I: I, I: 2, and 2.:I divisions ofthe

pyknon or apyknon are listed first and followed by the other species of

tetrachord with this CI. References to the earliest literature source and a

brief discussion of the genus are given below each group.

In addition to the genera from the literature, the majority of the Main

Catalog comprises tetrachords generated by the processes outlined in

chapters 4 and 5. Both the 1:2. and 2:1 divisions are provided because both

must be examined to select "strong," mostly superparticular forms in the

Ptolemaic manner (chapter 2). If strict superpartieularity is less important

than convenience on the monochord or linear order, the 1:2 division is

prefera ble, but recourse to the 2: 1 may be necessary to discover the simplest

form. For example,the threefold divisionof the 16/r 5 pyknon yieldsthe notes

48474645. Ptolemy chose to recombine the first two intervals and reorder

the third to obtain his enharmonic, 46/45' 24/2 3' 5/4.

In general, only the simplest or mostly superparticular divisions are

tabulated in this section; occasionally a theoretically interesting tetrachord

without any near relatives will be found in the Miscellaneous list. Such

isolated tetrachords are relatively uncommon. There are cases,however, in

which all of the other divisions of a tetrachord's pyknon or apylmon have

very complex ratios, and so closely resemble other tetrachords already

tabulated that it did not seem fruitful to list them in a group under the CI

in the Main Catalog.

"Miscellaneous" is a very elastic category. It consists of a collection of

genera of diverse origin that I did not think interesting enough to list in the

Main Catalog.

The order of intervals within each tetrachord is the canonical small,

medium, and large in the case of the historical genera and their analogs.

The new theoretical genera are generally listed in the order resulting from

200

200

FIRST INTERVAL

SMALLEST INTERVAL

a

a

a

100

50 0

30 0

..l
-<
~ 200
l<l
f-<
Z

A

13 100
o
l<l
til
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9-3. Tetracbords injustintonation: pal1Jypataivs.

lichanoi. Theoblique lines aretheupperandlouur
limitsof licbanosfor ea.h value ofparhypate. This
graph islimitedtothetetracbords in themain,
reduplicated, andmiscellaneous lists.

9-+ Just andtempered tetracbords: smallest us.
largest intervals. Theoblique lineraretheupperand

lotuer limitsofthelargest intervalfor e~h valueof
thesmallest.Thisgraph containsallthetetracbords

in theCam/ago
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their generating process. It should be remembered, however, that all six

permutations of the non-reduplicated genera and all three of the

reduplicated are equally valid for musical experimentation.

With the exception of the Pythagorean 256/243' 9/8. 9/8 andAl-Farabi's

w19' 10/9' 2712 5, the genera with reduplicated intervals are given in the list

of Reduplicated tetrachords.

Those tetrachords defined in either in "parts" of the tempered fourth

or which consist solely of tempered intervals are to be found in the Tempered

list. Needless to say, these tetra chords are a diverse lot, covering

Aristoxenos's divisions, Greek Orthodox liturgical genera (in two systems

- one of 28 parts to the fourth, the other of 30), and those derived from

theoretical considerations. As some of the latter contain rational intervals

as well, a separate list of Semi-tempered tetrachords is included.

No attempt has been made to catalog the very numerous tetrachords and

tetrachord-like structures found in the non-zero modulo 12 equal

temperaments of 4-17.

An index of sources for those tetrachords of historical provenance is

provided.

Unifonnity ofsampling

In order to show the uniformity with which the set ofall possible tetrachords

in just intonation has been sampled in the Catalogs of this cha pter, the genera

from the Main, Reduplicated, and Miscellaneous lists have been plotted in

9- 1,9-2 and 9-3. In 9- I I the smallest intervals are plotted against the largest

intervals or CIs. Asone may see, the area delineated by the two oblique lines

is more or less uniformly filled. However, diagonal zones corresponding to

genera with roughly equal and 1:2 divisions are evident. The tables are

deliberately deficient in genera with commatic and sub-cornmatic intervals,

as these are oflittle use melodically. The few examples in the tables are taken

mostly from Hofmann's list of superparticular divisions (Vogel 1975) or

generated by theoretical operations such as the means of chapter 4.

9-2is a plot ofthe first versus the second intervals ofthe same tetrachords.

Although the graph has a different shape, the same conclusions may be

drawn.

9-3 is a third representation of the same data. In this case, cumulative

rather than sequential intervals have been plotted. This mode reflects the

Greek classification of tetrachords into primary genera (enharmonic,
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9-6. Justandtempered tetmcbords: parhypatai us.
licbsnoi. Theoblique liner are theuppe7'and lower

limits of licbanasfor each value ofthepa7'hypate.
This g7'aph containsallthetetracbords in the
Catalog.

9-5.Just andtempered tetracbords:jim vs.second
intervals. Theoblique linesaretheupperandlouur
limits of thesecond interualfat· each valueofthe

first. This graph containsallthetetracbords in the

Catalog.

CENTSINTERVAL 3512 7 449

24 + 25 + 449

16 + 33 + 449

32 + 16 + 449

27 + 22 + 449

chromatic and diatonic) and shades or nuances (chroai) ofthese genera. The

primary distinction is based on the size of the uppermost interval, usually

the CI except in Archytas's and Ptolemy's diatonics (28127 . 8/7 . 9/8 and

16115' 9/8. 10/9)' The exact nuance or shade is then defined by the size of

the first interval. The position of parhypate is equivalent to the size of the

first interval and the position of lichanos is an inverse measure of the CI.

This graph also reveals the relative uniformity of coverage and the excess

of genera with I: I and 1:2 divisions.

The tetrachords in the Tempered and Semi-tempered lists were added

to the set graphed in 9-1-3, and the entire collection replotted in 9-4-6.

The largest empty spaces in the plots are thus filled. In a few cases, the gaps

could be filled only by creating new genera specifically for this task. These

have been marked in the Tempered tetrachord list.

The Main Catalog

HYPERENHARMONIC TETRACHORDS

HI. CHARACTERISTIC INTERVAL r j Zro 454 CENTS

80/79 . 79/78 . 13/10 22 + 22 + 454

60/49 . I 18/117 . r j/ro 29 + 15 + 454

I20/rI9' 1I9/rI7' 13/io 14 + 29 + 454

100/99.66/65.13/10 17 + 26 + 454 WILSON

The I3/r °would appear to be the upper limit for a genus-defining CI simply

because the pyknotic intervals become too small to be melodically useful,

however perceptible they might remain. In general, tetrachords with

intervals less than 20 cents or with overly complex ratios will be relegated

to the Miscellaneous listing at the end of the Catalog proper, unless there

issome compelling reason, such ashistorical or literary reference, illustration

of theory, or the like, to include them. The pyknon of this hyperenhannonic

genus is the 40/39 (44 cents), which is very close to the Pythagorean double

comma of 324/238. Number 4 is from the unpublished notes ofErvin Wilson.

See also Miscellaneous.

H2. CHARACTERISTIC

72/71 . 71/70 ' 35/27

ro8/x07 . I07/x05 . 3S/z7

54153 . I06/roS . 35127

64163.81/80. 35127
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This genus divides the 36/35 (49 cents), an interval found in Archytas's

enharmonic and Avicenna's chromatic. Number 8 is found in Vogel's tuning

for the Perfeet Immutable System (Vogel 1963.1967) and Erickson's (1965)
analysis of Archytas's system (see chapter 6).

H3. CHARACTERISTIC INTERVAL 2'1./17 446 CENTS

9 68/67. 67/66, nll7 26 + 26 + 446

10 51/50' 100/99' nlI7 35 + 17 + 446

I I I02IIoI ' 101/99' 22/I7 17 + 35 + 446

12 85/84' 56/55' nlI7 20 + 31 + 446 WILSON

The pyknon of this hyperenharmonic genus is 34/33 (52 cents), a

quartertone. The intervening genera with pylma between 39/38 and 35/34
have not so far yielded melodically interesting, harmonically useful, nor

mathematically elegant divisions, but see Miscellaneous for examples. This

genus is replete with intervals of I 7.

H4' CHARACTERISTIC INTERVAL I28/99 445 CENTS

IJ 66/65. 65/64' 128/99 26 + 27 + 445

14 99/98. 49/48. 128/99 18 + 36 + 445

15 99/97' 97/96. 1'1.8/99 35 + 18 + 445
The pyknonofthis genus is 33/32(53 cents), the octave-reduced thirty-third

harmonic and an approximate quarter-tone.

H5' CHARACTERISTIC INTERVAL 31/24 443 CENTS

16 64/63,63/62' 31/24 27 + 28 + 443

17 96/95'95/93'3 1124 18+37+443
18 48/47' 94/93' 31/24 36 + 19 + 443

This hyperenharmonic genus divides the 32/3 I (55 cents). an interval used

in Didymos's enharmonic,

H6. CHARACTERISTIC INTERVAL 40/3 I 441 CENTS

19 62/61·61/60' 4°/31 28 + 29 + 441

20 93/92' 46/45' 4°/31 19 + 38 + 441

2I 93/91 . 91/90 . 40/31 38 + 19 + 441

The pyknon of this genus is 31/30 (57 cents). an interval which occurs in

Didymos's enharmonic,

H7. CHARACTERISTIC INTERVAL 58/45 439 CENTS

22 60/59 . 59/58 . 58/45 29 + 30 + 439

23 90/89. 89/87' 58/45 19 + 39 + 439

24 45/44. 88/87' 58/45 39 + 20 + 439
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25 120hI9' II9/II 6. 58/45 14 + 44 + 439

The pyknon of this hyperenharmonic genus is 30/29 (59 cents).

H8. CHARACTERISTIC INTERVAL 9/7 435 CENTS

26 56/55' 55/54' 9/7 3I + 32 + 435 WILSON

27 42/41.82/81. 9/7 4 2 + 21 +435

28 84/83.83/81'9/7 21+42+435

29 64/63' 49/48. 9/7 27 + 36 + 435

30 7°/69' 46/45' 9/7 25 + 38 + 435

3I 4°/39' 91/90 . 9/7 44 + 19 + 435

32 II2hII . 37/36 . 9/7 16 + 47 + 435

33 81/80' 224°/2187 ' 9/7 22 + 41 + 435

34 9/7' II9!I17' 52/51 435 + 29 + 34
The pyknon of this prototypical hyperenharmonic genus (Wilson,

unpublished) is Archytas's diesis, 28/2 7 (63 cents). Melodically. this genus

bears the same relation to Aristoxenos's soft chromatic as Aristoxenos's

enharmonic does to his syntonic (intense) chromatic. Number 26 isWilson's

original "hyperenharmonic" tetrachord. Divisions 29 and 3I are interesting

in that their first intervals make, respectively, an 8/7 and a I 5h 3 with the

subtonics hyperhypate (diatonic lichanos meson) and mese, and

proslambanomenos and diatonic paranete diezeugmenon aswell.Tetrachord

number 32 is a good approximation to a hypothetical I + 3 + 26parts, 17+ 50

+433 cents-see also number 25 above. Number 33 occurs in Vogel's (1963,

1967) PIS tuning. Number 34 is a summation tetrachord from chapter 4.

H9. CHARACTERISTIC INTERVAL I °4/8 I 433 CENTS

35 54/53'53/52'104/81 32+33+433

36 81/79' 79/78 . 1°4/81 43 + 22 + 433

37 81/80' 4°/39' 1°4/81 22 + 44 + 433
The pyknon of this genus is 27/26 (65 cents). This division is melodically

similar to the 9/7 genus, though not harmonically. Number 37. when

rearranged, generates a I 5h 3 with the subtonic.

HI0. CHARACTERISTIC INTERVAL 50/39 430 CENTS

38 51/5 1' 51/5°' 50/39 34 + 35 + 430

39 39/38. 76/75' 50/39 45 + 23 +43 0

40 78/77 . 77/75 . 50/39 22. + 46 + 430

The pyknon is 26/25 (68 cents) and is inspired by Kathleen Schlesinger's

(1939.214) enharmonic Lydian harmonia.
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HII. CHARACTERISTIC INTERVAL 32125 427 CENTS

41 5°/49' 49/48. 321z5 35 + 36 + 427

42 75/73 . 73/7 2' 32/25 46 + 24 + 427

43 75/74' 37/36. 32/25 23 + 47 + 427

This genus divides the 25/24 minor semitone (71 cents). The phS is the

31z 's complement of 75/64, the 5-limit augmented second (5/4 . 5/4' 5/4'

3/2, reduced to one octave).

ENHARMONIC TETRACHORDS

Er. CHARACTERISTIC INTERVAL 23/r8 424 CENTS

44 48/47' 47/46. 23h 8 36 + 37 + 424 SCHLESINGER

45 36/35 . 7°/69' 2.3h 8 49 + 25 + 42.4 WILSON

4 6 72/7 1 ' ]1/69' 23h 8 24 + 50 + 4 24

47 30/29' rr6/rr5' 2.31z8 59 + 15 + 424 WILSON

48 60/59' rr8/lI5' 2.31z8 29 + 45 + 424

This genus divides the 24/z 3 (74 cents) and lies on the boundary between

the enharmonic and hyperenharmonic genera. It is analogous to the 9/7

genus but divides the hemiolic chromatic rather than the soft or intense

diesis,Numbers 45 and 47 are from Wilson. Number 44 (Schlesinger 1939,

2. 14) is the lower tetrachord of her enharmonic Phrygian harmonia,

E2. CHARACTERISTIC INTERVAL 88/69 42.1 CENTS

49 46/45' 45/44 . 88/69 38 + 39 + 42.1

50 69/67.67/66.88/69 51 + 26 + 42.1

51 69/68. 34/33. 88/69 25 + 52 + 42.1

The pyknon of this enharmonic genus is 2. 3/z 2. (77cents).

E3. CHARACTERISTIC INTERVAL 5°/41 421 CENTS

52 320/313'313/306'51/40 38+39+42 1

53 480/473' 473/459' 51/40 25 + 52 + 421

54 240/z33 . 466/459' 51/40 51 + 26 + 421

The pyknon is 1601z53 (77 cents). The 51/4° is the 31z's complement of

2Oh7'

E4. CHARACTERISTIC INTERVAL 14/r I 418 CENTS

55 44/43' 43/42 ' 14/11 40 + 41 + 418

56 33/31 .64/63' 14/11 53 + 2.7 + 418

57 66/65 .65/63 . 14/11 26 + 54 + 418

58 88/87 . 29/z8 . 14/11 20 + 61 + 418

59 36/35' 55/54 . 14/11 49 + 32 + 418
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60 5°/49' 77/75 . 14/Il 35 + 46 + 418

61 14/Il . 143h40, 40/39 418 + 37 + 44
This is a new genus whose pyknon is 22./21 (81 cents). The 14/II is a

supramajor third found in the harmonic series between the fourteenth and

eleventh partials. It occurs in the Partch diamond and other extended

systems of just intonation.

ES' CHARACTERISTIC INTERVAL 80/63 414 CENTS

62 42/41' 41/4°' 80/63 42 + 42 + 414

63 63/61,61/60.80/63 S6 + 28 +414

64 63/62 . 31/3°' 80/63 27 + 57 + 414

The pyknon of this enharmonic genus is 21120 (84 cents), a common interval

in septimal just intonation.

E6. CHARACTERISTIC INTERVAL 33126 413 CENTS

65 2081203' 203!I98 , 33126 42 + 43 +413

66 312/3°7' 3°7/297' 33126 28 + 57 +413

67 312/3°2 . 3021297 . 33126 56 + 29 + 413

68 52/51' 34/33 ' 33/26 34 + 52 + 413

69 26125'100/99'33126 68+18+413

7078/77'28127'33126 22+63+413

The characteristic interval of this genus is the 3/2's complement of 1j/r I

and derives from the 22:26:33 triad. Thepyknon is 104/99 (85 cents),

E7. CHARACTERISTIC INTERVAL 19!I5 409 CENTS

71 40/39' 39/3 8. 19h 5 44 + 45 + 409 ERATOSTHENES

72 3°129' 58/57 . 19h 5 59 + 30 + 409

73 60/59' 59/57 ' 19h 5 29 + 60 + 409

74 2812 7 ' 135h33 . 19h5 63 + 26 + 409
The pyknon, 20h9 (89 cents), of this historically important genus is very

close to the Pythagorean limma, 2561243, Number 7 I is a good

approximation to Aristoxenos's enharmonic of 3 + 3 +24 "parts," and, in fact,

is both Eratosthenes's enharmonic tuning and Ptolemy's misinterpretation

of Aristoxenos's geometric scheme (Wallis 1682, 170)' The next two entries

are 2: I and I: 2 divisions of the pyknon in analogy with the usual Ptolemaic

and later Islamic practices. Number 73 is a hypothetical Ptolemaic

interpretation of a (pseudo-)Aristoxenian 2 + 4 + 24 parts. An echo of this

genus may appear as the sub-ao division found on the fingerboard of the

Tanbur of Baghdad, a stringed instrument (Helmholtz [18771 1954.517),
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The last species is an analog of Archytas's enharmonic and the first makes

a 1511 3 with the subtonic.

E8. CHARACTERISTIC INTERVAL 81/64 408 CENTS

75 512/499' 499/486.81/64 45 + 46 + 408 BOETHIUS

76 3841371' 742/729 .8I!64 60 + JI + 408

77 768/755' 755/7 29 . 81/64 30 + 61 + 408

78 40/39' 416/4°5.81/64 44 + 46 + 408

79 128/125' 25°/243 . 81/64 41 + 49 + 408 EULER

80 64/63' 28/27.81/64 27 + 63 + 408 WILSON

81 3241z38 • 246/329.81/64 47 + 43 + 408

82 36/35' 224°/2187 .81/64 49 + 41 + 408
In these tunings the limma, 256/243 (90 cents), has been divided. Number

75 is the enharmonic of Boethius and is obtained by a simple linear division

of the pyknon, It represents Aristoxenos's enharmonic quite well, but see

the preceding 19!I5 genera for a solution more convenient on the

monochord. In practice, the two (numbers 7I and 75) could not be

distinguished by ear. Numbers 76 and 77 are triple divisions of the pylmon,

for which "Wilson'sdivision is a convenient and harmonious approximation.

Number 78 isan approximation to number 75, as is Euler's "old enharmonic"

(Euler [1739] 1960,170). Wilson's tuning (number 80) should also be

compared to the Serre division of the 16h5 (5/4 genus). When number 80

is rearranged, the 28127 will make a 7/6 with the subtonics hyperhypate or

mese. In this form, it is a possible model for a tuning transitional between

Aristoxenos's and Archytas's enharmonics. The purely Pythagorean division

(number 81) is obtained by tuning five fifths down for the limma and

twenty-fourup for the double comma. Number 82 is found in Vogel's tuning

(1963,1967) and resembles Euler's (number 79).

E9' CHARACTERISTIC INTERVAL 24119 404 CENTS

83 38/37' 37/36 . 24h 9 4 6 + 47 + 404

84 57/55' 55/54 . 24h9 62 + J2 + 404

85 57/56. 28127 ' 24h 9 31 + 63 +404 WILSON

86 76/75.25124' 24h9 23 + 71 + 404

87 40/39' 117/95' 24!I9 44 + 50 +404

The pyknon is 19/r8 (94 cents). The interval of 24h9 derives from the

16:lg:24 minor triad, which Shirlaw attributes to Ousley (Shirlaw 1917,434)

and which generates the corresponding tritriadic scale. It is the 312
complement of 19/r6.
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EI0. CHARACTERISTIC INTERVAL 34127 399 CENTS

88 36/35' 35/34' 34127 49 + 50 + 399

89 1.7/16. 51./51' 34127 65 + 34 + 399

90 54/53' 53/51' 34127 J1. + 67 + 399

91 1.411. 3 .69/68 . 3411.7 74 + 1. 5 + 399

This genus divides the I8II 7 semi tone of99 cents, used by Vincenzo Galilei

in his lute fretting (Barbour 1953; Lindley 1984). These genera are virtually

equally-tempered and number 88 is an excellent approximation to

Aristoxenos's enharmonic. It is also the first trichromatic of Schlesinger's

Phrygian harmonia.

EII. CHARACTERISTIC INTERVAL 113/90 394 CENTS

91. 1.4°11.33.1.33/1.1.6. II3/90 51 + 53 + 394

93 I80h73' 346/339' II3/90 69 + 35 + 394

94 360/353' 353/339' II3/90 34 + 70 + 394

95 3°11.9' II6III3 . II3/90 59 +45 + 394

96 40/39 ' 1I7II I3' 113/9° 44 + 60 + 394

97 60/59' u8lr13' II3/90 1.9 + 75 + 394

These complex divisions derive from an attempt to interpret in Ptolemaic

terms a hypothetical Aristoxenian genus of7 + 1. 3 parts. The inspiration came

from Winnington-Ingram's 1932 article on Aristoxenos in which he

discusses Archytas's 1.8127 . 36/35 . 5/4 enharmonic genus and its absence

from Aristoxenos's genera, despite the somewhat grudging acceptance of

Archytas's other divisions. In Aristoxenian terms, Archytas's enharmonic

would be 4 + 3 + 1. 3 parts, and the first division is 3·5 + 3·5 + 1. 3· Number 95

is the 4 + 3 division and 93 and 94 are Z:I and I:Z divisions of the complex

pyknon ofratio nolr 13 (roa cents). Numbers 96 and 97 are simplifications,

while number 96 generates an ekbole of 5 dieses (I5h3) with the subtonics

hyperhypate and mese,

Ell. CHARACTERISTIC INTERVAL 64/51 393 CENTS

98 34/33' 33/31. .64/51 51. + 53 + 393

99 51/50' z5124 ' 64/51 34 + 71 + 393

100 49/48. 51/49 . 64/51 36 + 69 + 393

101 68/65 .65/64. 64/51 78 + 1.7 + 393

101. 68/67 .67/64. 64/51 1.6 + 79 + 393

The pyknon of this enharmonic genus is I7lr6 (105 cents), the seventeenth

harmonic and a basic interval in septendecimal just intonation.
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EI3· CHARACTERISTIC INTERVAL S/4 386 CENTS

103 p /3I ' 31/3°' S/4 SS + 57 + 386 DIDYMOS

104 46/45. 24123' 5/4 38 + 74 + 386 PTOLEMY

105 48/47' 47/45' 5/4 36 + 7S + 386

106 1.8127' 36/35 . 5/4 63 + 49 + 386 ARCHYTAS

I07 56/55' 22121 • 5/4 31 + 81 + 386 PTOLEMY?

108 40/39'1.6125' 5/4 44 + 68 + 386 AVICENNA

109 1.5124' 118/uS' 5/4 71 + 41 + 386 SALINAS

IIO 1.1120.64/63' 5/4 84+ 1.7 + 386 PACHYMERES

III 256h43·8I/80·S/4 90+Zl+386 FOX-STRANGWAYS?

III 7617S'20!r9'S/4 23+89+386
II3 96/95' I9/r8 . 5/4 18 + 94 + 386 WILSON

!I4 1361r 3S ' I8h7 . S/4 13 + 99 + 386 HOFMANN

I IS 2561255' 17116. S/4 7 + 105 + 386 HOFMANN

116 68/6S . 5/4 . 52/51 78 + 386 + 34
These tunings are the most consonant of the shades of the enharmonic

genera. Although Plato alludes to the enharmonic, the oldest tuning we

actually have is that ofArchytas (390 BeE). This tuning, number 106, clearly

formed part ofa larger musical system which included the subtonic and the

tetrachord synemmenon as well as both the diatonic and chromatic genera

(Winnington-Ingram 1932; Erickson I96S). Didymos's tuning is the 1:1

division of the I6/rs (112 cents) pyknon and dates from a time when the

enharmonic had fallen out of use. Number 104 is undoubtedly Ptolemy's

own, but the survivingmanuscripts contain an extra page which lists number

107 instead. Wallis believed it to be a later addition, probably correctly.

Numbers 104 and lOS are the 1:2 and 2:1 divisions, given as usual for

illustrative and/or pedagogical purposes. The Avicenna tuning (D'Erlanger

1935, 154) has the S/4 first in the original, following the usual practice of

the Islamic theorists. In this form, it makes a ISh 3 with the subtonic.

Number 109 is Euler's enharmonic (Euler [1739J 1960, 178); Hawkins,

however, attributes it to Salinas (Hawkins [1776] 1963. 27). Danielou gives

it in an approximation with 46/4S replacing the correct I 28/r 25 (Danielou

1943, I 7S)'The Pachymeres enharmonicis attributed by Perrett to Tartini

(Perrett 1926, 26), but Bryennios and Serre also list it.
Number 1II is given as~g Todi by Fox-Strangways (1916, 121) and as

Gunakali by Danielou (I9S9, 134-135). The divisions with extraordinarily
small intervals, numbers I14 and 115, were found by Hofmann in his
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computation of the 26 possible superparticular divisions of the 4/3 (Vogel

1975)·

EI4' CHARACTERISTIC INTERVAL 8 I 92/6561 384 CENTS

117 4374/4235' 4235/4096.8192/6561 57 + 57 + 384

II8 6561/6283.6283/6144.8192/6561 75 + 39 + 384

119 6561/64 22 • 32II/3072 .8192/6561 37 + 77 + 384

120 324/238. 227/3 17 • 8192/6561 47 + 68 + 384

The interval 8192/6561 is Helmholtz's skbismic major third, which is

generated by tuning eight fifths down and fiveoctaves up (Helmholtz [1877]

1954,432). The pylmon is the apotome, 218712°48 (II4 cents). It has been

linearly divided in the first three tetra chords above, but a purely Pythagorean

division is given as number 120.

EI5' CHARACTERISTIC INTERVAL 56/45 379 CENTS

121 3°/29.29/28. 56/45 59 + 60 + 379 PTOLEMY

122 45/43' 43/4 2 ' 56/45 79 + 41 + 379
123 45/44' 22121 • 56/45 39 + 53 + 379
124 25/24' 36/35 . 56/45 71 + 49 + 379
125 80/77 . 33/32 . 56/45 66 + 53 + 379

126 60/59' 59/56 . 56/45 29 + 90 + 379
127 40/39'II7h12'56/45 44+76+379

128 26/25' 375/364' 56/45 68 + 52 + 379
The pylmon is I5h4 (II9 cents). Number 121 is Ptolemy's interpretation

ofAristoxenos's soft chromatic, 4 +4 + 22 parts. Number 125is a Ptolemaic

interpretation of a hypothetical 4.5 + 3.5 + 22 parts, an approximation to

Archytas's enharmonic (Winnington-Ingram 1932). Number 124 is a

simplification of the former tuning, and numbers 122 and 123 are the

familiar threefold divisions. Number 128 is a summation tetrachord.

£16. CHARACTERISTIC INTERVAL 41/33 376 CENTS

129 88/85.85/82' 41/33 60 + 62 + 376

130 42/41' 22121 . 4r/33 42 + 81 + 376

131 44/43' 43/41 . 41/43 39 + 82 + 376

This genus is an attempt to approximate a theoretical genus, 62.5 +62.5 +

375 cents, which would lie on the border between the chromatic and

enharmonic genera. Number 129 is quite close, and numbers 130 and 131

are 1:2 and 2:I divisions of the complex 44/41 (122 cents) pylmon.
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CHROMATIC TETRACHORDS

CI. CHARACTERISTIC INTERVAL 36/29 374 CENTS

Ip 29128.28127' 36129 61 + 63 + 374

133 87/85. 85/81. 36/29 40 + 83 + 374

134 87/83. 83/ 81' 36/29 81 + 42 + 374

This genus is also an approximation to 62·5 + 62.5 + 375 cents. The 36129 is

from the 24:29:36 triad and tritriadic scale. The pyknon is 29127 (124

cents).

C2. CHARACTERISTIC INTERVAL 2612 1 370 CENTS

135 28127 ' 27126'26121 63 + 65 + 370 SCHLESINGER

136 21120' 4°/39' 26/z1 85 + 44 + 370

137 42/41' 41/39 . 26121 4z + 87 + 370

138 24123 ' 16I/r56. 26121 74 + 55 + 370

This genus divides the pyknon, 14/13 (128 cents) and approximates

Aristoxenos's soft chromatic. Number 135 is from Schlesinger (1933) and

is a first tetrachord of a modified Mixolydian harmonia.

C3. CHARACTERISTIC INTERVAL 2I/r7 366 CENTS

139 136/r3I' 131/126. 2I/r7 65 + 67 + 366

140 102/97' 194/r89 . 2I/r7 87 + 45 + 366

141 204/r99' 199/r89' 2I/r7 43 + 89 + 366

142 64/63 . 17/r6 . 2Ih7 27 + 105 + 366

143 34/33 . 12/z1 . 21/r7 52 + 81 + 366

144 4°/39' 221/210' 21/r7 44 + 88 + 366

145 24123' 391/378. 2I/r7 74 + 59 + 366

146 2812 7 ' 51/49' 2I1r7 63 + 69 + 366

The pyknonis 68/63 (I J2cents). Number 139 is a very dose approximation

of Aristoxenos's soft chromatic, 4 + 4 + 22 "parts," as is number 146 also.

Numbers 144 and 146 make intervals of 15/r3 and 7/6, respectively, with
their subronics.

C4' CHARACTERISTIC INTERVAL 100/81 365 CENTS

147 2712.6. 26125' 100/81 65 + 68 + 365

148 81/77 . 77/75 . 100/81 87 + 46 + 365

149 81/79' 79/75 . 100/81 45 + 88 + 365

150 81/80. 16/r5 . 100/81 22. + IIZ + 365

lSI 51/5°.18117.100/81 34 + 99 + 365

152 36/35 . 2I/:zo . 100/81 49 + 85 + 365
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153 40/39' 1053/100°' 100/81 44 + 89 + 365

154 135/128. 128/125 . 100/81 92 + 41 + 365 DANIELOU

155 24/23' 207/20° ' 100/81 74 + 60 + 365

The pyknon is the great limma or large chromatic semitone, 27/25 (133

cents). Danielou listed his tetrachord in approximate form with 46/45

instead ofthe correct 128/125. (Danielou 1943, 175). Number 147isa close

approximation to Aristoxenos's soft chromatic, but the rest of the divisions

are rather complex.

C5. CHARACTERISTIC INTERVAL 37/30 363 CENTS

156 80/77' 77/74' 37/30 66 + 69 + 363 PTOLEMY

157 20h9' 38/37 . 37/30 89 + 46 + 363

158 4°/39' 39/37 . 37/30 44 + 91 + 363

159 30/29' II6hII . 37/30 59 + 76 + 363

160 60/59' !I8h II • 37/30 29 + 106 + 363

This complex chromatic genus divides the 4°/37 (135 cents). Number 156

is Ptolemy's linear interpretation ofAristoxenos's hemiolic chromatic, 4.5

+4.5 + 2I "parts," with its characteristic neutral third and 3/4-tone pylmon.

This division closely approximates his soft chromatic, indicating that

Ptolemy's interpretation in terms of the aliquot parts of a real string was

erroneous and that Aristoxenos really did mean something conceptually

similar to equal temperament. However, Ptolemy's approach and the

resulting tetrachords are often interesting in their own right. For example,

number 157 could be considered as a Ptolemaic version of Aristoxenos's

1/2 + 1/4+ I 3/4 tones, 6 +3 +21"parts," a genus rejected asunrnelodicbecause

the second interval is smaller than the first (Winnington-Ingram 1932).The

remaining genera are experimental.

C6. CHARACTERISTIC INTERVAL I 6/I 3 35 9 CENTS

161 26/25'25/24' I6h3 68 + 71 + 359

162 39/37' 37/36. I6/r3 91 + 47 + 359
163 39/3 8 . r9/r8 . I6/r3 45 + 94 + 359
164 65/64' r6h5' I6/IJ 27 + II2 + 359
165 52/51' r7/r6 . I6/r3 34 + r05 + 359

166 4°/39' I69h60. I6h3 44 + 95 + 359
167 28/27' II7/r 12 . r61r3 63 + 76 + 359

168 I69h68. I4h3 . r6h3 II + 128 + 359

169 22121' 91/88 . I6/r3 81 + 58 + 359

The pyknon of this genus, which lies between the soft and hemiolic
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chromatics ofAristoxenos, is I3/I2 (139 cents). Number 169 is a summation

tetra chord from chapter 4.

C7· CHARACTERISTIC INTERVAL 27122 355 CENTS

170 I 76lr69 . I69lr62 . 27/22 70 + 73 + 355

IF 132/125' 2501243 . 27/22 94 + 49 + 355

172 2641257 ' 2571243 . 27/22 47+ 97 + 355

173 28/27. 2212 1. 27/22 63 + 81 + 355

174 55/54' I6lr5 . 2712 2 32 + II2 + 355

175 4°/39' I43 lr35 . 27/22 44 + 100 + 355
The Wasta ofZaIZIJ1, aneutral third of 355 cents, is exploited in this hemiolic

chromatic genus whose pyknon is 88/81 (143 cents), an interval found in

certain Islamic scales (D'Erlanger 1935).

C8. CHARACTERISTIC INTERVAL I 1/9 347 CENTS

176 24123. 23122 . II/9 74 + 77 + 347 WINNINGTON-INGRAM

177 181r7 . 34/33 . II/9 99 + 52 + 347

178 36/35' 35/33' II/9 49 + 102 + 347

179 45/44' I6lr5 . II/9 39 + 112 + 347

180 56/55' I5lr4' II/9 31 + 119 + 347

181 78/77 . 14lr3 . 11/9 22 + 128 + 347

182 20lr9 . 57155 . 11/9 89 + 62 + 347

183 3°129' 58/55 . II/9 59 + 92 + 347
184 28/27. 81177 . II/9 63 + 88 + 347

185 4°/39' II 7!I 10 . 11/9 44 + 107 + 347
This genus is the simplest realization of Aristoxenos's herniolic chromatic.

Wtnnington-Ingram mentions number 176 in his 1932 article on Aristoxenos

but rejects it, despite using I2/U • 11/9 to construct his spondeion scale in

an earlier paper (\Vmnington-Ingram 1928). In view of the widespread use

of 3/4-tone and neutral third intervals in extant Islamic music and the use

of I 21rI by Ptolemy in his intense chromatic and equable diatonic genera,

Iseeno problems with accepting Aristoxenos's genus,4.5 + 4.5 + 2 I "parts,"

as recording an actual tuning, traces of which are still to be found in the

Near East. Ptolemy, it should be remembered, claimed that the intense

chromatic, 2212 I . I2/r I . 7/6, was used in popular lyra and kithara tunings

(Wallis 1682,84,178,208) and that his equable diatonic sounded rather

foreign and rustic. Schlesinger identifies it with the first tetrachord of her

chromatic Phrygian harmonia (Schlesinger 1933; Schlesinger 1939, 214).
The pyknon of this chromatic genus is I2/II (lSI cents). Number 176 may
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be written as 5 + 5 + 2.0 Ptolemaic "parts" (120 lIS 11°90), rather than the

4.5 + 4· 5 + 2I ofAristoxenian theory. A number ofother divisions are shown,

including the usual 1:2. and 2:1. as well as the neo-Archytan 28127 and

40/39 types.

C9. CHARACTERISTIC INTERVAL 39/32 342. CENTS

186 2561245' 2451234' 39/]2. 76 + 80 + 34 2

187 384/373' 373/35 1 . 39/]2. 50 + 105 + 342

188 192h81. 362/351 . 39/32 102 + 53 + 342

189 64/63' 14h3 . 39/3 2 27 + 128 + 342

This genus employs the 312's complement of 16h 3, the tridecimal neutral

third, found in the 26:]2.:39 triad. The unusually complex pyknon is

128h17 (156 cents).

CIO. CHARACTERISTIC INTERVAL 28/23 341 CENTS

190 23/22 . 22/21 .28123 76 + 81 + 341 WILSON

191 69/65. 65/63' 2812 3 103 + 54 + 341

192 69/67.67/63' 2812 3 51 + 107 + 341

193 46/45' 15h4' 28123 38 + II9 + 341

This neutral third genus is from WIlson. The pyknon is 23/21 (157

cents).

ClI. CHARACTERISTIC INTERVAL 17h4 336 CENTS

194 II2h07' 107h 0 2 . 17h4 79 + 83 + 336

195 168h58. 158!I53 . 17h4 106 + 56 + 336

196 168h63' 163!I53' 17h4 52 + 110+ 336

197 520/51' 14h3 . 17h4 34 + 128 + 336

198 28127 ' 18h7' 17h4 63 + 99 + 336

199 35/34' 16h5 . 17h4 50 + II2 + 336

200 40/39 . 91/85 . 17h4 44 + II 8 + 336

201 17!I4' 56/55 . 55/5 1 336 + 31 + 131

202 I 7h4 . 56/53 . 53/5 I 336 + 95 + 67

This chromatic genus uses Ellis's supraminor third, I 7h 4 (Helmholtz [1877]

1954, 455), which occurs in his septendecimal interpretation of the

diminished seventh chord, 10:12:14:17. The pyImon is 56/51 (162 cents).

C I 2. CHARACTERISTIC INTERVAL 40/33 33 3 CENTS

203 22/21' 21120, 40/33 81 + 85 + 333

204 33/P' 31/3°' 40 /33 108 + 57 + 333

205 33/32' 16h5 . 40/33 53 + 112 + 333

206 55/54' 27125' 40 /33 32 + 133 + 333
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207 66/65' 13112 . 40/33 26 + 139 + 333

208 18117.1871180. 40/33 99 + 66 + 333

The pyknon of this genus is 11110 (165 cents), an interval which appears in

Ptolemy's equable diatonic and elsewhere. Number 208 is a summation

tetrachord from chapter 4.

C13. CHARACTERISTIC INTERVAL 29124 328 CENTS

209 64/61.61/58. 29/24 83 + 87 + 328

210 16115' 3°129' 29124 112 + 59 + 328 SCHLESINGER

211 32/31' 31129' 29124 55 + 115 + 328 SCHLESINGER

The interval 29124 is found in some of Schlesinger's hannoniai when she

tries to correlate her theory of linearly divided octaves with Greek notation

(Schlesinger 1939, 527-8). The results agree neither with the commonly

accepted interpretation of the notation, nor with the canonical forms of the

harmoniai givenelsewhere in her book. The 29124 isalso part of the 24:29:36

triad and its 3h's complement generates the 36/29 genus. The pyknon is

32h9 (170 cents).

C14. CHARACTERISTIC INTERVAL 6/5 3 I 6 CENTS

212 20119' 19118 ·6/5 89 + 94 + 316 ERATOSTHENES

213 28127' 15114.6/5 63 + 119 + 316 PTOLEMY

214 3°129' 29127. 6/5 59 + 12 3 + 316

215 16115.25124.6/5 112 + 71 + 316 DIDYMOS

216 4°/39' 13/12 .6/5 44 + 139 + 316 BARBOUR

217 55/54' 12/11 ·6/5 32 + 151 + 316 BARBOUR

218 65/63.14113.6/5 54+ 128 + 316

219 22121. 35/33.6/5 81 + 102 + 316

220 21120.2001189.6/5 85 + 97 + 316 PERRETT

221 2S6/z43 .6/5' 135/128 90 + 316 + 92 XENAKIS

222 60/59' 59/54.6/5 29 + 153 + 316

223 80/n' 77/7'2 .6/5 66 + 116 + 316

224 24123 ' 115/108 .6/5 74 + 109 + 316

225 88/81' 45/44. 6/5 143 + 39 + 316

226 46/45.6/5' 25123 38 + 316 + 144

227 52/51.85/78.6/5 34 + 149 + 316 WILSON

228 100/99' I1110· 6/5 17 + 165 + 316 HOFMANN

229 34/33 .6/5' 55/51 52 + 316 + 131

230 6/5' 35/32 • 64/63 316 + 155 + 27

231 6/5' 224012187 . 243/224 316 + 41 + 141
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This genus is the most consonant of the chromatic genera. Number 2I 2 is

the chromatic of Eratosthenes and is identical to Ptolemy's interpretation

of Aristoxenos's intense chromatic genus. It is likely, however, that

Aristoxenos's genus corresponds to one of the 32/27 genera. Number 2I 3

is Ptolemy's soft chromatic and is the 2:1 division reordered. Number 214

is the 1:2 division and a Ptolemaic interpretation of a 4 + 8 + 18 "parts."

Didymos's tuning is probably the most consonant, although it violates the

usual melodic canon of Greek theory that the smallest interval must be at

the bottom of the tetrachord. In reverse order, this tuning is produced by

the seventh of Proclus's ten means (Heath 192I). Archytas's enharmonic and

diatonic tunings alsoviolate this rule; the rule may either be later or an ideal

theoretical principle. Numbers 216 and 217 are from Barbour (1951,23).

Perrett's tetrachord, like one of the 2512 I genera, is found to occur

unexpectedly in his new scale (perrett 1926, 79). The Xenakis tetrachord

(number 22 I) is from the article, "Towards a Metamusic," which has

appeared in different translations in different places (Xenakis 1971).It also

appears in Archytas's system according to Erickson (1965). The Hofmann

genus is from Vogel (1975). Numbers 230 and 231 are found in Vogel's

tuning (1963, 1967) and chapter 6. The pyknon is the minor tone 10/9 (182

cents).

Cr 5. CHARACTERISTIC INTERVAL 25/2 I 302 CENTS

232 56/53' 53/50' 25/21 97 + 99 + 302
233 14h 3 . 26/25 . 25/21 128 + 68 + 302

234 28/27' 27/25' 25/21 63 + 133 + 302
235 21120· 161r5 . 25121 84 + Il2 + 302 PERRETT

236 40/39' 273/25°' 25/21 44 + 152 + 302
This genus whose pyknon is 28/25 (196 cents) is inspired by number 235,

a tetrachord from Perrett (1926,80). Number 232 is virtually equally

tempered and number 234 is an excellent approximation to Aristoxenos's

1/3+2/3+11/2 tones,4+8+18 "parts."

C16. CHARACTERISTIC INTERVAL 19/r6 298 CENTS

237 128/121' 1211r14' 19h 6 97 + 103 + 298

238 96/89' 1781r71 . 19h 6 131 + 69 + 298

239 192/185' 1851r71 . 19/r6 64 + 136 + 298

240 20h9' I91r6. 16/r5 89 + 298 + 112 KORNERUP

241 256/243 . 81/76. 19h6 90 + 110 + 298 BOETHIUS

242 96/95' 10/9' 19h6 18 + 182 + 298 WILSON
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243 64/63' 1I1r9' 191r6 27 + 173 + 298

244 40/39 . 104/9S . 191r6 44 + 157 + 298
The characteristic ratio for this genus derives from the 16:I 9:24 minor triad

(seethe 24119 genus). The pyknonis the complex interval 64/S7 (201 cents).

Number 241 is from Boethius (1838, 6). The Kornerup tetrachord (1934>

10)also corresponds to a Ptolemaic interpretation ofone ofAthanasopoulos's

(1950) Byzantinetunings, 6+ 18+6 "parts." As 19116. 20119' 16/1S, itis one

ofthe "mean" tetrachords,

Cq. CHARACTERISTIC INTERVAL 32127 294 CENTS

245 18117' 17116. 32/27 99 + 105 + 294 ARISTIDES QUINT.

246 27/2S . 2Sh4' 32h7 133 + 71 + 294

247 27h 6. 13/12 . 32127 6S + 139 + 294 BARBOUR?

248 28127' 24]1224' 32127 63 + 141 + 294 ARCHYTAS

249 2S6h43 . 2187/2048 . 32/27 90 +II4 + 294 GAUDENTIUS

250 81/80· 10/9' p/27 22 + 182 + 294 BARBOUR?

251 3]132. n/II . 32127 53 + lSI + 294 BARBOUR?

25 2 4S/44 + II/IO . 32127 39 + 165 + 294 BARBOUR?

253 21120· ISIr4' 32127 84+ Il9 + 294 PERRETT

254 13S1r 28. 1611S' 32/27 92 + Il2 + 294

255 36/3S . 3SI]2 • 32127 49 + ISS + 294 WILSON

256 49/48. 54149 . 32127 36 + 168 + 294 WILSON

257 243h30 • 23o h 16. 32127 9S + 109 + 294 PS.-PHILOLAUS?

258 2431229' 229/216. 32127 103 +101+ 294

259 201r9' 1711r60. p h 7 89 + 115 + 294

260 23/22' 99192 . p h 7 77 + 127 + 294

261 24123 . 69164 . ph7 74 + 130 + 294

262 40/39 + 351/po, 32h7 44+ 160 + 294

263 141r3 . 11711 r z . p127 128 + 76 + 294

These chromatic genera are derived from the traditional "Pythagorean"

tuning (perfect fourths, fifths, and octaves), which is actually of

Sumero-Babylonian origin (Duchesne-Guillemin 1963, 1969; Kilmer 1960),

by changing the pitch of the second string, the parhypate or trite. Number

245, the 1:1 division of the 9/8 pyknon (204 cents), is from from the late

classical writer, Aristides Quintilianus (Meibomius 1652, IZ3). Tunings

numbers 246 and 2S4 are of obscure origin. They were constructed after

reading a passage in Hawkins ([1776] 1963,37) which quotes Wallis as

crediting Mersenne with the discovery of the 27h 5 and 13SI1 2.8 semitones
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and their 9/8 complements. However, the discussion is about diatonic

genera, not chromatic, and it is unclear to me whether Mersenne really did

construct these two chromatic tetrachords. Archytas's chromatic, number

248, has been identified with Aristoxenos's 1/3 + 2/3 + I liz tones by

Winnington-Ingram (1932) and number 247 is a good approximation to

his Ih + Ih + I liz tones. Number 249 is the unaltered Pythagoreanversion

from Gaudentius. The Barbour tetrachords derive from his discussion of

different superparticular divisions of the 9/8 (Barbour 195 I, 154-156).

Although tetrachords are mentioned, it is not clear that he ever actually

constructed these divisions. Perrett discovered number 253, like num ber

235 above, in his scale after it was constructed. Both Chaignet (1874, 231)

and McClain (1978,160) quote (Ps.)-Philolaus as dividing the tone into 27

parts, 13 of which go to the minor semitone, and 14 to the major. Number

257 is the result ofthis division and number 258has the parts taken in reverse

order. It would seem that number 245 and number 258 are essentially

equivalent to Aristoxenos's theoretical intense chromatic and that numbers

254,257,259, and probably 253 as well, are equivalent to Gaudentius's

Pythagorean tuning. The presence ofsecondary ratios of 5 and 7 in number

253 and number 254 suggests that the equivalences would be melodic rather

than harmonic, The last tuning is a summation tetrachord from chapter 4.

C18. CHARACTERISTIC INTERVAL 45/38 293 CENTS

264 3041z87' 2871z70 . 45/38 100 + 106 + 293
265 456/439' 439/405 . 45/3 8 66 + 140 + 293

266 128IzII' 422/405' 45/38 134 + 71 + 293
267 19h 8. 16h5 '45/3 8 94+ II2 + 293

268 76/75' 10/9 . 45/38 23 + 182 + 293

269 38/35' 28h7 . 45/38 142 + 63 + 293
This genus uses the 45/38, the 3h'S complement of 19lx5. The pyImon is

152h 35 (2°5 cents). Number 264 is a reasonable approximation to the

intense chromatic and number 269 is similar to Archytas's chromatic, if

rearranged with the 28h 7 first.

CI9. CHARACTERISTIC INTERVAL 13h1 289 CENTS

270 88/83.83/78. 13/II 101 + 108 + 289

271 66/61, 122hI7' 13/II 136 + 72 + 289

272 132h 27 ' 127h17 . 13/II 67 + 142 + 289

273 14h 3 . 22121 . 13/II 128 + 81 + 289

274 4°/39' i ttu» . 13/II 44 + 165 + 289
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WILSON

278

279
280

281

282

283

284
285
286

287
288

289
290

291

292

293

294

295

296

66/65 . 10/9' 13/II 26 + 182 + 289

27126.88/81' 13/II 65 + 143 + 289

28127 ' 99/91' 13/11 63 + 146 + 289
This experimental genus divides a pyknon of 44/39 (209 cents), an interval

also appearing in William Lyman Young's diatonic lyre tuning (Young 1961).

The 1311 I is a minor third which appears in 13-limit mnings and with its

312's complement, 33126, generates the 22:26:33 tritriadic scale.

C20. CHARACTERISTIC INTERVAL 33128 284 CENTS

224/2 II . 2111198 . 33128 104 + 110 + 284

336/323 . 3231297 . 33128 68 + 145 + 284

1681155-3 101297'33/28 139+74+ 284

56/55 . 10/9 . n/z8 3 I + 182 + 284

16115' 35/32' 33/28 112 + 102 + 284

34/33 . n/28 . 56/51 52 + 284 + 162

The characteristic interval of this genus is the 312's cOInplement of 14/I I I

n/28. The pyknon is IIl!99 (214 cents).

C2 I. CHARACTERISTIC INTERVAL 20II 7 281 CENTS

17116. 16115.20117 105 + lIZ + 281

51/47' 4]145' 201I7 142 + 75 + 281

51/49' 49/45' 201I7 69 + 147 + 281

34/33 . IIIIo . 20117 52 + 165 + 281

51/50' 10/9' 20117 34 + 182 + 281

40/39' 22I/:zOO . lo!I7 44 + 173 + 281

28/27' 153h40, lo!I7 63 + 154 + 281

21/20' 20117.68/63 85 + 281 + IJ2
68/65' 13/12' 20117 78 + 139 + 281

34/31 . 31/3° . 20!I7 160 + 57 + 281

68/61·61/60' 20117 188 + 29 + 281

68/67.67/57' 19117 26 + 280 + 193

68/67.67/60 - 20!I7 26 + 191 + 281

The pyknonis I7!I5 (217 cents). Intervals of 17 are becoming increasingly

common in justly-intoned music. This would appear to be a metaphysical

phenomenon of considerable philosophical interest (Polansky, personal

communication).

C 2 2. CHARACTERISTIC

1841173 ' 1731162' 27123

2761265' 2651243 ' '1.7123

INTERVAL '1.7123 278
107 + II4 + 27 8

70+ 150+'1.78

CENTS
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299 1381127' 254/243 . 27/2 144 + 77 + 278

300 28/27' 23/21 '27/23 63 + 157 + 278

301 23/22 ·88/81' 27/23 77 + 143 + 278

302 46/45' 10/9' 27123 38 + 182 + 278

This genus exploits the 312 's complement of 231r8, which is derived from

the 18:23:27 triad. The pyknon is 92/81 (220 cents).

C23. CHARACTERISTIC INTERVAL 75/64 275 CENTS

303 5I2/481 . 4 81/450' 75/64 108 + II5 + 275

304 768/737' 737/675' 75/64 71 + 152 + 275

305 384/353' 706/675' 75/64 146 + 78 + 275

306 16lrS' 75/64' 16lr5 112 + 275 + II2 HELMHOLTZ

The pyknon is 256/225 (223 cents), The 75/64 is the 5-limit augmented

second, which appears, for example, in the harmonic minor scale.

Helmholtz's tetra chord is from (Helmholtz [1877] 1954,263).

C24' CHARACTERISTIC INTERVAL 7/6 267 CENTS

307 16!r5' 15114' 7/6 112 + II9 + 267 AL-FARABI

308 22/2 I ' r r/r r ' 7/6 81 + 151 + 267 PTOLEMY

309 24/23' 23121' 7/6 74+ 157 + 267

310 20lr9' 38/35' 7/6 89 + 142 + 267 PTOLEMY

3II 10/9'36/35'7/6 182+49+267 AVICENNA

312 64/63' 9/8 . 7/6 27 + 204 + 267 BARBOUR

313 92/91'26123'7/6 19+212+267

JI4 256/243' 243/224' 7/6 90 + 141 + 267 HIPKINS

315 40 /39 ' 39/35' 7/6 44+ 187 + 267

316 18lr7' 716.68/63 99 + 267 + Ip

317 5°/49' 716. 28/25 35 + 267 + 196

318 14113' 7/6. 52/49 n8 + 267 + 103

JI9 46/45 ' 1801161 . 7/6 38 + 193 + 267

po 28127' 54/49' 7/6 63 + 168 + 267

pi nolrIJ'113/lo5'7/6 1°4+127+267

p 2 60/59 . II 8lr05 ' 7/6 29 + 202 + 267

323 3°129' II61105 . 7/6 59 + 172 + 267

324 88/81. 81177 . 7/6 143 + 88 + 267

325 r ao/r r o . 17lrS'7/6 14+217+267

326 27125 ' 7/6. 200lr89 133 + 267 + 98

)27 26125 ' 7/6.100/91 68 + 267 + 163
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328 7/6 . 1.024/ 945 ' 135/128 267 + 139 + 92
The pyknon of this intense chromatic is the septimal tone, 8/7 (231 cents).

Number 307 is given by Al-Farabi (D'Erlanger 1930, 104) and by Sachs

(1943, 282) in rearranged fonn asthe lower tetrachord of the modern Islamic

mode, Higaz. The Turkish mode, Zirgule, has also been reported to contain

this tetrachord, also with the 7/6 medially (palmer 1967?).Vmcent attributes

this division to the Byzantine theorist, Pachymeres (Vincent 1847). This

tuning is also produced by the harmonic mean operation. Ptolemy's first

division (number 308) is his intense chromatic (Wallis 1682, 172), and his

second (number 310) is his interpretation of Aristoxenos's soft diatonic, 6

+ 9 + 15 "parts". In this instance, Ptolemy is not too far from the canonical

100 +150 +250cents, thoughHipkins's semi-Pythagorean solution (number

314) is more realistic (Vogel 1963). His tuning is also present in Erickson's

(1965) interpretation of Archytas's system. The Avicenna tetrachord,

number 3II, (D'Erlanger 1935, 152) sounds, surprisingly, rather diatonic.

Barbour's (1951, 23-24) tuning (number 312) is particularly attractive when

arranged as 9/8 . 64/63 . 7/6. It also generates the 16:2I :24 tritriadic and its

conjugate. Vogel (1975, 207) lists it also. Number 328 is found in Vogel's

tuning (chapter 6 and Vogel 1963, 1967)' The remaining divisions are new

tetrachords intended as variations on the soft diatonic-intense chromatic

genus or as approximations of various Byzantine tetrachords as described

by several authors (Xenakis 1971; Savas 1965; Athanasopoulos 1950 ) .

C25. CHARACTERISTIC INTERVAL 1361117 261 CENTS

329 78/73 . 73/68 . 1361117 II5 + 123 + 261

330 II7!I12' 56/51 '136lr17 76 + 162 + 261

331 1171107' 107/102 . 136lrI7 155 + 83 + 261

332 52/51 ' 9/8 . 1361r 17 34 + 204 + 261

The pyknon of this complex genus is 39/34 (238 cents). Number 332

generates the 26:34:39 tritriadic.

C26. CHARACTERISTIC INTERVAL 36/3 I 259 CENTS

333 31129 . 29127' 36/3 I II 5 + 124 + 259

334 93/89' 89/81 . 36/31 76 + 163 + 259

335 93/85. 85/81 + 36/31 156 + 83 + 259
The pyknon is 3r127 (239 cents). The 36/31 is the 312's complement of

31124, which defines a hyperenharmonic genus.
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C27. CHARACTERISTIC INTERVAL 80/69 256 CENTS

336 46/43'43/4°.80169 117+ 125+ 256

337 23/21 • 21120.80/69 157 + 85 + 256

338 23/22 . Ilho· 80/69 77 + 165 + 256

339 46/45' 9/8 . 80/69 38 + 204 + 256

The genus derives from number 339 which generates the 20:23:30 and

46:60:69 tritriadics. The pylmon is 23120 (242 cents). This and the next few

genera are realizations of Aristoxenos's soft diatonic.

C28. CHARACTERISTIC INTERVAL 22h9 254 CENTS

340 76/71' 71/66. 22h9 1I8 + 126 + 254

341 57/52 . 1° 4 /99 ' 22h9 159 + 85 + 254

342 II4h 09 ' 1° 9/ 99 ' 22h9 78 + 167 + 254

343 I9h 8. 12/II . zz!I9 94 + 151 + 254 SCHLESINGER

344· 34/33' I9 h7' 22h9 52 + 192 + 254

345 4°/39' 247 12 20' 22h9 44 + 200 + 254
This genus is agood approximation to the soft diatonic. Number 343is from

a folk scale (Schlesinger 1939, 297). Tetrachord numbers 344 and 345 are

close to 3 + 12 + 15 "parts", a neo-Aristoxenian genus which mixes

enharmonic and diatonic intervals. The pylmon is 38/33 (244 cents).

C29. CHARACTERISTIC INTERVAL 52/45 250 CENTS

346 15h4·I4!I3·p/45 119+ 128+ 25°

347 45/41' 41/39' 52/45 161 + 87 + 250

348 45/43' 43/39' 52/45 78 + 169 + 25°

349 24123' II5h 04' 52/45 74 + 174 + 250

350 4°/39' 9/8. 52/45 44 + 204 + 250

351 18117. 85/78 ' 52/45 99+ 149+ 25°

352 45/44' 44/39' 52/45 39 + 209 + 250

353 65/63 . 28125 ' 52/45 54 + 196 + 250

354 55/52' 12111' 52/45 97 + 151 + 250

355 60/59' 59/45' 52/45 29 + 219 + 250

356 20119' 52/45 . 57/5 2 89 + 250 + 149

357 27h 6 . 10/9' 52/45 66 + 182 + 250

358 IIlrO' 15oh43' 52/45 165 + 83 + 250
This genus lies on the dividing line between the chromatic and diatonic

genera. The pylmon of I 51r 3 (248 cents) is virtually identical to the CI which
defines the genus. The first three subgenera are the 1:1, 2:1, and 1:2 divisions

respectively. Number 350 generates the 10:13:15 tritriadic scale.
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DIATONIC TETRACHORDS

DI. CHARACTERISTIC INTERVAL 15/13 248 CENTS

359 104/ 97 ' 97/9°' I 5h 3 124 + 126 + 248

360 78/71' 142/135' I5h3 163 + 86 + 248

361 156h49' I49h35 .ISh3 79 + 171 + 248
362 16hS . ISh3 . 13/12 112 + 148 + 139 SCHLESINGER

363 26/25' 10/9 . ISh3 68 + 182 + 248

364 2561243' 351/310 . ISh3 90 + 160 + 248
365 201r9' 247/225' 151r3 89 + 161 + 248
366 IIIrO· ISh3 . 104/99 165 + 248 + 85

367 12hl'ISh3' I43h3S 151+ 248 +99

368 46/45' 2612 3 ' I5h 3 38 + 212 + 248

369 4°/39' 169/rSO. 15h 3 44 + 206 + 248

370 2812 7 ' 39/35' 15h3 63 + 187 + 248

371 91/90. 8/7' ISh3 19 + 231 + 248

This genus is the first indubitably diatonic genus. A pyknon,perse, no longer

exists because the 52/45 (250cents) is larger than one-half the perfect fourth,

4/3 (498 cents). The large composite interval in this and succeeding genera

is termed the "apyknon" or non-condensation (Bryennios), Number 362 is

the first tetrachord of Schlesinger's diatonic Hypodorian harmonia. Many

members of this genus are reasonable approximations to Aristoxenos's soft

diatonic genus, 100 + 150 + 250 cents. Others with the ISh 3 medially are

similar to some Byzantine tunings. SOIDe resemble the theoretical genus 50
+ 200 + 250 cents.

D2. CHARACTERISTIC INTERVAL 3812 3 244 CENTS

372 44/41 '41/38. 38/33 123 + 131 + 244
373 II/rO . 20h9 . 38/33 165 + 89 + 244

374 22121' 21/r9' 38/33 81 + 173 + 244
This genus divides the 22h9 (254 cents).

D3. CHARACTERISTIC INTERVAL 23120 242 CENTS

375 1601r49' 149h38. 23120 123 + 133 + 242

376 I20h09' 2181207' 23120 166 + 90 + 242

377 24°1229' 229/207' 23120 81 + 175 + 242

378 8/7' 7°/69.23120 231 + 25 + 242

379 40/39' 2612 3 . 23120 44 + 212 + 241

380 24123' 23120, 10/9 74 + 242 + 182 SCHLESINGER
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381 2812 7 ' 180h61 . 23120 63 + 193 + 24 2

This genus is derived from the 20:23:30 triad. The apyknon is 80/69 (256

cents), Number 380 is from Schlesinger (1932) and is described as a

harmonia of "artificial formula, Phrygian". Numbers 379 and 381 make

intervals of ISh 3 and 7/6 respectively with their subtonics. These intervals

should be contrasted with the incomposite 23120 in the tetrachord.

D4· CHARACTERISTIC INTERVAL p h 7 239 CENTS

382 ]2/67. 67/62. 31127 125 + 134 + 239

383 108h03 . 103/93 . 31127 82 + 177 + 239

384 54/49' 98/93' 31127 168 + 9 1 + 239

385 32/31'9/8'31127 55+ 204+ 239

The apyknon of this genus is 36127 (259 cents). Number j Sy generates the

24:3I :36 tritriadic.

Ds. CHARACTERISTIC INTERVAL 39/34 238 CENTS

386 2721253' 2531234' 39/34 125 + 135 + 238

387 4°8/389' 389/35 1 . 39/34 83 + 178 + 238

388 204h85' 37°/351 . 39/34 169 + 9 1 + 238

389 40 /39 ' 39/34' 17h5 44 + 238 + 21 7
The apyknon is IJ6/II7 (26I cents). The 39/34 interval is the 3h's

complement of 17113 and derives from the 26:34:39 triad.

D6. CHARACTERISTIC INTERVAL 8/7 231 CENTS

390 I4/IJ . I3/I2 . 8/7 128 + 139 + 231 AVICENNA

39 I I9 118. 2Ih9' 8/7 94+ 173 + 231 SAFIYU-D-DIN

3922Iho'lo/9·8/7 84+182+23I PTOLEMY

393 28127 .8/7 ' 9/8 63 + 231 + 204 ARCHYTAS

394 49/48. 8/7. 8/7 36+23I+23I AL-FARABI

395 35/33' IIIIo, 8/7 I02 + 165 + 231 AVICENNA

396 77/]2' I2/II .8/7 116 + 151 + 231 AVICENNA

397 16IIS' 35/32 .8/7 112 + 155 + 231 VOGEL

398 35/34 . 17h 5 . 8/7 50 + 21 7 + 231

399 25124. 8/7 ' 2812 5 71 + 231 + 196

400 ISh4' 8/7' 49/45 119 + 231 + 147

401 4°/39' 91/80 . 8/7 44+ 21 3 + 231

402 46/45' 105/92 .8/7 38 + 21 9 + 231

403 18h7' 1I9h 0 8 . 8/7 99 + 168 + 231

404 17h6· 8/7' 56/5 1 105 + 231 + 162

405 34/33 ' 77/68 .8/7 52 + 215 + 231
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406 2561243' 567/5 12 .8/7 90 + I77 + 231

This genus divides the 7/6 (267 cents). The Avicenna and Al-Farabi
references are from D'Erlanger. Number 390 is also given by Pachymeres

(D'Erlanger I935, 148 referring to Vincent 1847). When arranged as

13/12 . 14/r3 .8/7, it is generated by taking two successive arithmetic means.

Number 394 is especially interesting as there have been reports that it was

used on organs in the Middle Ages (Adler 1968; Sachs 1949), but more recent

work suggests that this opinion was due to a combination of transmission

errors (by copyists) and an incorrect assessment ofend correction (Barbour

1950; Munxelhaus 1976). With the 49/48 medially, it is generated by the

twelfth of the Greek means (Heath 192 I). The scale is obviously constructed

in analogy with the Pythagorean 2561243' 9/8. 9/8. Similar claims pro and

con have been made for number 393 as well. This scale, however, appears

to have been the principal tuning of the diatonic in practice from the time

ofArchytas (390 BCE) through that ofPtolemy (ca. 16o CE). Even Aristoxenos

grudgingly mentions it (Winnington-Ingram 1932). Number 397 is from

Vogel (1963) and approximates the softdiatonic. Itis also found in Erickson's

(1965) version ofArchytas's system. Entry 399 corresponds to 3/8 + I 1/8

+ I tones of Aristoxenos. The Safiyu-d-Din tuning is one of his "strong"

forms (2:1 division) and has 2I/r9 replacing the 10/9 of Ptolemy.

Tetrachords 403, 404, and 405 exploit ratios of17 and are dedicated to Larry

Polansky.

D7. CHARACTERISTIC INTERVAL 256/225 223 CENTS

407 I5 0/r39' 139/128 . 256/225 132 + 143 + 223

408 225/214' 107/96 . 256/225 87 + 188 + 223

409 22512°3' 203Jr92 .256/225 78 + 96 + 223

41025124'9/8'2561225 71+204+223
The apyknon is the augmented second, 75/64 (275 cents). Number 410 is

the generator of the 64:75:96 tritriadic and a good approximation to

Aristoxenos's 3/8 + I 1/8 + I tone when reordered so that the 9/8 is

uppermost,

D8. CHARACTERISTIC INTERVAL 25/2 2 22 I CENTS

4II 176/r63 . 163/r50' 25122 133 + 144 + 221

412 132JrI9'238122S'25122 179+97+ 221

413 2641251' 251/225' 25122 87 + 189 + 221

414 I6/r 5 . IIlIo . 25/22 II2 + 165 + 221

415 88/81' 27125 . 25122 143 + I33 + 221
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416 22/21' 25/22 . 28125 81 + 221 + 196

417 28127' 1981175' 25/22 63 + 214 + 221

418 26125' 44/39' 25/22 68 + 209 + 221

This is an experimental genus whose apyknon is 88/75 (277 cents). Number

416 is a fair approximation of Aristoxenos's 3/8 + I 1/8 + I tones, and number

411 is close to a hypothetical II1I6+ IIII 6 +I 1/8 tones.

D9. CHARACTERISTIC INTERVAL 92/81 220 CENTS

419 27125' 25/23' 92/81 133 + 144 + 220
420 81/77 . 77/69 . 92/81 88 + 190 + 220

421 81/73 . 73/69 . 92/81 180 + 98 + 220

422 2412 3 ' 9/8. 92/81 74 + 204 + 220

423 27/26. 26/23 . 92181 66 + 212 + 220

This genus divides the 2712 3 (278 cents) and is derived from the 18:23:27

triad. Number 422 is the tritriadic generator, and is an approximation to

Aristoxenos's 3/8 +I 1/8 +I tones (4.5+ 13.5+ 12 "parts") when reordered.

D 10. CHARACTERISTIC INTERVAL 76/67 2 I 8 CENTS

424 67/62. 62/57' 76/67 134 + 146 + 218

425 2011I81· 181II71 . 76/67 181 + 98 + 218

426 20I1I91' 19III71 . 76/67 88 + 191 + 218

427 2561243' 76/67 . 5427/4864 90 + 218 + 190 EULER

This complex genus is expanded from number 427, which is called "old

chromatic" in Euler's text (Euler [1739] 1960, 177). The tuning is clearly

diatonic, however, and must be in error. It may have been intended to

represent Boethius's 19II6 (76/64) chromatic. The apyknon is 67/57 (280

cents).

D I I. CHARACTERISTIC INTERVAL I 7/x 5 2 I 7 CENTS

428 40/37' 37/34' 17II5 135 + 146 + 21 7

429 10/9' 18II7' 17115 182 + 99 + 217 KORNERUP

430 201I9' 19II7' 17II5 89 + 192 + 217 PTOLEMY

431 15114' 56/51' 17II5 119 + 162 + 217

432 80/77' 77/68. 17II5 66 + 215 + 217

433 12/11 . 5S/51 . 17II5 lSI + 131 + 217

434 120IIo9' I09!I02 . 17!IS 166 + 115 + 217

43S I201I13'1131I02'17IIS 104+177+217

436 24/23' II5II02 . 17IIS 74 + 208 + 217

437 1601I53 . 9/8. 17!IS 77 + 204 + 217

Thisgenusdividesthe20/17(28Icents).Number429islCor.nerup~(1934,
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10) Lydian. Genus number 430 is Ptolemy's interpretation ofAristoxenos's

intense diatonic, 6 + 12 + I2 "parts" (Wallis 1682,172). Kornerup refers to

it as Dorian. Number 432 is a hypothetical Ptolemaic interpretation of 4·5

+ 13.5 + 12 "parts", a mixed chromatic and diatonic genus not in Ptolemy.

Number 437 generates the 34:40: 5 I triad and tritriadic, The remaining

divisions are experimental neo-Aristoxenian genera with a constant upper

interval of r a "parts."

DI 2. CHARACTERISTIC INTERVAL I 12/99 214 CENTS

438 66/61.61/56. II2/99 136 + 148 + 214

439 99/94' 47/42' 112/99 90 + 195 + 214

440 99/89.89/84' 112/99 184 + 100 + 214
441 10/9' 2971280. 112/99 182 + 102 + 214

442 2212 I· 9/8. 112/99 81 + 204 + 214
This very complex genus divides the 33128 (284 cents). Number 442

generates the 22:28:33 tritriadic and its conjugate.

D13. CHARACTERISTIC INTERVAL 44/39 209 CENTS

443 I2h I • 13/12 . 44/39 lSI + 139 + 209 YOUNG

444 39/35' 35/33' 44/39 187 + 102 + 209

445 39/37' 37/33 . 44/39 91 + 198 + 2°9

446 44/39' 9/8 . 104/99 209 + 204 + 85
The first division is "William Lyman Young's "exquisite 3/4-tone Hellenic

lyre" (Young 1961, S). The apyknon is 13/11 (289 cents). Number 446

generates the 22:26:33 tritriadic scale.

D14. CHARACTERISTIC INTERVAL 152/r35 20S CENTS

447 9°/83. 83/76. 152h35 140 + 153 + 205

448 13Sh28. 64/57' 152/135 92 + 201 + 205

449 13Sh 21' 121/r14' 152/r35 190 + 103 + 205

4So 20h9' 9/8. 152/r35 89 + 204 + 205

This genus derives from the 3°:38:45 triad and divides its upper interval,

45/3 8 (293 cents). Number 450 generates the 3°:38:45 tritriadic and its
conjugate.

D I 5. CHARACTERISTIC INTERVAL 9/8 2°4 CENTS

451 64/59' 59/54' 9/8 141 + 153 + 204 SAFIYU-D-DIN

452 48/43 ·86/81 . 9/8 190 + 104 + 204 SAFIYU-D-DIN

453 96/91 . 91/81 . 9/8 93 + 202 + 204

454 2561243 ' 9/8. 9/8 90 + 204 + 204 PYTHAGORAS?
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455 16h5' 9/8. 10/9 1I2 + 204 + 182 PTOLEMY, DIDYMOS

456 2187/2°48 .65536/59°49' 9/8 114 + 180 + 204 ANONYMOUS

457 9/8. 12/ll . 88/8r 204 + 151 + 143 AVICENNA

458 13h 2' 9/8. u8h17 139 + 204 + 156 AVICENNA

459 14h3 . 9/8 . 208!I89 128 + 204 + 166 AVICENNA

460 9/8. r r/ro . 320/297 204 + 165 + 129 AL-FARABl

461 9/8. 15!I4' 448/4°5 204 + 119 + 175

462 9/8 . 17h 6 . 512/459 204 + 105 + 189

463 9/8. 18h7 . 272/243 204 + 99 + 195

464 9/8. 19h8 .64/57 204 + 94 + 201

465 56/5 r . 9/8 .68/63 162 + 204 + 132

466 9/8. 200!I 89 ' 28/25 204 + 98 + 196

467 184!I71' 9/8. 76/69 127 + 204 + 167

468 32h9' 9/8. 29h7 170 + 204 + 124

469 121h08· 9/8. 128h21 197 + 204 + 97 PARTCH

470 9/8. 409 6/3645' 135/128 204 + 202 + 92

471 9/8. 7168/6561. 243h 24 204 + 153 + 141

472 35/32' 1024/945 . 9/8 204 + 139 + 204
The apyknon of this genus is ph7 (294 cents). Numbers 451 and 452 are

Safiyu-d-Din's weak and strong forms of the division, respectively. The

attribution of the tetrachord number 454 to Pythagoras is questionable,

though traditional-the diatonic scale in "Pythagorean" intonation

antedates him by a millennium or so in the Near East (Duchesne-Guillemin

1963, 1969). The earliest reference to this scale in a European language is

in Plato's Timaeus. Number 455 is attributed to both Ptolemy and Didymos

because their historically important definitions differed in the order of the

intervals. Ptolemy's is the order shown; Didymos placed the 9/8 at the top.

Ptolemy's order generates the major mode in just intonation. Its retrograde,

10/9' 9/8. 16h5, yields the natural minor and new scale ofRedfield (1928).

Number 456 is a "Pythagorean" form extracted from the anonymous treatise

in D'Erlanger (1939). In reverse order, it appears in the Turkish scales of

Palmer (1967?).Numbers 457-460 are also from D'Erlanger. Numbers 457

and 458 generate the 18:22:27and 26:32:39 tritriadics and their conjugates.

These and the tetrachord from Al-Farabi, number 459, resemble modem

Islamic tunings (Sachs 1943. 283). Numbers 464 and 465 generate the

16:19:24 and the 14:17:21 tritriadics. In theory, any tetrachord containing

a 9/8 generates a tritriadic and its conjugate, but in practice the majority
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are not very consonant. Examples are numbers 467 and 468 which generate

the 38:46:57 and 24:29:36 tritriadics with mediants of 23h9 and 29h4.

Number 469 is an adventitious tetrachord from Partch (1974, 165)'

Numbers 470-472 are from chapter 4. The last two resemble some of the

Islamic tunings of the Middle Ages. The remaining tunings are proposed

approximations to Islamic or syntonic diatonic tetrachords.

016. CHARACTERISTIC INTERVAL 160!I43 194 CENTS

473 r r/ro- 13h 2' 160h43 165 + 139 + 194 AL-FARABI

This tetrachord is from Al-Farabi (D'Erlanger 1930, 112). It did not seem

worthwhile to explore this genus further because the ratios would be complex

and often larger than 160lr43 itself.

017. CHARACTERISTIC INTERVAL 10/9 182 CENTS

474 12/II' IIlro· 10/9 151 + 165 + 182 PTOLEMY

475 10/9' 10/9' 27h5 182 + 182 + 133 AL-FARABI

476 10/9' 13/12' 72/65 182 + 139 + 177 AVICENNA

The apylmonis 6/5 and the majority ofpotential divisions have intervals larger

than the 10/9' Number474 isPtolemy's homalon or equa ble diatonic, ascale

which haspuzzled theorists, but which seems closely related to extant tunings

in the Near East. Ptolemy described it as sounding rather foreign and rustic.

Could he haveheard it or somethingsimilar and written it down in the simplest

ratios available? It certainly sounds fine, perhaps a bit like 7-tone equal

temperament with perfect fourths and fifths. The Avicenna and Al-Farabi

references are from D'Erlanger (1935), and Ptolemy (Wallis 1682).

Reduplicated tetrachords

These genera are arranged by the reduplicated interval in descending order

of size.

477 r r/ro- i ttto- 400/363 165 + 165 + 168 Rl
478 12/ll' t ilt t . 121lr08 151 + 151 + 197 AVICENNA R2

479 13/u'13lr2'192lr69 139+ 139+ 221 AVICENNA R3
480 14lr3 . 14lr3 . 169lr47 128 + 128 + 241 AVICENNA R4
481 15lr4' 15lr4' 784/675 II9+ II9+ 259 AVICENNA R5
482 2187/2048'16777216/14348907'2187/2048

I14+ 271 + II4 PALMER R6

483 17116. 17II6· 1024/867 105 + 105 + 288 R7

484 18117' 18II7'2891z43 99+99+3°0 R8

485 2561243·256h43·19688h6384 90 +90 + 3l8 R9
486 22121'1471121'22/21 81+337+81 RIO
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487 25/24'25/24'768/625 71+71+357 RII
488 28/27' 28/27' 243!I96 63+63+372 R12

489 34/33' 34/33' 363/289 52 +52 + 395 RI3

490 36/35'36/25'11. 25/97 2 49+49+401 RI4

49 1 4°/39' 4°/39' 507/400 44+44+410 u5
49 2 46/45'46/45,675/529 38+38+422 RI6

While a number ofother small intervals could be used to construct analogous

genera, the ones given here seem the most important and most interesting.

Number 477 is an approximation in just intonation to the equally tempered

division of the 4/3' See number 722 for the semi-tempered version. The

Avicenna genera are from vol. 2, pages 122-123 and page 252 ofD'Erlanger.

The Palmer genus is from his booklet on Turkish music (1967?)' This genus

isvery close to Helmholtz's chromatic 16/I5' 75/64' 16115,The 18117genus

is also nearly equally tempered and is inspired by Vincenzo Galilei's lute

fretting (Barbour 1951, 57), Number 486 is nearly equal to III 1tI3 0/7t

4/3, a theoretical genus using intervals of I I to approximate intervals of 7t.

Numbers 487 and 488 corne from Winnington-Ingram's (1932) suggestion

that Aristoxenos's soft and herniolic chromatics were somewhat factitious

genera resulting from the duplication of small, but known, intervals. The

remaining tetrachords are in the spirit ofAvicenna and Al-Farabi.

Miscellaneous tetrachords

The tetrachords in this section are those that were discovered in the course

ofvarious theoretical studies but which were not judged to be of sufficient

interest to enter in the Main Catalog. Many of these genera have unusual

CIs which were not thought worthy of further study, The fourth and fifth

columns give the ratio of the pyknon or apyknon and its value in cents,

493 1761175'1751174'29/22 10+10+478 88/87 20 MI

494 25119'93 11925'148/147 475+ 11+11. 76/75 23 M2
This tetrachord is generated by the second of the summation procedures

of chapter 5,

4951281127'127/126'21116 14+ 14+471 60/63 27 M3

496 21116,656/651'120/123 471 + 13 + 14 60/63 27 M4

Another summation tetrachord from chapter 4.

497 100/103' 1031102 . 17/13 17 + 17 + 464 52/5 1 34 MS

498 17113 '429/425'100/99 464+ 16+ 17 52/5 1 34 M6
Another summation tetrachord from chapter 4.
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499 98/97' 97/96 . 64149 18+18+462 49/48 36 M7
500 92/91' 91/9°' 30123 19+ 19+460 46/45 38 M8
5°1 90/89 . 89/88 . 176/ I35 19+20+ 459 45/44 39 M9
5°2 88/87. 87/86. 43/33 20+20+458 44143 4° MIO
5°3 86/85. 85/84' 56/43 20+ 20+457 43/42 41 MIl
5°4 84183 .83/82.82/63 21+21+456 42/41 42 MI2
5°5 82/81 ·81/80' 160h23 21+22+455 41/40 43 MI3

These genera contain intervals whichareprobablytoo smallforusein most

music.However,Harry Partch and]uliiinCarrillo,amongothers, have used
intervals in this range.

5°6 13/10' 25°1247' 76/74 454+21 + 23 40/39 44 MI4
Another summation tetrachord from chapter 4.

5°7 78/77' 77/76. 152/117 22 + 23 +453 39/38 45 MIS
5°8 76/75' 76/75' 74/57 23+ 23+45 2 38/37 46 MI6

5°9 74/73'73/72'48/31 24+24+451 37/36 47 MI7
510 7°/69.69/68. 136h05 25 + 25+448 35/34 5° MI8

511 22/17' 357/352.64/63 446 + 24+ 27 34/33 52 MI9
Another summation tetrachord from chapter 4.

512 58/57' 57/56 . I12/87 30+31 +437 29128 61 M20

513 87/8°' 43/42' 112/87 20+41 +437 29128 61 M21

514 87/85.85/84' 112/87 40+ 20+437 29/28 61 MlZ
The preceding are a set ofhyperenharmonicgenerawhichdivide the dieses

between 40/39 and 2812.7. Similarbut simpler generawill be found in the
Main Catalog. Smallintervals in this rangeare clearlyperceptible, buthave

been rejected by most theoreticians, ancient and modern.

515 68/53 . 53/52 . 52/51 431+33+34 53/51 67 M23

516 136h33' 133!I30 .65/5 1 34+ 34 +420 68/65 78 M24

517 68/67. 67/65. 65/51 26+ 52 + 420 68/65 78 M25

518 34/33.66/65.65/51 52+ 26 + 420 68/65 78 M26

519 68/67· 67/54· 18!I7 26+ 373 + 99 72/76 12 5 M27

520 25124' 32/31' 3112.5 71 + 55 + 372 100/93 126 M28

521 68/55' 55/54' r8h7 367 + P + 99 55/51 13 1 M29

522 68/67.67/63 . 'lIh7 26+ 107 + 366 68/63 Ip M30

523 68/65,65/63· 2I1r7 78 + 54 + 366 68/63 13l M3 1

524 36/35' 2561243' 3151256 49 + 9° + 359 1024/945 139 M3 2

525 64/63' 16/r5' JI5/z56 27+ I12+359 1024/945 139 M33

Numbers 524 and 52.5 are from Vogel's PIS tuning of chapter 6.
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526 64/63' 2187/2°48,896/729 27 + 114 + 357 243/224 141 M34

527 36/35'135/128.896/729 49+92+357 243/224 141 M35

This tuning is a close approximation to one produced by the eighth mean

(Heath 192 I) ofchapter 4' It also occurs in Erickson's analysis of Archytas's

system and in Vogel's tuning (chapter 6 and Vogel 1963, 197).

528 28h7·zr87lr792'256/243 63 + 345 +90 7168/6561 153 M3 6

This tetrachord appears in Erickson's commentary on Archytas's system

with trite synemmenon (112/81, B~-) added.

529 16h5·2240/2187,2187lr792 112+41+345 7168/6561 153 M37

530 28127'128lr05'135/I28 63+343+92 35/3 2 141 M38

Numbers 528-530 are from Vogel's PIS tuning of chapter 6.

531 I7lr 6'P/F,62/51 105 + 55 + 338 34/3 1 160 M39

532 20lr9' 57/47'47/45 89 + 334 + 75 188h71 164 M40

Number 532 is a possible Byzantine chromatic,

533 360/349'349/327'1°9/90 54+ Il3+33 2 1201r09 166 M41

534 24h3'II5lr09'109/90 74+94+332 12olr09 166 M42

Number 534 is a hypothetical Ptolemaic interpretation of 5 + 6 + 19 "parts",

after Macran (19°2),

535 240/229' 229/218. 109/90 81 + 85 + 332 I2olr09 166 M43

536 19h 8'24/23'231r9 94+74+330 76/69 167 M44

537 15h4'36/35 '98/81 119+49+330 54/49 168 M45

Number 537 occurs in Other Music's gamelan tuning (Henry S. Rosenthal,

personal communication).

538 28/27' 16h5' 135lr 12 63 + Il2 + 323 448/4°5 175 M46

539 24123·II5/96.16lr5 74+3 13+ 112 128/115 185 M47

A Ptolemaic interpretation of Xenakis's 5+ 19+6 "parts" (1971).

540 2561243·243/230'II5/96 9°+95+3 13 128/Il5 185 M48

541 68/67,67/56. 56/51 26 + FO + 162 224/201 88 M49

542 68/57' 19h 8· 1Sh7 305 + 94 + 99 19h7 193 M50

543 15h 4 ' 266/255' 68/57 II9 + 73 + 305 19h 7 193 M51

544 256/243' 243/229' 229lr9 2 90 + 103 + 305 256/r92 193 M52

545 32/JI'13/12'3 1/26 55+ 139+3°4 104/ 93 194 M53

546 24°/227' 227/21 4' 107/90 96 + 102 + 300 nolr07 199 M54

547 360/347'347/321'107/90 64+ 135+3°0 I2olr07 199 M55

This genus is related to (Ps.)-Philolaus's division as 6.5 + 6.5 + 17 "parts".

See also chapter 4.
548 7168/6561, 36/35' 12I5/r024 153 + 49 + 296 4°96/3645 202 M56
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549 16h5' 1215/r024' 2561243 112 + 296+ 90 4096/3635 202 M57

550 28127 ' 1024/945 . 1215h024 63 + 139 + 296 4096/3635 202 M58

Numbers 548-55° are from Vogel's PIS tuning of chapter 6.

551 12ohl3' Il3h 06. 53/45 104+ III + 283 60/53 :215 M59

552 180!r73'173h59'53/45 69+146+283 60/53 215 M60

553 9°/83' 166h59' 53/45 140 + 75 + 283 60/53 21 5 M61

554 24/23' II5h o6 , 53/45 74+ 141 + 283 60/53 215 M62
Number 554 is a hypothetical Ptolemaic interpretation of 5 + 9 + 16 "parts."

The others, numbers 551, 5SZ, and 553 are 1;1, 1:2 and 2:1 divisions of the

pyknon.

555 34129'58/57' 19/17 275+30+193 58/5 1 223 M63

55610/9'II7hoo'40/39 182+272+444°0/351 226 M64

557 I20hI3'II3/97'97/90 1°4+ 264+ 13° 388/339 234 M65
This genus is a Ptolemaic interpretation ofXenakis's 7+ 16+7 "parts."

558 13!I2·55/SZ·64/55 139+97+ 262 55/48 236 M66
This genus is generated by the second ratio mean of chapter 4.

559 68/65. 65/56'56151 78+ 258+162 224!I95 240 M67

560 U/II '297/z56, 256/243 151 + 257 + 90 1024/891 241 M68

561 28127' 8r/70' 10/9 63 + 253 +182 280h43 245 M69

This tetrachord is also found in Erickson's article on Archytas's system with

trite synemmenon (112/81, BH added. It also occurs in Vogel's PIS tuning

of chapter 6.

562 81/70.224012187' 9/8 253 +41 + 204 280/z43 245 M70

563 81/7°' 256h43 . 35/P 253 + 90 + 155 280!z43 245 M71

564 135/128. 7168/6561.81/7° 9 2 + 153 + 253 2801243 245 M72

These three tetrachords are from Vogel's PIS tuning of chapter 6.

565 60/59'59/51'17!I5 29+ 252+ 217 68/59 246 M73

566 40/37'37/32'16h5 135+ 25I+ II 2 I28hrr 247 M74

This is a Ptolemaic interpretation ofAthanasopoulos's 9 + 15 + 6 "parts."

567 r6h5" 280!z43 "243!z24 II2 + 245 + 141 8r170 253 M75

56836/35"9/8'280!z43 49+ 2°4+ 245 81/70 253 M76

569 8/7' 8I18o· 280/z43 231 + 22 + 245 81/70 253 M77

These three tetrachords are from Vogel's PIS tuning ofchapter 6.

570 46145·132lrI5·251z2 38+ 239+ 221 II5/99 259 M78

57r 16lr5' U/II· 55/48 112+151+ 236 64155 262 M79

This is an approximation to the soft diatonic of Aristoxenos, liz + 3/4 +

I 1/4 tones, 6 + 9 + 15 "parts,"
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572 10/9.63/55' n/ll 181 + 235 +81 llolI89 263 M80

This is another tetrachord from Partch ([1949] 1974,165), presented as an

approximation to a tetra chord of the "Ptolemaic sequence," or major mode

in 5-limit just intonation.

573 30129' I 16/r03 . 103/90 59 + 206 + 234 I 2oil03 264 M81

574 360/343 . 343/309' 1°3/9° 84+ 181 + 234 IlolI03 264 M82

575 4°/39' 143/u5 . 15121 44+ 233+ 221 500/429 265 M83

576 68/65. 65/57 . I9/r7 78+ 227+ 193 76/65 271 M84

577 256/243' 729/64°'10/9 90+ 225 + 182 256012187 273 M85

578 30129' 58/51 . 17II5 59+ 223+ 217 34129 275 M86

579 23121' 14"13. 26123 158 + u8 + 1I2 46/39 286 M87

580 23/22 . 44"39' 2612 3 77+ 209+ 1I2 46/39 286 M88

581 14113 '2601231' IIlrO Il8 + 205 + 165 77/65 293 M89

582 4096/3 645' 35/3 2' 24312 24 202 + 155 + 141 I2I5/r024 296 M90
From Vogel's PIS tuning of chapter 6.

583 38/35.35/3 2. 64157 142 + ISS + 201 19lr 6 298 M91

584 191r7 . I 7lr6 . 64157 193 + lOS + 201 19II 6 298 M9 2

585 t tl io .95/88.64157 165 + 135 + 201 19lr6 298 M93

The apyknon ofgenera numbers 583-585 is I9/r6. The 1:2 division is listed

as D I 5 (9/8), number 464.

586 240/llI . 1211202' 101/90 143 + 156 + 200 r ao/ro r 298 M94

587 15lr4' I r a/ro r . 101/90 II9+ 179+ 200 r zo/ror 298 M95

588 120/r 13' II3/rOI . 101/90 104 + 194 + 200 I20lrOl 298 M96

589 533/483 . 575/533 . 28125 171 + 131 + 196 2512 1 3°2 M97
A mean tetrachord of the first kind from chapter 4.

590 191I7·85/76. 16lr5 193 + 194 + Il2 3°41255 3°4 M98

591 19lr7' I I 561I083 . 19II7 193 + II3 + 193 68/57 3°5 M99

Two tetrachords from Thomas Smith (personal communication, 1989).

592 68/63 'lIlr9' 19/r7 I3l+ 173 + 193 68/57 3°5 MIOO

593 10/9' 108/97' 97/90 182 + 186 + 130 97/90 368 MIOI

Tetrachords in equal temperament

The tetrachords listed in this section of the Catalog are the genera of

Aristoxenos and other writers in this tradition (chapter 3). Included also are

those genera which appear as vertices in the computations of Rothenberg's

propriety function and other descriptors, and various neo-Aristoxenian

genera. These are all divisions of the tempered fourth (500 cents).
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The "parts" ofthe fourth usedto describethe scalesofAristoxenosare, in

fact, the invention of Cleonides, a later Greek writer, asAristoxenosspoke

only of fractional tones. The invention has proved both useful and durable,

for not only the later classical writers, but also the Islamic theorists and the

modem Greek Orthodox church employthe system,though the former have

often doubled the number to avoidfractionalparts in thehemiolic chromatic

and a fewother genera.

Until recently,the Greek churchhasusedasystemof 28pans to the fourth

(Tiby 1938),yieldinga theoreticaloctaveof68(28+12 +28)tonesrather than

thq2 (30+ 12 + 30= 72)or 144(60+24+60= 144in thehemiolicchromatic
and rejected genera) of the Aristoxenians. The 68-tone equal temperament

has a fourth of only 494cents.
Note that a number of the Orthodox liturgical tetrachords are meant to

be permuted in the formation of the differentmodes (echoi).This operation

may be applied to the historical andneo-Aristoxenianones aswell.

ARISTOXENIAN STYLE TETRACHORDS

594 2+ 2+ 26 33 + 33 +433 CHAPTER 4 TI

595 2·5 +2·5 + 25 42+42+417 CHAPTER 4 Tl

596 2 + 3 + 25 33+5°+417 CHAPTER 4 T3

597 3+3+ 24 50+ 50 +400 ARISTOXENOS T4

598 2 +4+ 24 33 + 67 +400 CHAPTER 4 T5

599 2+5+ 23 33+ 83 +383 CHAPTER 4 T6

600 7/3 + 10/3 + 23 39 + 78 +383 CHAPTER 4 T7
601 4+ 3 + 23 67 +50+ 383 CHAPTER 3 T8

602 3.5+3.5+ 23 58 + 58 +383 CHAPTER 4 T9
603 2+ 6 + 22 33 + 100+ 367 CHAPTER 4 TIO

604 4+4+ 22 66 +66+ 367 ARISTOXENOS TII

605 8/3 + 16/3 + 22 44 +89+ 367 CHAPTER 4 TIZ

606 3 +5 + 22 50+ 83 +367 CHAPTER 4 TI3

607 4·5 + 3·5 + 22 75+58+367 ARISTOXENOS TI4
608 2+7+ 21 33 + II7 + 350 CHAPTER 4 TI5

6°9 3+ 6+ 21 50+ 100+350 CHAPTER 4 TI6

610 4·5 +4·5 + 2I 75 + 75+ 35° ARISTOXENOS TI7
611 4+5+ 21 67 +83 +350 CHAPTER 4 TI8

612 6+3+ 21 100 +50 + 350 ARISTOXENOS TI9

613 6+ 20+4 100 +333+67 SAVAS T20

614 10/3 + 20/3 + 20 56+ 111+333 CHAPTER 4 TH
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615 5 + 5 + zo 83 +83 + 334 CHAPTER 4 TZl

616 5.5+5.5+ 19 9z+9z+3 17 CHAPTER 4 TZ3
617 I1/3 + zz/3 + 19 61 + IZZ + JI7 CHAPTER 4 TZ4
618 5 + 19+6 83+3 17+ 100 XENAKIS TZ5
619 5 +6 + 19 83+ 100+3 17 MACRAN TZ6

6zo z+lo+18 33 + 167 + 3°0 CHAPTER 4 TZ7
6zr 3+ 9 + 18 50 + 150+ 300 CHAPTER 4 TZ8

6zz 4+ 8 + 18 67+ 133+3°0 AR1STOXENOS TZ9

6z3 4·5+ 7·5+ 18 75+ IZ5+300 CHAPTER 4 T3°
624 6+6+18 100+ 100+ 300 AR1STOXENOS T3 1

6z5 5+ 7 + 18 83 + II7 + 300 CHAPTER 4 T3z

626 6+18+6 100+ 300+ 100 ATHANASOPOULOS T33

6z7 13/3 + 26/3 + 17 72 + 144+ 283 CHAPTER 4 T34
628 6·5+ 6,5 + 17 108+ 108+ 283 CHAPTER 4 T35
629 2+ 16+ IZ 33 + ..67+ 200 CHAPTER 4 T3 6

630 I¥3 + 28/3 + 16 78 + 156+ 267 CHAPTER 4 T37

631 5+ 9 + 16 83 + 150 + 267 WINNINGTON-INGRAM T38

6]2 8+ 16+6 133+ z67 + 100 SAVAS T39

633 7+ 16+ 7 I 17+ ..67 + I17 XENAKIS; CHAP. 4 T4°

634 ..+13+ 15 33+ H7+ 25° CHAPTER 4 T41

635 3+ IZ+ 15 50 + ZOO+ 250 CHAPTER 4 T42

636 4+ II+ 15 67+ 183+"5° CHAPTER 4 T43

637 5+ 10+ 15 83+ 167+ z50 CHAPTER 4 T44

638 6 + 9 + 15 100+ 15°+250 ARISTOXENOS T45

639 7+ 8 + 15 I 17+ 133 + ..50 CHAPTER 4 T46

640 7.5+7.5+ 15 IZ5 + 12 5+ 250 CHAPTER 4 T47

641 9+ 15+ 6 150+ 250+ 100 ATHANASOPOULOS T48

64" 2+14+ 14 33+ 233+ 233 CHAPTER 4 T49

643 4+ 14+ IZ 67 + z33 + 200 ARISTOXENOS T5°

644 5 + I I + 14 83+ 183+ 233 WINNINGTON-INGRAM T51

645 16/3 + 32/3 + 14 89 + 178 + 233 CHAPTER 4 T52

646 8 + 8 + 14 133+ 133 + 233 CHAPTER 4 T53

647 4.5 + 13·5+ IZ 75 + 225 + zoo ARISTOXENOS T54

648 5+ IZ+ 13 83 +200+ 217 CHAPTER 4 T55

649 4+ 13+ 13 67 + zl7 + 217 CHAPTER 4 T56

650 17/3 + 3¥3 + 13 94 + 189 + H7 CHAPTER 4 T57

651 8.5+ 8.5+ 13 142 + 142 + 217 CHAPTER 4 T58
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65 2 6 + 12 + 12 100 + 200+ 200 ARISTOXENOS T59

Savas,Xenakis and Athanasopoulos all give permutations of this tetrachord

in their lists of Orthodox church forms.

653 12 + 11+ 7 200 + 183 + 117 XENAKIS T60

Xenakis (1971) permits several permutations of this approximation to

Ptolemy's intense diatonic.

65410+8+12 167+133+200 SAVAS T61

The fonn 8 + 12 + 10 is Savas's "Barys diatonic" (Savas 1965).

655 12 + 9 + 9 200 + 150 + 150 AL-FAllABI; CR. 4 T62

656 8 + II + II 133 + 183 + 183 CHAPTER 4 T63

This tuning is close to 27125' 10/9' 10/9'

657 9.5+9.5+11 158+158+183 CHAPTER 4 T64

658 10 + 10 + 10 166 + 167 + 167 AL-FAllABI T65

Tiby's Greek Orthodox tetrachords of 28 parts to the fourth of 494 cents.

659 12+13+3 212+229+53 TIBY T66

660 12 + 5 + II 212 + 88 + 194 TIBY T67

66112+9+7 212+159+124 TIBY T68

662 9 + 12 + 7 159 + 212 + 124 TIBY T69

See TibY(1938) for numbers 659-662.

TEMPERED TETRACHORDS IN CENTS

663 22.7+22.7+454.5 CHAPTER 5 T70

66437.5+37.5+425 CHAPTERS T7I

665 62·5 + 62.5 + 375 CHAPTER 5 T72

Tetrachord numbers 663- 665 are categorical limits in the classification

scheme of 5-9.

666 95 + 115 + 290 T73

This tetrachord was designed to fill a small gap in tetrachordal space. See

9-4,9-5, and 9-6.

667 89 + 289 + 122 CHAPTER 5 T74

668 87.5 + 287.5 + 115 CHAPTER 5 T75

669 83·3 + 283.3 + 133-3 CHAPTER 5 T76

670 75 + 275 + 150 CHAPTER 5 Tn
67 1 100 + 175 + 115 CHAPTER 5 T78

67255+ 170+ 275 T79
This tetrachord was designed to fill a small gap in tetrachordal space.

673 66·7 + 266·7 + 166·7 CHAPTER 5 T80

674 233·3 + 16·7 + 250 CHAPTER 5 T81
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CHAPTER 5

CHAPTER 5

CHAPTER 5

CHAPTER 5

675

676

677

678

679
680

681

682

683
684
685
686

687
688

689
690

691

225+ 25+ 25°

66·7 + 183.3 + 250

75+ 175+ 25°

I25 + 125 + 250

l0S + 145 + 250

IIO+ 140+ 250 T87

Tetrachord numbers 679 and 680 fill possible gaps in tetrachordal space.

87.5+237.5+175 CHAPTERS T88

233.3 + 166·7 + 100 CHAPTER 5 T89

212·5 + 62.5 + 225 CHAPTER 5 T90

225 + 75 + 200 CHAPTER 5 T9 1

225+175+100 CHAPTER 5 T92

87.5+ 187.5+ 225 CHAPTERS T93

212·5 + 162·5 + 125 CHAPTER 5 T94

100+ 187.5+ 212.5 CHAPTERS T95

lI2·5 + 137·5 + IS0 CHAPTER 5 T96

200 + 125 + 175 CHAPTER 5 T97

145 + 165 + 190 T98

This tetrachord was designed to fill a small gap in tetrachordal space.

Semi-tempered tetrachords

The tetra chords in this section contain both just and tempered intervals. Two

of these genera are literal interpretations of late Classical tuning theory. A

number are based on the assumption that Aristoxenos intended to divide the

perfect fourth (4"3), a rather doubtful hypothesis. The remainder are mean

tetrachords from chapter 4 with medial 9/8 . Fonnally, these latter tetrachords

are generators oftritriadic scales. In all cases they span a pure 4"3.

16/(9"3) . 161(9"3) . 8 1/64 45 + 45 +408 SI

Number 692 is Barbera's (1978) literal interpretation of Nicomachos's

enharmonic as liz semitone + liz semitone + ditone, where the 1/2 semitone

is the square root of 2561z43, also written as 16· "3 / 27.

1.26376. 1.053 21'1.00260 405 + 88 + 4 S2

This mean tetrachord of the second kind is generated by mean 9.

(4"3)1/10. (4"3)1110. (413)8110 50 + 50 + 398 s3

This tetrachord is a literal interpretation ofAristoxenos's enharmonic under

Barbera's (1978) assumption that Aristoxenos's meant the perfect fourth

4"3· In Cleonides's cipher, it is 3 + 3 + 24 parts.

200 CHAPTER 9

4



695 (413)2/15 . (413)2115. (4!3)1lI15 66 + 66 + 365 s4

This tetrachord is a semi-tempered interpretation of Aristoxenos's soft

chromatic. In Cleonides's cipher, it is 4 + 4 + 22 parts.

696 (413)3120. (413)7/60. (413)11/15 75 + 58 + 365 s5

This tetrachord is a semi-tempered interpretation of a genus rejected by

Aristoxenos, It somewhat resembles Archytas's enharmonic. In Cleonides's

cipher, it is 4.5 + 3.5 + 22 parts.

697 (4!3)3!20. (413)3/20. (413)7110 75+ 75 + 349 s6

This tetrachord isa semi-tempered interpretation ofAristoxenos's hemiolic

chromatic. In Cleonides's cipher, it is4.5 +4.5 + 2 I parts.

698 (413)115. (413)1110. (413)7/10 100 + 50 + 349 s7

This tetrachord is a semi-tempered interpretation of a genus rejected by

Aristoxenos. In Cleonides's cipher, it is 6 + 3 + 2I parts.

699 1.21677' 1.°3862' 1.05505 340 + 66 + 93 s8
This mean tetrachord of the first kind is generated by mean 9.

700 (413)1/5. (413)115 . (413)3/5 100 + 100 + 299 s9

This retrachord isa semi-tempered interpretation of Aristoxenos's intense

chromatic. In Cleonides's cipher, it is6 + 6 + 18 parts.

701 (413)2115. (413)4115 . (413)3/5 66 + 133 + 299 SIO

This tetrachord is a semi-tempered interpretation of a genus rejected by

Aristoxenos. It closely resembles Archytas's chromatic In Cleonides's cipher,

itis 4 + 8 + 18 parts.

702 3"214' 3"2/4' 32/27 102 + 102 + 294 SIl

This tetrachord is implied by writers such as Thrasyllus who did not give

numbers for the chromatic, but stated only that it contained a 32/2 7 and a

1:1 pyknon (Barbera 1978). The semitones are the square root of 9/8.

703 1.18°46. 1.06685' 1.05873 287 + 112 + 99 SIZ

This mean tetrachord of the second kind is generated by mean 5.

704 1.°5956'1.06763.1.17876 100+113+ 285 sl3

This mean tetrachord of the first kind is generated by mean 13.

705 1.17867' 1.06763 . 1'°5956 285 + 113 + 100 sl4
This mean tetrachord of the second kind is generated by mean 14-

706 1.17851' 1.06771.1.°5963 284 + 113 + 100 Sl5

This mean tetrachord of the second kind is generated by mean 17.

707 1.17851' 1.06771 . 1.°5963 282 + 114 + 101 SI6

This mean tetrachord of the second kind is generated by mean 6.
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710

711

712

713

720

(4"3)115. (4"3)3/10. (4"3)112 100 + 149 + 250 s17

This tetrachord is a semi-tempered interpretation of Aristoxenos's soft

diatonic. In Cleonides's cipher, it is 6 +9 + 15 parts.

1.°7457' 1.°7457' 1.154701 125 + 125 + 249 s18
This mean tetrachord of the first kind is generated by mean 2. The

corresponding tetra chord of the second kind has the same intervals in reverse

order.

(4"3)2115. (4"3)7/15. (4"3)215 66 + 232 + 199 s19

This tetrachord is a semi-tempered interpretation of Aristoxenos's diatonic

with soft chromatic diesis. In Cleonides's cipher, it is 4 + 14 + 12 parts.

1.13847'1.125°'1.°410 225+2°4+7° S20
This mean tetrachord of the third kind is produced by mean 5.

(4"3)3120. (4"3)9120. (4"3)215 75 + 224 +199 S21

This tetrachord is a semi-tempered interpretation of Aristoxenos's diatonic

with hemiolic chromatic diesis. In Cleonides's cipher, it is 4.5 +13.5 + 12

parts.

1.13371'1.125°'1.°454° 217+2°4+77 S22
This mean tetrachord of the third kind is produced by mean 14. In reverse

order, itis generated by mean 13.

1.13315'1.125°'1.04595 216+2°4+78 s23
This mean tetra chord of the third kind is produced by the root mean square

mean 17.

1.°9185.1.°78°3' 1.1327B 152 + 130+ 216 s24
This mean tetrachord of the first kind is produced by mean 6.

1.°9291' 1.078]2B. 1.1p37 154+ 131 + 214 s25
This mean tetrachord of the first kind is produced by mean 17.

1.°93°1'1.°7837'1.13 122 154+131+213 s26
This mean tetrachord of the first kind is produced by mean 14. In reverse

order is the tetrachord of the second kind generated by mean 13.

1.°9429.1.°7874'1.12950 156+ 131+ 211 s27
This mean tetrachord of the first kind is produced by mean 5.

1.1295°'1.125°.1.°493° 2II+204+83 s2B
This mean tetra chord of the third kind is produced by mean 6.

1.oBB66· 1.125°' 1.08866 147 + 204 + 147 s29

This mean tetrachord of the third kind is produced by the second or

geometric mean.
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721 (4.IJ)1I5. (4"3)215. (4"3)215 100 + 199 + 199 s30

This tetrachord is a semi-tempered interpretation ofAristoxenos's intense

diatonic. In Cleonides's cipher, it is 6 + 12 + 12 parts.

722 (4"3)113. (4"3)113. (4"3)113 166 + 166 + 166 s3 I

Number 722 is the equally tempered division of the 4"3 into three parts. It

is the semi-tempered form ofPtolemy's equable diatonic and of the Islamic

neo-Aristoxenian approximation 10 + 10 + 10.

723 (4"3)2/5 . (4"3)3/10 . (4"3)3/10 200 + 149 + 149 S32

Number 723 is the semi-tempered version of the Islamic neo-Aristoxenian

genus 12 +9 + 9 parts.

Source index

The sources ofthe tetrachords listed below are the discoverers, when known,

or the earliest reference known at the time ofwriting. Further scholarship

maychange some ofthese attributions. Because the Islamic writers invariably

incorporated Ptolemy's tables into theircompilations, they are credited with

only their own tetrachords. The same criterion was applied to other historical

works.

Permutations are not attributed separately except in notable cases such as

that of Didymus's and Ptolemy's mutual use of fOnDS of 16h 5 . 9/8 . 10/9'

Doubtful attributions are marked with a question mark.

For more information, including literature citations, one should refer to

the entries in the Main Catalog. Uncredited tetrachords are those of the

author.

AL-FARABI:307,394,460,473,475,655,658

ANONYMOUS TREATISE: 456 (FROM D'ERLANGER)

ARCHYTAS: 106,248,393

ARISTlDES QUINTILlANUS: 245

ARISTOXENOS: 597,604,607,610,612,622,624,638,643,647,652

ATHANASOPOULOS: 626, 641

AVICENNA:I08,3Il,390,395,396,457,458,459,476,478,479,480,481

BARBERA: 692,694

BARBOUR:216,217,247?,250?,251?,252?,312

BOETHIUS: 75, 241

DANltLOU: 154

DIDYMOS: 1°3,215,455

ERATOSTHENES: 71,212
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