EDITOR’S INTRODUCTION

WHEN 1 was A young student in California, Lou Harrison suggested that I
send one of my first pieces, Piano Study #5 (for PR) to a Dr. Chalmers, who
might publish it in his journal Xenbarmonikon. Flattered and fascinated, I
did, and John did, and thus began what is now my twenty year friendship
with this polyglot fungus researcher tuning guru science fiction devotee
and general everything expert.

Lou first showed me the box of papers, already called Divisions of the
Tetrachord, in 1975. 1 liked the idea of this grand, obsessive project, and felt
that it needed to be available in a way that was, like John himself, out of the
ordinary. When Jody Diamond, Alexis Alrich, and I founded Frog Peak
Music (A Composers’ Collective) in the early Bos, Divisions (along with
Tenney’s then unpublished Meta + Hodos) was in my mind as one of the
publishing collective’s main reasons for existing, and for calling itself a
publisher of “speculative theory.”

The publication of this book has been a long and arduous process. Re-
vised manuscripts traveled with me from California to Java and Sumatra
(John requested we bring him a sample of the local fungi), and finally to our
new home in New Hampshire. The process of writing, editing, and pub-
lishing it has taken nearly fifteen years, and spanned various writing tech-
nologies. (When John first started using a word processor, and for the first
time his many correspondents could actually read his long complicated
letters, my wife and I were a bit sad—we had enjoyed reading his com-
pletely illegible writing alond as a kind of sound poetry).




My people have contributed to the publication of this book, all vol-
untering their valuable time. David Doty (editor of 1/1, The Journal of the
Juthwmation Network) and Daniel J. Wolf (who took over publication of
Xebrmonskon for several issues in the 1980s) both made a tremendous
editriel contribution to style and content. Jarrad Powell, Joel Man-
debam, David Rothenberg (especially for chapter five) and Jody Diamond
mageviluable suggestions. Lauren Pratt, who is to copy editing what John
Clulmers is to tetrachords, saw countless errors that were not there until
shepinted them out. Carter Scholz, the one person I know who can give
John Chalmers a run for his money in the area of polymathematics, began
#stehook’s designer, and by virtue of his immeasurable contributions,
became its co-editor.

Jon Chalmers's Divisions of the Tetrachord is a fanatic work. It is not a
bosk that everyone will read or understand. It is a book that needs to

exist,

Ly POLANSKY
Lebinon, New Hampshire 1992



FOREWORD

NEARLY TWENTY YEARS AGO John Chalmers and I had a number of very
fruitful conversations. Well acquainted with the work of Harry Partch and
also of younger musical theoreticians, Erv Wilson among them, John
brought an immense amount of historical and scientific knowledge to our
happy meetings. In turn, William Colvig and I brought the substance of
professional musical life and the building of musical instruments.

At that time I had rhapsodic plans for a “Mode Room,” possibly for
UNESsco, in which would be assembled some great world-book of notated
modes, their preferred tunings and both ethnic and geographic provenance,
along with such history of them as we might have. I had supposed a roomful
of drawers, each holding an octave metallophone of a mode, and some-
where a harp or psaltery of some further octaves’ compass on which one
might try out wider musical beauties of the mode under study. I even wrote
out such a proposal in Esperanto and distributed it in an international
ethnomusicology conference in Tokyo in 1961.

However, a little later Mr. Colvig began to build extremely accurate
monochords on which we could study anything at all, and we rushed, ina
kind of ecstasy, to try everything at once. Bill and I designed and builta
“transfer harp,” wirestrung and with two tuning systems, both gross and
fine. Although innocently and quickly designed and built, its form, we
discovered, is that of what the Chinese call a “standing harp”— the plate is
parallel to the strings. We already owned a Lyon and Healey troubador
harp, and, with these and with the addition of one or two other incidental




instruments, a bowed psaltery, drones, and small percussion, Richard Dee
and I in one rapturous weekend tuned and recorded improvisations in a fair
number of modes from planetary history, especially from the classical civ-
ilizations and Islam.,

A little later, our friend Larry London, a professional clarinetist with
wide intellectual interests and a composer of wide-ranging inquiry, made
two improved versions of our original “transfer harp” and he actually
revived what literature tells us is the way Irish bards played their own
wirestrung harps, stopping off strings as you go. He has composed and
plays a beautiful repertory of pieces and suites (each in a single mode)
for his harps. I continue to want to hear him in some handsome small
marble hall that reminds of Alexandria, Athens, or Rome.

Thus, the “Mode Room,” about which I am still asked, turned into
anyone’s room, with a good monochord and some kind of transfer in-
strument. But the great book of modes?

Knowing that the tetrachord is the module with which several major civ-
ilizations assemble modes, John and I had begun to wonder about how many
usable tetrachords there might be. We decided that the ratio 81/80 is the
“flip-over” point and the limit of musical use, although not of theoretical
use. This is the interval that everyone constantly shifts around when singing
or playing major and minor diatonic modes, for it is the difference between
a major major second (9/8) and a minor major second (10/9) and the dis-
tribution of these two kinds of seconds determines the modal characters.
Thus our choice.

John immediately began a program, and began to list results. I think that
he used a computer and he soon had quite a list. From his wide reading he
also gave attributions as historically documented formations turned up. It
was enthralling, and this was indeed the “Great Book”™— to my mind the
most important work of musical theory since Europe’s Renaissance, and
probably since the Roman Empire.

But it has taken many years to mature. Not only is John a busy scientist
and teacher, but he has wished to bring advanced mathematical thought
to the work and enjoys lattice thinking and speculation, often fruitful.
He tried a few written introductions which I in turn tried to make in-
telligible to advanced musicians, who, I thought, might see in his work
a marvelous extension of humanist enquiry. Always he found my effort
lacking to his needs. He often employed a style of scientese as opaque



to me as his handwriting is illegible. About the latter there is near uni-
versal agreement—John himself jestingly joins in this.

In the last very few years all of us have finally had translations into
English of Boethius, Ptolemy, and others—all for the first time in our
language. For decades before this John worked from the Greek and other
languages. This, too, was formidable.

Few studies have stimulated me as has John Chalmers's Divisions of the
Tetrachord. It is a great work by any standards, and I rejoice.

Lou HagrrisoN




PREFACE

"TH1S BOOK IS WRITTEN to assist the discovery of new musical resources, not
to reconstruct the lost musical culture of ancient Greece. I began writing
it as an annotated catalog of tetrachords while I was a post-doctoral fellow
in the Department of Genetics at the University of California, Berkeley in
the early 1970s. Much earlier, I had become fascinated with tuning theory
while in high school as a consequence of an unintelligible and incorrect
explanation of the r2-tone equal temperament in a music appreciation
class. My curiosity was aroused and I went to the library to read more about
the subject. There I discovered Helmbholtz’s On the Sensations of Tone with
A. ]. Ellis’s annotations and appendices, which included discussions of
non-12-tone equal temperaments and long lists of just intervals and his-
torical scales. Later, the same teacher played the 1936 Havana recording
of Julidn Carrillo’s Preludio a Colén to our class, ostensibly to demonstrate
the sorry condition of modern music, but I found the piece to be one of
almost supernatural beauty, and virtually the only interesting music pre-
sented the entire semester.

During the next summer vacation, I made a crude monochord calibrated
to 19-tone equal temperament, and later some pan pipes in the §- and g-
tone equal systems. Otherwise, my interest in microtonal music remained
more or less dormant for lack of stimulation until as 2 sophomore at Stan-
ford I attended its overseas campus in Stuttgart. Music appreciation hap-
pened to be one of the required courses and Stockhausen was invited to
address the class and play tapes of “elektronische Musik,” an art~form to-
tally unknown to me at the time. This experience rekindled my interest in



music theory and upon my return to California, I tried to sign up for
courses in experimental music. This proved impossible to do, but I did find
Harry Partch’s book and a recording of the complete Oedipus in the Music
Library. Thus I began to study microtonal tuning systems. My roommates
were astonished when I drove nails into my desk, strung guitar strings be-
tween them, and cut up a broom handle for bridges, but they put up with
the resulting sounds more or less gracefully.

During my first year of graduate school in biology at UCSD, I came
across the article by Tillman Schafer and Jim Piehl on 19-tone instruments
(Schafer and Piehl 1947). Through Schafer, who still lived in San Diego at
that time, I met Ivor Darreg and Ervin Wilson. Later Harry Partch joined
the UCSD music faculty and taught a class which I audited in 1967-68,
About this time also, I began collaborating with Ervin Wilson on the gen-
eration of equal temperament and just intonation tables at the UCSD
computer center (Chalmers 1974, 1982).

After finishing my Ph.D., I received a post-doctoral fellowship from the
National Institutes of Health to do research at the University of Wash-
ington in Seattle and from there I moved to Berkeley to the Department
of Genetics to continue attempting to study cytoplasmic or non-Mendelian
genetics in the mold Nezrospora cvassa. A visit by John Grayson provided an
opportunity to drive down to Aptos and meet Lou Harrison. I mentioned
to Lou that I had begun a list of tetrachords in an old laboratory notebook
and he asked me for a copy.

I photocopied the pages for him and mailed them immediately. Lou
urged me to expand my notes into a book about tetrachords, but alas, a
number of moves and the demands of a career as both an industrial and
academic biologist competed with the task. While working for Merck
Sharp & Dohme in New Jersey before moving to Houston in the mid-
1970s, I wrote a first and rather tentative draft. I also managed to find the
time to edit and publish Xenharmonikon, An Informal Fournal of Experimental
Mousic, while certain harmonic ideas gestated, but I had to suspend pub-
lication in x979. Happily, it was resurrected in 1986 by Daniel Wolf and I
resumed the editorship late in 1989.

In the winter of 1980, I was invited to the Villa Serbelloni on Lake Como
by the Rockefeller Foundation to work on the book and I completed an-
other draft there. Finally, through the efforts of Larry Polansky and David
Rosenboom, I was able to spend the summer of 1986 at Mills College



working on the manuscript.

It was at Mills also that I discovered that the Macintosh computer has
four voices with excellent pitch resolution and is easily programmed in
BASIC to produce sound. This unexpected opportunity allowed me to
generate and hear a large number of the tetrachords and to test some of
my theories, resulting in a significant increase in the size of the Catalog and
much of the material in chapter 7.

After returning to Houston to work for a while as a consultant for a
biotechnology firm, I moved back to Berkeley in the fall of 1987 so that I
could devote the necessary ime to completing the book. With time out to
do some consulting, learn the HMSL music composition and performing
language developed at Mills College, and work as a fungal geneticist once
again at the University of California, the book was finally completed.

A few words on the organization of this work are appropriate. The first
three chapters are concerned with tetrachordal theory from both classical
Graeco-Roman and to a lesser extent medieval Islamic perspectives. The
former body of theory and speculation have been discussed in extenso by
numerous authorities since the revival of scholarship in the West, but the
latter has not, as yet, received the attention it deserves from experimentally
minded music theorists,

After considerable thought, I have decided to retain the Greek nomen-
clature, though not the Greek notation. Most importantly, it is used in all
the primary and secondary sources I have consulted; readers desiring to do
further research on tetrachords will have become familiar with the standard
vocabulary as a result of exposure to it in this book. Secondly, the Greek
names of the modes differ from the ecclesiastical ones used in most coun-
terpoint classes. To avoid confusion, it is helpful to employ a consistent and
unambiguous system, which the Greek terminology provides.

Since many of the musical concepts are novel and the English equiv-
alents of a number of the terms have very different meanings in traditional
music theory, the Greek terminology is used throughout. For example, in
Greek theory, the adjective enbarmonic refers to a type of tetrachord con-
taining a step the size of a major third, with or without the well-known
microtones. In the liturgical music theory of the Greek Orthodox church,
also called Byzantine (Savas 1965; Athanasopoulos 1950), it refers to va-
rieties of diatonic and chromatic tunings, while in traditional European
theory, it refers to two differently written notes with the same pitch. Where



modern terms are familiar and unambiguous, and for concepts not part of
ancient Greek music theory, I have used the appropriate contemporary
technical vocabulary.

Finally, I think the Greek names add a certain mystique or glamour to the
subject. Ifind the sense of historical continuity across two and a half millen—
nia exhiliarating—four or more millennia if the Babylonian data on the di-
atonic scale are correct (Duchesne-Guillemin 1963; Kilmer 1960). Harry
Partch must have feltsimilarlywhen he began to construct the musical system
he called monophony (Partch [1949] 1974). Science, including experimental
musicology, is a cumulative enterprise; it is essential to know where we have
been, as we set out on new paths. Revolutions do not occur in vacuo.

The contents of the historical chapters form the background for the new
material introduced in chapters 4 through 7. It is in these chapters that
nearly all claims for originality and applicability to contemporary com-
position reside. In particular, chapters 5, 6, and 7 are intended to be of
assistance to composers searching for new materia musica.

Chapter 8 deals with the heterodox, though fascinating, speculations of
Kathleen Schiesinger and some extrapolations from her work. While I do
not believe that her theories are descriptive of Greek music at any period,
they may serve as the basis for a coherent approach to scale construction
independent of their historical validity.

While not intended as a comprehensive treatise on musical scale con-
struction, for which several additional volumes at least as large as this would
be required, this work may serve as a layman’s guide to the tetrachord and
to scales built from tetrachordal modules. With this in mind, a glossary has
been provided which consists of technical terms in English pertaining to
intonation theory and Greek nomenclature as far as it is relevant to the
material and concepts presented in the text. Terms explained in the glos-
sary are italicized at their first appearance in the text.

The catalogs of tetrachords in chapter ¢ are both the origin of the book
and its justification—the first eight chapters could be considered as an ex-
tended commentary on these lists.
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I

The tetrachord in experimental music

WHY, IN THE LAST quarter of the twentieth century, would someone
write a lengthy treatise on a musical topic usually considered of interest
only to students of classical Greek civilization? Furthermore, why might a
reader expect to gain any information of relevance to contemporary musi-
cal composition from such a treatise? I hope to show that the subject of this
book is of interest to composers of new music.

The familiar tuning system of Western European music has been
inherited, with minor modifications, from the Babylonians (Duchesne-
Guillemin 1963). The tendency within the context of Western European
“art music” to use intervals outside this system has been called microtonality,
experimental intonation (Polansky 1987a), or xenbarmonics (a term proposed
by Ivor Darreg). Interest in and the use of microtonality, defined by scalar
and harmonic resources other than the traditional 12-tone equal tempera-
ment, has recurred throughout history, notably in the Renaissance
(Vicentino 1555) and most recently in the late nineteenth and early twen-
tieth century. The converse of this definition is that music which can be
performed in 12-tone equal temperament without significant loss of its
identity is not truly microtonal. Moreover, the musics of many of the other
cultures of the world are microtonal (in relation to 12-tone equal tem-
perament) and European composers have frequently borrowed musical
materials from other cultures and historical periods, such as the Ottoman
Empire and ancient Greece.

We owe our traditions of musical science to ancient Greece, and the
theoretical concepts and materials of ancient Greek music are basic to an
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understanding of microtonal music. Greek musical theory used the terra-
chord as a building block or module from which scales and systems could be
constructed. A current revival of interest in microtonality, fueled by new
musical developments and technological improvements in computers and
synthesizers, makes the ancient tetrachord increasingly germane to con-
temporary composition.,

Contemporary microtonality

Although 12-tone equal temperament became the standard tuning of
Western music by the mid-nineteenth century (Helmholez [1877] 1954),
alternative tuning systems continued to find partisans. Of these systems,
perhaps the most important was that of Bosanquet (Helmholtz [1877]
1954; Bosanquet 1876), who perfected the generalized keyboard upon
which the fingering for musical patterns is invariant under transposition.
He also championed the §3-tone equal temperament. Of nineteenth-
century theorists, Helmholtz and his translator and annotator A. J. Ellis
(Helmholtz [1877] 1954) are outstanding for their attempts to revive the
use of just intonation,

The early twentieth century saw a renewed interest in quarter-tones (24-
tone equal temperament) and other equal divisions of the octave. The
Mexican composer Julidn Carrillo led a crusade for the equal divisions
which preserved the whole tone (zero modulo 6 divisions) through 96-tone
temperament or sixteenths of tones. Other microtonal, mostly quarter-
tone, composers of note were Alois Hiba (Czechoslovakia), Ivan Wysch-
negradsky (France), and Mildred Couper (USA). The Soviet Union had
numerous microtonal composers and theorists, including Georgy Rimsky-
Korsakov, Leonid Sabaneev, Arseny Avraamov, E.K. Rosenov, A.S. Obo-
lovets, and P.N. Renchitsky, before Stalin restrained revolutionary creativ-
ity under the doctrine of Socialist Realism (Carpenter 1983). Joseph Yasser
(USA) urged the adopton of 19-tone equal temperament and Adriaan
Fokker (Holland) revived the theories of his countryman, Christian
Huygens, and promoted 31-tone equal temperament. More recently,
Martin Vogel in Bonn and Franz Richter Herf in Salzburg have been active
in various microtonal systems, the latter especially in 72-tone equal
temperament.

No discussion of alternative tunings is complete without mentioning
Harry Partch, an American original who singlehandedly made extended
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just intonation and home-built instruments not only acceptable, but vir-
tually mandatory for musical experimenters at some stage in their careers.
Composers influenced by him include Lou Harrison, Ben Johnston, James
Tenney, and younger composers such as Larry Polansky, Cris Forster,
Dean Drummond, Jonathan Glasier, and the members of the Just Intona-
tion Network.

Ivor Darreg is an American composer working in California. He has
been very actively involved with alternative tunings and new instrument
design for more than five decades. Darreg has employed both non-12-tone
equal temperaments and various forms of just intonation in his music,
theoretical writings, and instruments. More recently, he has begun to use
MIDI synthesizers and has explored all the equal temperaments up to 53
tones per octave in a series of improvisations in collaboration with Brian
McLaren.

Ervin Wilson is one of the most prolific and innovative inventors of new
musical materials extant and has been a major influence on me as well as a
source for many tetrachords and theoretical ideas. He holds patents on two
original generalized keyboard designs. Wilson has collaborated with Kraig
Grady and other experimental musicians in the Los Angeles area. He also
assisted Hatry Partch with the second edition of Genesis of @ Music by
drawing some of the diagrams in the book.

Some other North American microtonal composers are Ezra Sims, Easley
Blackwood, Joel Mandelbaum, Brian McLaren, Arturo Salinas, Harold
Seletsky, Paul Rapoport, William Schottstaedt, and Douglas Walker.

While still very much a minority faction of the contemporary music
community, microtonality is rapidly growing. Festvals dedicated to
microtonal music have been held in recent years in Salzburg under the
direction of Franz Richter Herf; in New York City, produced by Johnny
Reinhard; and in San Antonio, Texas, organized by George Cisneros.

Partch, Darreg, Wilson, Harrison, Forster, and William Colvig, among
others, have designed and constructed new acoustic instruments for
microtonal performance. Tunable electronic synthesizers are now available
commercially and provide an an alternative to custom-built acoustic or
electroacoustic equipment. A great deal of software, such as HMSL from
Frog Peak Music, 7ICalk by Robert Rich and Carter Scholz, and Antelope
Engineering’s TuneUp, has been developed to control synthesizers micro-
tonally via MIDIL.
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Good references for additional information on the history of microtonal
systems are Helmholtz ([1877] 1954), Barbour (1951), Partch ([1949]
1974), and Mandelbaum (1961). Small press publications are a rich source
and several journals devoted to music in alternative tunings have been
published. The major ones are Xenbarmonikon, Interval, Pitch, and 1/1: The
Fournal of the Fust Intonation Network. Finally, Musical Six-Six Bulletin, Leo-
nardoe: The International Journal of Arts, Science, and Technology, Experimental
Musical Instruments, and Musicworks have also contained articles about
instruments in non-traditional tuning systems,

The tetrachord in microtonal music

Tetrachords are modules from which more complex scalar and harmonic
structures may be built. These structures range from the simple heptatonic
scales known to the classical civilizations of the eastern Mediterranean to
experimental gamuts with many tones. Furthermore, the traditional scales
of much of the world’s music, including that of Europe, the Near East, the
Catholic and Orthodox churches, Iran, and India, are still based on
tetrachords. Tetrachords are thus basic to an understanding of much of the
world’s music.

The tetrachord is the interval of a perfect fourth, the diatessaron of the
Greeks, divided into three subintervals by the interposition of two addi-
tional notes.

The four notes, or strings, of the tetrachord were named bypate, parh-
ypate, lichanos, and mese in ascending order from 1/1 to 4/3 in the first tet-
rachord of the central octave of the Greater Perfect System, the region of the
scale of most concern to theorists. Ascending through the second tetra-
chord, they were called paramese, trite, paranete, and nete. (Chapter 6 dis-
cusses Greek scales and nomenclature.)

Depending upon the spacing of these interposed tones, three primary
genera may be distinguished: the diatonic, composed of tones and semitones;
the chromatic, of semitones and a minor third; and the enbarmonic, with a
major third and two quarter-tones. Nuances or chrosi (often translated
“shades”) of these primary forms are further characterized by the exact
tuning of these intervals.

These four tones apparently sufficed for the recitation of Greek epic
poetry, but soon afterwards another tetrachord was added to create a hep-
tachord. As a feeling for the octave developed, the gammut was completed,
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and from this gamut various sections were later identified and given ancient
tribal names (Dorian, Phrygian, et cetera). These octave species became the
modes, two of which, the Lydian and Hypodorian, in the diatonic genus form
the basis for the European tonal idiom. Although a formal nomenclature
based on the position of the strings later developed, the four tetrachordal
tones remained the basis for the Greek solfége: the syllables 1, 10, m, 10,
(pronounced approximately teh, toe, tay, and tzh in English) were sung in
descending order to the notes of every genus and shade.

The detailed history of the Greek tetrachordal scales is somewhat more
complex than the sketchy outline given above. According to literary tes-
timony supported at least in part by archaeology, the diatonic scale and its
tuning by a cycle of perfect fifths, fourths, and octaves was brought from
Egypt (or the Near East) by Pythagoras. In fact the entire r2-tone chromatic
scale in this tuning is thought to have been known to the Babylonians by
the second millennium Bce and was apparently derived from earlier
Sumerian precursors (Duchesne-Guillemin 1963, 1969; Kilmer 1960).
Having arrived in Greece, this scale and its associated tuning doctrines
were mingled with local musical traditions, most probably pentatonic, to
produce a plethora of scale-forms, melody-types and styles (see chapter 6).
From a major-third pentatonic, the enharmonic genus can be derived by
splitting the semitone (Winnington-Ingram 1928; Sachs 1943). The
chromatic genera, whose use in tragedy dates from the late fifth century,
may be relicts of various neutra/ and minor-third pentatonics, or con-
versely, descended from the earlier enharmonic by a process of “sweet-
ening” whereby the pitch of the third tone was raised from 4 probable
256/243 to produce the more or less consonant intervals 5/4, 6/5, 7/6 and
possibly 11/9 (Winnington-Ingram 1928).

The resulting scales were rationalized by the number theory of
Pythagoras (Crocker 1963, 1964, 1966) and later by the geometry of
Euclid (Crocker 1966; Winnington-Ingram 1932, 1936) to create the body
of theory called harmonics, which gradually took on existence as an inde-
pendent intellectual endeavor divorced from musical practice. The acous-
tic means are now available, and the prevailing ardstic ideology is
sympathetic enough to end this separation between theory and practice.

Many composers have made direct use of tetrachordal scales in recent
compositions. Harry Partch used the pentatonic form of the enharmonic
(16/15 - 5/4 - 9/8 - 16/15 - §/4) in the first of his Two Studies on Ancient Greek
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Scales (1946) and the microtonal form in the second (in Archytas’s tuning,
28/27 - 36/35 - §/4). Partch also employed this latter scale in The Dreamer
that Remains, and in verse fifteen of Petals. His film score Windsong (1958)
employs Ptolemy’s equable diatonic (@istonon homalon). Ivor Darreg’s On
the Enbarmonic Tetrachord from his collection Excursion into the Enbarmonic,
was composed in 1965 and published in Xenharmonikon 3 in 1975. Lou
Harrison has used various tetrachords as motives in his “free style” piece
A Phrase for Arion’s Leap (Xenbarmonikon 3, 1975). An earlier piece, Suite
(1949) was based on tetrachords in 12-tone equal temperament. Larry
London published his Eight Pieces for Harp in Ditone Diatonic in Xen-
barmonikon 6 (1977) and his Four Pieces in Didymus’s Chromatic in Xen-
harmonikon 748 (1979). In 1984, he wrote a Suite for Harp whose four
movements used Archytas’s enharmonic and a chromatic genus of J.M.
Barbour. Gino Robair Forlin’s song in Spanish and Zapotec, Las Tortugus
(1988), is based on the tetrachord 16/15 - 15/14 - 7/6. There are of course
many other recent pieces less explicitly tetrachordal whose pitch structures
could be analyzed in tetrachordal terms, but doing so would be a major
project outside the scope of this book. Similarly, there is a vast amount of
music from Islamic cultures, Hindustani, and Eastern Orthodox traditions
which is also constructed from tetrachordal scales. These will not be dis-
cussed except briefly in terms of their component tetrachords.

A psychological motivation for the consideration of tetrachords is pro-
vided by the classic study of George A. Miller, who suggested that musical
scales, in common with other perceptual sets, should have five to nine ele-
ments for intuitive comprehension (Miller 1956). Scales with cardinalities
in this range are easily generated from tetrachords (chapter 6) and the
persistence of tetrachordal scales alongside the development of triad-based
harmony may reflect this property.

Tetrachords and their scale-like complexes and aggregates have an
intellectual fascination all their own, a wealth of structure whose seductive
intricacy I hope to convey in this book.
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Pythagoras, Ptolemy, and the
arithmetic tradition

GREEK MUSICAL TRADITION begins in the sixth century sce with the
semi-legendary Pythagoras, who is credited with discovering that the fre-
quency of a vibrating string is inversely proportional to its length. This
discovery gave the Greeks a means to describe musical intervals by numbers,
and to bring to acoustics the full power of their arithmetical science. While
Pythagoras’s own writings on music are lost, his tuning doctrines were
preserved by later writers such as Plato, in the Timaens, and Ptolemy, in the
Harmonics. The scale derived from the Timaeus is the so-called Pythagorean
tuning of Western European theory, but it is most likely of Babylonian or-
igin. Evidence is found not only in cuneiform inscriptions giving the tuning
order, but apparently also as music in a diatonic major mode (Duchesne-
Guillemin 1963, 196¢; Kilmer 1960; Kilmer et al. 1976). This scale may be
tuned as a series of perfect fifths (or fourths) and octaves, having the ratios
1/1 9/8 81/64 4/3 3/2 27/16 243/128 2/1, though the Babylonians did not
express musical intervals numerically.

The next important theorist in the Greek arithmetic tradition is Ar-
chytas, a Pythagorean from the Greek colony of Tarentum in Italy. He lived
about 390 BCE and was a notable mathematician as well. He explained the
use of the arithmetic, geometric, and harmonic means as the basis of mu-
sical tuning (Makeig 1980) and he named the harmonic mean. In addition to
his musical activities, he was renowned for having discovered a three-
dimensional construction for the extraction of the cube root of two.

Archyrtas is the first theorist to give ratios for all three genera. His tun-
ings are noteworthy for employing ratios involving the numbers 5 and 7
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2~1. Prolemy’s catalog of bistorical tetrachords,
fremtbhe Harmonics (Wallis 1682). The genus
§6/55 - 22721 - §/4 (31 +81 +386 cents) is also at-
tributed to Ptolensy. Wallis says that this genus is in
all of the manuscripts, but is likely to be a later addi-
tion. The statements of Avicenna and Bryennios that
46/45 is the smallest melodic interval supports this
view,

instead of being limited to the 2 and 3 of the orthodox Pythagoreans, for
using the ratio 28/27 as the first interval (hypate to parhypate) in all three
genera, and for employing the consonant major third, §/4, rather than the
harsher ditone 81/64, as the upper interval of the enharmonic genus. These
tunings are shown in 2-1. ‘

Other characteristics of Archytas’s tunings are the smaller second in-
terval of the enharmonic (36/35 is less than 28/27) and the complex second
interval of his chromatic genus.

Archytas’s enharmonic is the most consonant tuning for the genus, es-
pecially when its first interval, 28/27, is combined with a tone /8 below the
tonic to produce an interval of 7/6. This note, called hyperbypate, is found
not only in the harmoniai of Aristides Quintilianus (chapter 6), but also in
the extant musical notation fragment from the first stasimon of Euripides’s
Orestes. It also occurs below a chromatic pyknon in the second Delphic hymn
(Winnington-Ingram 1936). This usage strongly suggests that the second
note of the enharmonic and chromatic genera was not a grace note as has
been suggested, but an independent degree of the scale (ibid.). Bacchios, a
much later writer, calls the interval formed by the skip from hyperhypate
to the second degree an ekbole (Steinmayer 1985), further affirming the
historical correctness of Archytas’s tunings.

The complexity of Archytas’s chromatic genus demands an explanation,
as Ptolemy’s soft chromatic (chroma malakon) 28/27 - 15/14 - 6/5 would
seem to be more consonant, Evidently the chromatic pyknon still spanned
the 9/8 at the beginning of the fourth century, and the 32/27 was felt to be

ARCHYTAS’S GENERA

28/27:36/35 - 5/4 63 + 49 + 386 ENHARMONIC
28/27-243/224 - 32/27 63 + 141 + 204 CHROMATIC
28/27.8/7 . 9/8 63 +231 + 204 DIATONIC
ERATOSTHENES'S GENERA
40/39 - 39/38 - 19/15 44 + 45 + 400 ENHARMONIC
20/19-19/18 . 6/5 89 + 94 + 316 CHROMATIC
2§6/243 -9/8 . 9/8 00 + 204 + 204 DIATONIC
DIDYMOS’S GENERA
32/31-31/30- 5/4 55 +57+ 386 ENHARMONIC
16/15 - 25/24 - 6/5 112 + 71+ 316 CHROMATIC
16/15 - 10/9 - 9/8 112 +182 + 204 DIATONIC
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2-2. Ptolemy’s own tunings.

the proper tuning for the interval between the upper two tones. This may
be in part because 32/27 makes a 4/3 with the disjunctive tone immediately
following, but also because the melodic contrast between the 32/27 at the
top of the tetrachord and the 7/6 with the hyperhypate below is not as great
as the contrast between lower 7/6 and the upper 6/5 of Ptolemy’s tuning.

Archytas’s diatonic is also found among Ptolemy’s own tunings (2-2) and
appears in the Jyra and kithara scales that Ptolemy claimed were in common
practice in Alexandria in the second century ce. According to Winning-
ton-Ingram (1932), it is even grudgingly admitted by Aristoxenos and thus
would appear to have been the principal diatonic tuning from the fourth
century BCE through the second ck, a period of some six centuries.

Archytas’s genera represent a considerable departure from the austerity
of the older Pythagorean forms:

ENHARMONIC: 256/243 - 81/64
CHROMATIC: 256/243 - 2187/2048 - 32/27
DIATONIC: 256/243-9/8-9/8

The enharmonic genus is shown as a trichord because the tuning of the
enharmonic genus before Archytas is not precisely known. The semitone
was initially undivided and may not have had a consistent division until the
stylistic changes recorded in his tunings occurred. In other words, the in-
composite ditone, not the incidental microtones, is the defining characteristic
of the enharmonic genus.

The chromatic tuning is actually that of the much later writer Gau-
dentius (Barbera 1978), but it is the most plausible of the Pythagorean
chromatic tunings.

The diatonic genus is the tuning associated with Pythagoras by all the
authors from ancient times to the present (Winnington-Ingram 1932).

46/45 - 24/23 - 5/4  38+75 +386 ENHARMONIC
28/27 - 15/14-6/5  63+119+ 316 SOFT CHROMATIC
22/21-12/11-7/6  Br+1§1 +267 INTENSE CHROMATIC
21/20- 10/9 - 8/7 85+182 +231 SOFT DIATONIC
28/27-8/7.9/8 63+ 231 +204 DIATONON TONIAION
256/243-9/8-9/8 Q0+204+ 204  DIATONON DITONIAION
16/15-9/8 - 10/9 112 +204 + 182 INTENSE DIATONIC
12/11-11/10-10/9 151+ 165 + 182 EQUABLE DIATONIC
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Ptolemy and his predecessors in Alexandria

In addition to preserving Archytas’s tunings, Ptolemy (ca. 160 cg) also
transmitted the tunings of Eratosthenes and Didymos, two of his pre-
decessors at the library of Alexandria (2-1). Eratosthenes’s (third century
BCE) enharmonic and chromatic genera appear to have been designed as
simplifications of the Pythagorean prototypes. The use of 40/39 and z20/19
for the lowest interval presages the remarkable Tanbur of Baghdad of
Al-Farabi with its subbarmonic division by the modal determinant 40 (Ellis
1885; D’Erlanger 1935) and some of Kathleen Schlesinger’s speculations
in The Greek Aulos (1939).

Didymos’s enharmonic seems to be mere formalism; the enharmonic
genus was extinct in music as opposed to theory by his time (first century
BcE). His 1:1 linear division of the pyknon introduces the prime number 31
into the musical relationships and deletes the prime number 7, a change
which is not an improvement harmonically, though it would be of less
significance in a primarily melodic music. His chromatic, on the other
hand, is the most consonant non-septimal tuning and suggests further de-
velopment of the musical styles which used the chromatic genus. Didymos’s
diatonic is a permutation of Ptolemy’s intense diatonic (diatonon syn-
tonon). It seems to be transitional between the Pythagorean (3-/4mit) and
tertian mnings,

Ptolemy’s own tunings stand in marked contrast to those of his pre-
decessors. In place of the more or less equal divisions of the pyknon in the
genera of the earlier theorists, Ptolemy employs a roughly 1:2 melodic pro-
portion. He also makes greater use of superparticular or epimore ratios than his
forerunners; of his list, only the traditional Pythagorean diatonon ditoniaion
contains epimeres, which are ratios of the form (7 + m) /n where m > 1.

The emphasis on superparticular ratios was a general characteristic of
Greek musical theory (Crocker 1963; 1964). Only epimores were accepted
even as successive consonances, and only the first epimores (2/1, 3/2, and
4/3) were permitted as simultaneous combinations.

There is some empirical validity to these doctrines: there is no question
that the first epimores are consonant and that this quality extends to the
next group, 5/4 and 6/, else tertian harmony would be impossible. Con-
sonance of the septimal epimore 7/6 is a matter of contention. To my ear,
it is consonant, as are the epimeres 7/4 and 7/5 and the inversions of the
epimores 5/4 and 6/5 (8/5 and 5/3). Moreover, Ptolemy noticed that octave
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2-3. Hoftann’s list of completely superparticular
divisions. This table bas been recomposed after
Hofmann from Vogel (1975). See Main Catalog for
Surther information.(5) bas also been attributed to
Tartini, but probably should be credited o
Pachymeres, a thirteenth-century Byzantine author.

compounds of consonances (which are not themselves epimores) were au-
rally consonant. It is clear, therefore, that it is not just the form of the ratio,
but at least two factors, the size of the interval and the magnitude of the
defining integers, that determines relative consonance. Nevertheless, there
does seem to be some special quality of epimore ratios. I recall a visitto Lou
Harrison during which he began to tune a harp to the tetrachordal scale
1/1 27/25 6/5 4/3 3/2 81/50 9/5 2/1. He immediately became aware of the
non-superparticular ratio 27/25 by perceiving the lack of resonance in the
instrument.

A complete list of all possible tetrachordal divisions containing only
superparticular ratios has been compiled by I. E. Hofmann (Vogel 1975).
Although the majority of these tetrachords had been discovered by earlier
theorists, there were some previously unknown divisions containing very
small intervals. The complete set is given in 2-3 and individual entries also
appear in the Miscellaneous listing of the Catalog.

The equable diatonic has puzzled scholars for years as it appears to be
an academic exercise in musical arithmetic. Ptolemy’s own remarks rebut
this interpretation as he describes the scale as sounding rather strange or
foreign and rustic (evikotepov pev noo kot cypotkotepov, Winnington-
Ingram 1932). Even a cursory look at ancient and modern Islamic scales
from the Near East suggests that, on the contrary, Ptolemy may have heard
a similar scale and very cleverly rationalized it according to the tenets of
Greek theory. Such scales with 3/4-tone intervals may be related to

I. 256/255-17/16+ 5/4 NEW ENHARMONIC 14. 28/27.15/14-6/5 PTOLEMY’S SOFT CHROMATIC
2. 136135 - 18/17- 5/4 NEW ENHARMONIC 15. 16/15 - 25/24 - 6/5 DIDYMOS’S CHROMATIC

3. 96/95 - 10/18 - 5/4 WILSON'S ENHARMONIC 16. 20/19 - 19/18 - 6/5 ERATOSTHENES'S CHROMATIC
4. 76/75-20/19 - 5/4 AUTHOR'S ENHARMONIC 17. 64/63-9/8 . 7/6 BARBOUR

5. 64/63-21/20 . 5/4 SERRE'S ENHARMONIC 18. 36/35 - 10/9+ 7/6 AVICENNA

6. 56/55.22/21.5/4 PSEUDO-PTOLEMAIC ENHARMONIC 19. 212/21-12/11 - 7/6 PTOLEMY’S INTENSE CHROMATIC
7. 46/45 - 24/23 - 5/4 PTOLEMY’S ENHARMONIC 20. 16/15 . 15/14 - 7/6 AL-FARABI

8. 40/39-26/25 - 5/4 AVICENNA'S ENHARMONIC 21. 49/48 - 8/7 - 8/7 AL-FARABI

9. 28/27.36/35-5/4 ARCHYTAS’S ENHARMONIC 22, 28/27.8/7.9/8 ARCHYTAS'S DIATONIC

10. 32/31-31/30-5/4 DIDYMOS'S ENHARMONIC 23. 21/20.10/9-8/7 PTOLEMY'S SOFT DIATONIC

I1. 100/9Q-11/10-6/5  NEW CHROMATIC 24. 14/13-13/12.8/7 AVICENNA

12, 55/54 - 12/11 - 6/5 BARBOUR 25, 16/15.19/18 - 10/  PTOLEMY’S INTENSE DIATONIC
13. 40739 - 13/12 - 6/5 BARBOUR 26. 12/11 - 11/10 - 10/9 PTOLEMY’S EQUABLE DIATONIC
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2-4. Genesis of the enbarmonic pykna by katapykno-
sis, In principle, all pyknotic divisions can be gener-
ated by this process, although very bigh multipliers
may be necessary in some cases. The ones shown are
merely illustrative. See the Catalogs for the complete
list, (1) The basic form is the enbarmonic trichord,
or major third pentatonic, often ascribed to Olympos,
(2x) Didynsos's enbarmonion, a “weak” form. (3%)
Prolerny’s enbarmonion, a “strong” form. To comply
with Greek melodic canons, it was reordered as
46/45 - 24723 - 5/4. (¢x) Serve’s enbarmonic,
sometimes attributed 1o Tarting, and discussed by
Perrett (1926, 26). Pachymeres may be the earliest
source. (5x) Auhor’s enbarmonic, also on Hof-
mann’s list of superparticular divisions, (6x) Wil-
son’s enbarmonic, also on Hofmann’s list of

superparticular divisions.

INDEX NUMBERS PYENA
X 16 15 16/15

22X 32 31 30 32/31.-31/30

X 48 47 46 45 24/23.46/a5
4 64 63 62 61 60 64/63-21/20
5x 8o 79 78 77 76 75 20/19-76/75
6x 96 95 94 93 92 91 9o gblos-19/18

Aristoxenos’s hemiolic chromatic and may descend from neutral third
pentatonics such as Winnington-Ingram’s reconstruction of the spondeion
or libation mode (Winnington-Ingram 1928 and chapter 6), if Sachs’s ideas
on the origin of the genera have any validity (Sachs 1943). In any case, the
scale is a beautiful sequence of intervals and has been used successfully by
both Harry Partch (Windsong, Daphne of the Dunes) and Lou Harrison, the
latter in an improvisation in the early 1970s.

Ptolemy returned to the use of the number seven in his chromatic and
soft diatonic genera and introduced ratios of eleven in his intense chromatic
and equable diatonic. These tetrachords appear to be in agreement with the
musical reality of the era, as most of the scales described as contemporary
tunings for the lyra and kithara have septimal intervals (6-4).

Ptolemy’s intense diatonic is the basis for Western European just in-
tonation, The Lydian or C mode of the scale produced by this genus is the
European major scale, but the minor mode is generated by the intervallic
retrograde of this tetrachord, 10/9 - 9/8 - 16/1 5. This scale is not identical
to the Hypodorian or A mode of 12-tone equally tempered, meantone, and
Pythagorean intonations. (For further discussion of this topic, see chapters
6and 7.)

"The numerical technique employed by Eratosthenes, Didymos, and
Ptolemy to define the majority of their tetrachords is called linear division
and may be identified with the process known in Greek as katapyknosis.
Katapyknosis consists of the division, or rather the filling-in, of a musical
interval by multiplying its numerator and denominator by a set of integers
of increasing magnitude. The resulting series of integers between the ex-
treme terms generates a new set of intervals of increasingly smaller span as
the multiplier grows larger. These intervals form a series of microtones
which are then recombined to produce the desired melodic division, usually
composed of epimore ratios. The process may be seen in 2-4 where it is
applied to the enharmonic pyknotic interval 16:15. By extension, the pyknon
may also be termed the katapyknosis (Emmanuel 192 1). It consists of three
notes, the barypyknon, or lowest note, the mesopyknon, or middle note, and
the oxypyknon, or highest.

The harmoniai of Kathleen Schlesinger are the result of applying kat-
apyknosis to the entire octave, 2:1, and then to certain of the ensuing in-
tervals. In chapter 4 it is applied to the fourth to generate indexed genera.

The divisions of Eratosthenes and Didymos comprise mainly 1:1 divi-
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2-5. Prolemy’s interpretation of Aristoxenos’s

genera.

4039 -

30/29 -

8o/77 -

20/19 -

20/19 -

2019 -

ENHARMONIC
39/38 - 19/15
SOFT CHROMATIC
29/28 - 56/45

44 +45 + 409

59 +60+379
HEMIOLIC CHROMATIC

77/74 - 37/30 66 + 69 + 363
INTENSE CHROMATIC

19/18 - 6/5 80+04+316

SOFT DIATONIC

38/35 - 7/6 89 + 142 + 267

INTENSE DIATONIC
19/17 - 17/15 89+ 192 +1217

sions of the pyknon while those of Ptolemy favor the 1:2 proportion, al-
though in some instances the sub-intervals must be reordered so that the
melodic proportions are the canonical order; small, medium and large. This
principle was also enunciated by Aristoxenos, but violated by Archytas,
Didymos, and Ptolemy himself in his diatonic tunings.

A more direct method of calculating the divisions is to use the following
formulae (Winnington-Ingram 1932; Barbera 1978) where x/y is the in-
terval to be linearly divided:

/1 x/(x+y)- (e +y)/ 2y=x/y,
/2 3x/(2x+y) - (2x+y)/3y=x/y,
/1 3x/(x+2y) (¥ +2y)/3y=x/y.

Finer divisions may be defined analogously; if 4/b is the desired pro-
portion and x/y the interval, then (a+8)-x/(bx+ay) - (bx+ay)/ (@ +b)-y=x/y.

The final set of tetrachords given by Ptolemy are his interpretations of
the genera of Aristoxenos (2-5). Unfortunately, he seems to have com-
pletely misunderstood Aristoxenos’s geometric approach and translated his
“parts” into aliquot parts of a string of 120 units. Two of the resulting tet-
rachords are identical to Eratosthenes’s enharmonic and chromatic genera,
but the others are rather far from Aristoxenos’s intent. The Ptolemaic
version of the hemiolic chromatic is actually a good approximation to
Aristoxenos’s soft chromatic. Aristoxenos’s theories will be discussed in
detail in chapter 3.

The late Roman writers

After Ptolemy’s recension of classical tuning lore, a few minor writers such
as Gaudentius (fourth century ce) continued to provide tuning information
in numbers rather than the fractional tones of the Aristoxenian school.
Gaudentius’s diatonic has the familiar ditone or Pythagorean tuning, as
does his intense chromatic (chroma syntonon), 256/243 - 2187/2048 - 32/27
(Barbera 1978).

The last classical scholar in the ancient arithmetic tradition was the
philosopher Boethius (sixth century ce) who added some novel tetrachords
and also hopelessly muddled the nomenclature of the modes for succeeding
generations of Europeans. Boethius’s tuning for the tetrachords in the three
principal genera are below:

512/499 « 409/486 - 81/64
256/243 - 81/76 - 19/16
256/243 - 9/8 - 9/8

ENHARMONIC:
CHROMATIC;
DIATONIC:
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These unusual tunings are best thought of as a simplification of the
Pythagorean forms, as the limma (2 56/243) is the enharmonic pyknon and
the lowest interval of both the chromatic and diatonic genera. The en-
harmonic uses the 1:1 division formula to divide the 256/243, and the
19/16 is virtually the same size as the Pythagorean minor third, 32/27.

The medieval Islamic theorists

With the exception of Byzantine writers such as Pachymeres, who for the
most partrepeated classical doctrines, the next group of creative authors are
the medieval Islamic writers, Al-Farabi (950 ce), Ibn Sina or Avicenna
(1037 cE) and Safiyu-d-Din (1246 cE). These theorists attempted to
tationalize the very diverse musics of the Islamic cultural area within the
Greek theoretical framework.

In addition to an extended Pythagorean cycle of seventeen tones, genera
of divided fifths and a forty-fold division of the the string (Tanbur of
Baghdad) in Al-Farabi, several new theoretical techniques are found.
Al-Farabianalogizes from the 256/243 - 9/8 - 9/8 of the Pythagorean tuning
and proposes reduplicated genera suchas 49/48 - 8/7-8/7and 29/25 - 10/9 -
10/9. Avicenna lists other reduplicated tetrachords with intervals of ap-
proximately 3/4 of a tone and smaller (see the Catalog for these genera).
The resemblance of these to Ptolemy’s equable diatonic seems more than
fortuitous and further supports the notion that three-quarter-tone intervals
were in actual use in Near Eastern music by Roman times (second century
ce). These tetrachords may also bear a genetic relationship to neutral-third
pentatonics and to Aristoxenos’s hemiolic chromatic and soft diatonic
genera as well as Ptolemy’s intense chromatic.

Surprisingly, I have been unable to trace the apparently missing redupli-
cated genus, 11/10 - 11/10-400/363 (165 + 165 + 168 cents) that s a virtually
equally-tempered division of the 4/3. Lou Harrison has pointed out that
tetrachords such as this and the equable diatonic yield scales which approx-
imate the 7-tone equal temperament, an idealization of tuning systems
which are widely distributed in sub-Saharan Africa and Southeast Asia.

Other theoretical advances of the Islamic theorists include the use of
various arrangements of the intervals of the tetrachords. Safiyu-d-Din
listed all six permutations of the tetrachords in his compendious tables,
although his work was probably based on Aristoxenos’s discussion of the
permutations of the tetrachords that occur in the different octave species.
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At least for expository purposes, the Islamic theorists favored arrangements
with the pyknon uppermost and with the whole tone, when present, at the
bottom. This format may be related to the technique of measurement
termed 7essel, from the Arabic al-mithal, in which the shorter of two string
lengths is taken as the unit, yielding numbers in the reverse order of the
Greek theorists (Apel 1955, 441-442.).

The so-called neo-chromatic tetrachord (Gevaert 1875) with the aug-
mented second in the central position is quite prominent and is also found
in some of the later Greek musical fragments and in Byzantine chant
(Winnington-Ingram 1936) as the palace mode. It is found in the Hungarisn
minor and Gypsy scales, but, alas, it has become a common musical cliché,
the “snake-charmer’s scale” of the background music for exotic Oriental
settings on television and in the movies.

The present

After the medieval Islamic writers, there are relatively few theorists
expressing any great interest in tetrachords until the nineteenth and
twentieth centuries. Notable among the persons attracted to this branch
of music theory were Helmholtz ([1877] 1954) and Vogel (1963, 1967,
1975) in Germany; A. J. Ellis (1885), Wilfrid Perrett (1926, 1928, 1931,
1934), R. P. Winnington-Ingram (1928, 1932) and Kathleen Schlesinger
(1933) in Britain; Thorvald Kornerup (1934) in Denmark; and Harry
Partch (1949) and Ervin Wilson in the United States. The contributions
of these scholars and discoverers are listed in the Catalog along with those
of many other workers in the arithmetic tradition.

After two and a half millennia, the fascination of the tetrachord has still
not vanished. Chapter 4 will deal with the extension of arithmetical tech-
niques to the problem of creating or discovering new tetrachordal genera.
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Aristoxenos and the geometrization of

musical space

ARr1sTOXENOS WAS FROM the Greek colony of Tarentum in Italy, the home
of the famous musician and mathematician Archytas. In the early part of
his life, he was associated with the Pythagoreans, but in his later years he
moved to Athens where he studied under Aristotle and absorbed the new
logic and geometry then being developed (Barbera 1980; Crocker 1966;
Litchfield 1988). He was the son of the noted musician Spintharos, who
taught him the conservative musical tradition still practiced in the Greek
colonies, if not in Athens itself (Barbera 1978).

The geometry of music

The new musical theory that Aristoxenos created about 320 Bce differed
radically from that of the Pythagorean arithmeticians. Instead of measuring
intervals with discrete ratios, Aristoxenos used continuously variable
quantities, Musical notes had ranges and tolerances and were modeled as loci
in a continuous linear space. Rather than ascribing the consonance of the
octave, fifth, and fourth to the superparticular nature of their ratios, he took
their magnitude and consonance as given. Since these intervals could be
slightly mistuned and still perceived as categorically invariant, he decided
that even the principal consonances of the scale had a narrow, but still
acceptable range of variation. Thus, the ancient and bitter controversy over
the allegedly unscientific and erroneous nature of his demonstration that the
perfect fourth consists of two and one half tones is really inconsequential.
Aristoxenos defined the whole tone as the difference between the two
fundamental intervals of the fourth and the fifth, the only consonances
smaller than the octave. The octave was found to consist of a fourth and a
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fifth, two fourths plus a tone, or six tones. The intervals smaller than the
fourth could have any magnitude in principle since they were dissonances
and not precisely definable by the unaided ear, but certain sizes were
traditional and distinguished the genera known to every musician. These
conventional intervals could be measured in terms of fractional tones by the
ear alone because musical function, not numerical precision, was the
criterion, The tetrachords that Aristoxenos claimed were well-known are
shown in 3-1.

Aristoxenos described his genera in units of twelfths of a tone (Macran
1902), but later theorists, notably Cleonides, translated these units into a
cipher consisting of 30 parts (morig) to the fourth (Barbera 1978). The
enharmonic genus consisted of a pyknon divided into two 3-part micro-

3~1. The genera of Aristaxenos. The descriptions of tones or dieses and a ditone of 24 parts to complete the perfect fourth. Next
Aristoxenos (Macran 1902) ¥n terms of twelfths of
tones bave been converted to cents, assuming 500
cents to the equally tempered fourth, The inter-
pretation of Aristoxenos’s fractional tones as thirty

come three shades of the chromatic with dieses of 4, 4.5, and 6 parts and
upper intervals of 2z, 21, and 18 parts respectively. The set was finished with
two diatonic tunings, a soft diatonic (6 + ¢ + 15 parts), and the intense

parts to the fourth is after the second century theo- diatonic (6 + 12 + 12 parts). The former resembles a chromatic genus, but the
rist Cleomides. latter is similar to our modern conception of the diatonic and probably
ENHARMONIG INTENSE CHROMATIC
o 50 1100 500 o 100 200 500
3+ 3 +24 PARTS 6+ 6 + I8 PARTS
1/4+ 1/4 + 2 TONES 1/2 +1/2 + 1 1/2 TONES
50 + 50 + 400 CENTS 100 + I00 + 300 CENTS
SOFT CHROMATIG SOFT DIATONIC
o 67 133 500 o 100 250 500
4+ 4+ 22 PARTS 6+ O + I§ PARTS
1/3 + 1/3 + 1 5/6 TONES 1/2 +3/4 + I 1/4 TONES
67 + 67 + 333 CENTS I00 + I50 + 250 CENTS
HEMIOLIC CHROMATIC INTENSE DIATONIC
o 75 150 500 o 100 300 500
4.5+ 4.5 + 21 PARTS 6 + I2 + I2 PARTS
3/8+3/8+ 1 3/4 TONES I/2 + I + I TONES
75 + 75 + 350 CENTS 100 + 200 + 200 CENTS
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3~2. Other genera mentioned by Aristoxenos.

UNNAMED CHROMATIC

o 67 200 500
4+ 8 + 18 PARTS
1/3 +2/3 + T 1/2 TONES
67 + 133 + 300 CENTS

DIATONIC WITH SOFT CHROMATIC DIESIS

o 67 300 500
4 + 14+ 12 PARTS
1/3+ 1 1/6 + I TONES
67 +1233 + 200 CENTS

DIATONIC WITH HEMIOLIC CHROMATIC DIESIS

o 75 300 500
4.5+ 13.§ + 21 PARTS
3/8+1 1/8 + 1 TONES
75 + 22§ + 200 CENTS

REJECTED CHROMATIC

o 100 150 500
6+ 3 + 21 PARTS
1/2 + 1/4+ 1 3/4 TONES
100 + §0 + 350 CENTS

UNMELODIC CHROMATIC

o 75 133 500
4.5 + 3.5 + 22 PARTS
3/849/24 +1 5/6 TONES
75 + 58 + 367 CENTS

represents the Pythagorean form. Two such 30-part tetrachords and a
whole tone of twelve parts completed an octave of 72 parts.

Several properties of the Aristoxenian tetrachords are immediately
apparent. The enharmonic and three chromatic genera have small intervals
with similar sizes, as if the boundary between the enharmonic and chro-
matic genus was not yet fixed. The two chromatics between the syntonic
chromatic and the enharmonic may represent developments of neu-
tral-third pentatonics mentioned in chapter 2.

The pyknon is always divided equally except in the two diatonic genera
whose first intervals (half tones) are the same as that of the syntonic
chromatic. Thus Aristoxenos is saying that the first interval must be less
than or equal to the second, in agreement with Ptolemy’s views nearly five
hundred years later.

The tetrachords of 3~z are even more interesting. The first, an approved
but unnamed chromatic genus, not only has the 1:2 division of the pyknon,
but more importantly, is extremely close to Archytas’s chromatic tuning
(Winnington-Ingram 1932). The diatonic with soft chromatic diesis is a
very good approximation to Archytas’s diatonic as well (ibid.). Only
Archytas’s enharmonic is missing, though Aristoxenos seems to ailude to it
in his polemics against raising the second string and thus narrowing the
largest interval (ibid.). These facts clearly show that Aristoxenos understood
the music of his time.

The last two tetrachords in 3-2 were considered unmusical because the
second interval is larger than the first. Winnington-Ingram (193z) has
suggested that Aristoxenos could have denoted Archytas’s enharmonic
tuning as 4+ 3 + 23 parts (67 + 50 + 383), a tuning which suffers from the same
defect as the two rejected ones. A general prejudice against intervals
containing an odd number of parts may have caused Aristoxenos to disallow
tetrachords such as § + 11 + 14, § + ¢ + 16 (ibid.), and § + 6 + 19 (Macran

1902).

The alleged discovery of equal temperament

Because a literal interpretation of Aristoxenos’s parts implies equal tem- -

peraments of either 72 or 144 tones per octave to accommodate the
hemiolic chromatic and related genera, many writers have credited him
with the discovery of the traditional western European 12-tone intonation.
This conclusion would appear to be an exaggeration, at the least. There is
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no evidence whatsoever in any of Aristoxenos’s surviving writings or from
any of the later authors in his tradition that equal temperament was in-
tended (Litchfield 1988).

Greek mathematicians would have had no difficulty computing the string
lengths for tempered scales, especially since only two computations for each
tetrachord would be necessary, and only a few more for the complete octave
scale. Methods for the extraction of the square and cube roots of two were
long known, and Archytas, the subject of a biography by Aristoxenos, was
renowned for having discovered a three-dimensional construction for the
cube root of two, a necessary step for dividing the octave into the 12, 24, 36,
72, O 144 geometric means as required by Aristoxenos’s tetrachords (Heath
[1921] 1981, 1:246-249). Although irrationals were a source of great worry
to Pythagorean mathematicians, by Ptolemy’s time various mechanical
instrurnents such as the mesolabium had been invented for extracting roots
and constructing geometric means (ibid., 2:104). Yet neither Ptolemy nor
any other writer mentions equal temperament.

Ptolemy, in fact, utterly missed Aristoxenos’s point and misinterpreted
these abstract, logarithmic parts as aliquot segments of a real string of 120
units with 6o units at the octave, 8o at the fifth, and go at the fourth. His
upper tetrachord had only twenty parts, necessitating the use of com-
plicated fractional string lengths to express the actually simple relations in
the upper tetrachords of the octave scales.

There are two obvious explanations for this situation. First, Aristoxenos
was opposed to numeration, holding that the trained ear of the musician
was sufficiently accurate. Second, Greek music was mostly monophonic,
with heterophonic rather than harmonic textures. Although modulations
and chromaticism did exist, they would not have demanded the paratactical
pitches of a tempered gamut (Polansky 1987a). There was no pressing need
for equal temperament, and if it was discovered, the fact was not recorded
(for a contrary view, see McClain 1978).

Later writers and Greek notation

Although most of the later theorists continued the geometric approach
taken by Aristoxenos, they added little to our knowledge of Greek music
theory with few exceptions. Cleonides introduced the cipher of thirty parts
to the fourth. Bacchios gave the names of some intervals of three and five
dieses which were alleged to be features of the ancient style, and Aristides
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3-3, Two medieval Islamic forms. These two med-
ieval Islamic tetrachords are Aristoxenian ap-
proxinsations to Prolemy’s equable diatonic. The
Arabs also listed Aristoxenos’s other tetrachords in
their treatises.

NEUTRAL DIATONIC

o 200 350 500
I2 + O + O PARTS
I+3/4+3/4 TONES
200 + 150 + 150 CENTS

EQUAL DIATONIC

o 167 334 500
10+ IO+ IO PARTS

5/6 +5/6 + §/6 TONES
167 + 167 + 166 CENTS

Quintilianus offered a purported list of the ancient harmoniai mentioned
by Plato in the Timaeus.

One exception was Alypius, a late author who provided invaluable
information on Greek musical notation. His tables of keys or tonoi were
deciphered independently in the middle of the nineteenth century by
Bellermann (1847) and Fortlage (1847), and made it possible for the few
extant fragments of Greek music to be transcribed into modern notation
and understood. Unfortunately, Greek notation lacked both the numerical
precision of the tuning theories, and the clarity of the system of genera and
modes (chapter 6). Additionally, there are unresolved questions concerning
the choice of alternative, but theoretically equivalent, spellings of certain
passages. Contemplation of these problems led Kathleen Schlesinger to the
heterodox theories propounded in The Greek Aulos.

Others have simply noted that the notation and its nomenclature seem
to have evolved away from the music they served until it became an
academic subject far removed from musical needs (FHenderson 1957). For
these reasons, little will be said about notation; knowledge of it is not
necessary to understand Greek music theory nor to apply Greek theory to
present-day composition.

Medieval Islamic theorists

As the Roman empire decayed, the locus of musical science moved from
Alexandria to Byzantium and to the new civilization of Islam. Aristoxenos’s
geometrictradition was appropriated by both the Greek Orthodox church to
describe itsliturgical modes. Aristoxenian doctrines were alsoincluded in the
Islamic treatises, although arithmetic techniques were generally employed.

The tetrachords of 3-3 were used by Al-Farabi to express 3/4-tone scales
similar to Ptolemy’s equable diatonic in Aristoxenian terms. If one subtracts
10 + 10 + 10 parts from Ptolemy’s string of 120 units, one obtains the series
120 110 100 9o, which are precisely the string lengths for the equable
diatonic (12/11.11/10- 10/9). It would appear that the nearly equal
tetrachord 11/10 - 11/10 - 400/363 was not intended.

The tetrachord 12+9+9 yields the permutation 120 108 99 9o, or
10/9- 12/11 - 11/10. This latter tuning is similar to others of Al-Farabi and
Avicenna consisting of a tone followed by two 3/4-tone intervals. Other
tetrachords of this type are listed in the Catalog.
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3-4. Byzantine and Greek Orthodox tetrachords.
Athanasopoulos’s enharmonic and diatonic genera
consist of various permutations of 6+12 +132, i.e. 12
+6+12. Xenakis permits permutations of the 12 +
11+74and 6+12+12 genera. A closer, but non-
superparticular, approximation to Xenakis's intense
chromatic would be 22/21-6/5-35/33.

Eastern Orthodox liturgical music

The intonation of the liturgical music of the Byzantine and Slavonic
Orthodox churches is a complex problem and different contemporary
authorities offer quite different tunings for the various scales and modes
(echoi). One of the complications is that until recently a system of 28 parts
to the fourth, implying a 68-note octave (28 + 12 + 28 = 68 parts), was in use
along with the Aristoxenian 30+ 12 + 30 parts (Tiby 1938).

Another problem is that the nomenclature underwent a change; the term
enharmonic was applied to both a neo-chromatic and a diatonic genus, and
chromatic was associated with the neo-chromatic forms. Finally, many of
the modes are composed of two types of tetrachord, and both chromaticism
and modulation are commonly employed in melodies.

Given these complexities, only the component tetrachords extracted
from the scales are listed in 3-4. The format of this table differs from that
of 3-1 through 3-3 in that the diagrams have been omitted and partially
replaced by the ratios of plausible arithmetic forms. The four tetrachords
from Tiby which utilize a system of 28 parts to the fourth are removed to
the Tempered section of the Catalog.

PARTS CENTS RATIOS GENUS

ATHANASOPOULOS (1950)

90+I5+6 150+250+ 100 — CHROMATIC
6+1846  100+300+100 — : CHROMATIC
6+12+41I2 I00+200+4200 — DIATONIC
12+12+6 20042004100 — ENHARMONIC

savas (1965)
B+14+8  133+233+133 — CHROMATIC
10+8+12 167+133+200 ~— DIATONIC
8+I2+10 1I33+200+167 — BARYS DIATONIC
12+12+6 20042004100 — ENHARMONIG
8+16+6 133 +267+100 — BARYS ENHARMONIC
6+20+4 I00+333+67 - PALACE MODE (NENANO)

XENAKIS (I1971)
7+16+7 117 +266+117  16/15-7/6-15/14 SOFT CHROMATIC
5+19+6  B3+3174100  256/2436/5-135/128 INTENSE CHROMATIC
I12+11+7 200+183+4117 o/8.10/9-16/15 DIATONIC
6+12+12 100+200+200 256/243-9/8-9/8 ENHARMONIC
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The tetrachords of Athanasopoulos (1950) are clearly Aristoxenian in
origin and inspiration, despite being reordered. One of his chromatics is
Aristoxenos’s soft diatonic and the other is Aristoxenos’s intense chromatic.
The rest of his tetrachords are permutations of Aristoxenos’s intense
diatonic.

Savas’s genera (Savas 1965) may reflect an Arabic or Persian influence,
as diatonics with intervals between 133 and 167 cents are reminiscent of
Al-Farabi’s and Avicenna’s tunings (chapter 2 and the Catalog). They may
plausibly represent 12/11 and 11/10 so that his diatonic tunings are in-
tended to approximate a reordered Ptolemy’s equable diatonic. His
chromatic resembles 14/13 - 8/7 - 13/12 and his Barys enharmonic, 15/14 -
7/6 « 16/15. Savas’s ordinary enharmonic may stand for either Ptolemy’s
intense diatonic (10/9 - 9/8 - 16/15) or the Pythagorean version (256/243 -
9/8 - 9/8). The palace mode could be 15/14 - 6/5 - 28/27 (Ptolemy’s intense
chromatic). The above discussion assumes that some form of just in-
tonation is intended.

The tunings of the experimental composer Iannis Xenakis (1971) are
clearly designed to show the contdinuity of the Greek Orthodox liturgical
tradition with that of Ptolemy and the other ancient arithmeticians, though
they are expressed in Aristoxenian terms. This continuity is debatable;
internal evidence suggests that the plainchant of the Roman Catholic
church is derived from Jewish cantillation rather than Graeco-Roman
secular music (Idelsohn 1921). Itis hard to see how the music of the Eastern
church could have had an endrely different origin, given its location and
common early history. A case for evolution from a common substratum of
Near Eastern music informed by classical Greek theory and influenced by
the Hellenized Persians and Arabs could be made and this might give the
appearance of direct descent.

The robustness of the geometric approach of Aristoxenos is still evident
today after 2300 years. The musicologist James Murray Barbour, a strong
advocate of equal temperament, proposed 2 + 14 + 14 and 8 + 8 + 14 as
Aristoxenian representations of 49/48 -8/7.8/7and 14/13 - 13/12 - 8/7in his
1953 book on the history of musical scales, Tuning and Temperament. With
Xenakis’s endorsement, Aristoxenian principles have become part of the
world of international, or transnational, contemporary experimental music.
In the next chapter the power of the Aristoxenian approach to generate new
musical materials will be demonstrated.
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4 The construction of new genera

THi1s cHAPTER Is concerned with the construction of new genera in addi-
tion to those collated from the texts of the numerous classical, medieval,
and recent writers. The new tetrachords are a very heterogeneous group,
since they were generated by the author over a period of years using a
number of different processes as new methods were learned or discovered.
Including historical tetrachords, the tabulated genera in the catalogs
number 723, of which 476 belong in the Main Catalog, 16 in the re-
duplicated section, 101 under miscellaneous, 98 in the tempered list, and
32 in the semi-tempered category.

The genera in the Main Catalog are classified according to the size of
their largest or characteristic interval (CI) in decreasing order from 13/10
(454 cents) to 10/9 (182 cents). There are 73 Cls acquired from diverse
historical and theoretical sources (4-1). Sources are documented in the
catalogs. The theoretical procedures for obtaining the new genera are de-
scribed in this chapter and the next.

New genera derived by linear division

The first of the new genera are those whose CIs are relatively simple
non-superparticular ratios such as 11/9, 14/11, and 16/13. These ratios
were drawn initially from sources such as Harry Partch’s 43-tone, 11-[imit
just intonation gamut, but it was discovered later that some of these CIs are
to be found in historical sources as well. The second group is composed of
intervals such as 37/30, which were used sporadically by historical writers.
To these ratios may be added their 4/3’s and 3/2’s complements, e.g. 27/22
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4-X. Characteristic intervals (CIs) of new genera injust intonation. The Cl is the largest in-
terval of the tetrachord and the pyknon or apyknon is the difference between the C1and the
fourth, Because many of the new genera have bistorically known Cls, all of the Cls in the
Main Catalog are listed in this table. The Cls of the reduplicated, miscellaneons, tempered,
and semsi-tempered lists are not included in this table.

HYPERENHARMONIC GENERA EIO 34/27 18/17 399 + 99 cr  20/17 17/15 281 +217
The term byperenbarmonic is originally from EII II13/90  120/113 394+ 104 c22 27/23 92/81 278 + 220
Wilson and refers to genera whose Cl is greater EI2  64/51 17/16 393 + 105 €23 75/64 256/225  275+223
than 425 cents. The prototypical byperenbarmonic EI3  5/4 16/15 386+ 112 c24  7/6 8/7 267 +231
genusis Wilson'’s 56/5'5 - 55/54 - 9/7. See chapter 5 514 8192/6561 2187/2048 384 +114 c2s  136/117  39/34 261 +238
for classification schemes. EI§ 56/45 15/14 379 + 119 c26  36/31 31/27 250 +239
c PYKNON  CENTS EIS 41/33 44/41 376 + 122 c27 Bo/6g 23/20 256+ 242
a1 ulo aolm 4544 CHROMATIC GENERA c28 “79 38;33 254+ 243
H2 35/27 36/3§ 449 +49 The Cs of the chromatic genera range from 375 to @9 545 15713 250+24
H3 22/17 34/33 446 + 52 250 cents, DIATONIC GENERA
H4 128/99  33/32 445 +53 cr 36/29 20/27 374+ 124 The Cls of the diatonic genera range from 250 to
H5  31/24 32/31 443 +55 c2  26/21 14/13 370 + 128 166 cents. In the diatonic genera, a pryknon does not
6 40/31 31/30 441 +57 c3 21/17 68/63 366 + 132 exist.
w7 s8/as 30/29 439+59 c4 100/81  27/25 365 +133 DI 15/13 52/45 248 + 250
u8 9/7 28/27 435+63 /30 o/ 63+1 D2 8/2 22/1 242 +256
Ho T04/81  27/26 433+65 s 37/3 40/37 303+ 135 30/23 9 4 5
o s0/39 26/25 430+68 c6 16/13 13/12 359 + 139 D3 23/20 80/69 242 + 256
nrr 32/ 25/24 427471 c7  27/22 88/81 355 + 143 D4 31/27 36/31 230 +259
8 11/9 12/11 347 + 151 D5 39/34 136/117 238 +2061
ENHARMONIC GENERA co  39/32 128/117 342 + 156 D6 8/7 7/6 231 +267
The Clsof the enbarmonic genera range from 375 cio 28/23 23/21 341 +157 D7 256/225  75/64 223 +275
10425 cents. cir  17/14 56/51 336 + 162 D8  25/22 88/75 2214277
er 2318 24/23 424+ 73 c12  40/33 11/10 333 + 165 D9 02/81 27/23 220+278
E2  88/69 23/22 421477 c13 20/24 32/29 328 + 170 p1o 76/67 67/57 218 + 280
E3  50/41 160/153 421 +77 ci4 6/5 10/9 316 +182 DIT 17/15 20/17 217 + 281
E4 14/11 22/21 418 +81 c15  25/21 28/25 302 + 196 DI2 112/99 33/28 214 +284
E5  80/63 21/20 414 +84 ci6 19/16 64/57 208 + 201 DI3 44/39 13/11 200 + 289
6 33/26 104/99 413 +85 c17 32/27 9/8 204 + 204 D14 152/135 45/38 205 +293
E7  19/15 20/19 400 + 89 c18 45/38 152/135 293 +205 D15 ¢/8 32/27 204 + 2094
8 81/64 256/243 408 +90 c19 13/1I 44/39 289 + 209 D16 160/143 143/120 194+ 304
B9  24/19 19/18 404 + 94 czo 33/28 112/99 284 +214 D17 10/9 6/5 182 + 316
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4-2. Indexed genera. The terms 4 and 3 which
represent the 1/1 and 4/3 of the final tetrachord are
multiplied by the index. The lefthand sets of
tetrachords are those generated by selecting and
recombining the successive intervals resulting from
the additional terms after the multiplication. The
righthand sets of tetrachords have been reduced to
lowest terms and ordeved with the CI uppermost.

MULTIPLIER: 4 TERMS: I6 I§

16/15 - 15/14 - 14/12
16/15-15/13 - 13/12
16/14 - 14/13 - 13/12

16/15
16/15

14/13

MULTIPLIER: § TERMS: 20 I9

20/19 -
20/19 -
20/19 -
20/18 -
20/18 -
20/17 -

19/18 -
19/17 -
19/16 -
18/17 -
18/16 -
17/16 -

18/15
17/15
16/15
17/1§
16/15
16/15

20/19 -
20/19 -
20/19 -
18/17.
16/15 -
17/16

14 I3 12
-15/14-9/6
-13/12 - 15/13
<13/12 - 8/7

18 17 16 13§
19/18 . 6/5
19/17 - 17/1%
16/15 - 19/16
10/9 - 17/15
10/9 - 9/8
16/15 - 20/17

MULTIPLIER: 6 TERMS: 24 2322 21201918

24/23 -
24/23 -
-23/20-
23/19 -
-21/18

24/23

24/23

24/22

24/22 -

24/22
24/21

24/21 -
24/20-

* see Caralog number §36.

23/22
23/21

-22/21
22/20-
- 22/19 -
-21/20-
21/19 -

20/19

. 22/18
.21/18

20/18
19/18*

20/18
19/18
20/18
19/18
19/18

24/23 -
24/23 -
24/23 -
24/23 -
22/21 .
12/11 -
19/18 -
21/20-
19/18 .
20/19 -

23/22 - 11/9
23/21-7/6
10/9-23/20
19/18 - 23/19
12/11.7/6
11/10 - 10/9
12/11 - 22/19
10/9 - 8/7
21/19-8/7
19/18 - 6/5

is the 3/2’s complement of 11/g and §2/45 the 4/3’s complement of 15/13.
Various genera were then constructed by dividing the pykna or apykna by
linear division into two or three parts to produce 1:1, 1:2, and 2:1 divisions.
Both the 1:2 and 2:1 divisions were made to locate genera composed mainly
of superparticular ratios. Even Ptolemy occasionally had to reorder the
intervals resulting from triple division before recombining two of them to
produce the two intervals of the pyknon (2-2 and 2-4). More complex di-
visions were found either by inspection or by katapyknosis with larger
multipliers,

Indexed genera

One useful technique, originated by Ervin Wilson, is a variation of the
katapyknotic process. In 4~z this technique is applied to the 4/3 rather than
to the pyknon (as it wasin 2-4). The 1/1 and 4/3 of the undivided tetrachord
are expressed as 3 and 4, and are multiplied by a succession of numbers of
increasing magnitude. The new terms resulting from such a multiplication
and all the intermediate numbers define a set of successive intervals which
may be sequentially recombined to yield the three intervals of tetrachords.
I have termed the multiplier, the index, and the resulting genera indexed
genera. The intermediate terms are a sequence of arithmetic means between
the extremes.

The major shortcoming of this procedure is that the number of genera
grows rapidly with the index. There are 120 genera of index 17, and not all
of these are worth cataloguing, since other genera of similar melodic con-
tours and simpler ratios are already known and tabulated. The technique is
still of interest, however, to generate sets of tetrachords with common
numerical relations for algorithmic composition.

Pentachordal families

Archytas’s genera were devised so that they made the interval 7/6 between
their common first interval, 28/27, and the note a 9/8 below the first note
of the tetrachord (Erickson 1965; Winnington-Ingram 1932; see also 6-1).
Other first intervals (x) may be chosen so that in combination with the
9/8 they generate harmonically and melodically interesting intervals.
These intervals may be termed pentachordal intervals (P1) as they are partof
a pentachordal, rather than a tetrachordal tonal sequence. Three such
groups or families of tetrachords are given in 4-3 along with their initial and

pentachordal intervals.
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4~3. Pentachordal intervals and families. These
tetrachords are defined by two parameters: the
pentackordal interval, 9gx/8, and the characteristic
interval, which determines the genus. An initial
interval X results in a pentachordal interval (PI) of
9x/8. These pentachordal families are the most
important iritriadic genera of chapter 7. The initials
are the first invervals of the vetrachords.

DISJUNCTIVE TONES

/ \HQACTERISTIC INTERVALS

8/9 1/t x y 4/3 3/2 3232 2/t

——

PENTACHORDAL INTERVALS

The 28/27 family is an expansion of Archytas’s set of genera. The 40/39
family fits quite well into 24-tone equal temperament because of the rea-
sonably close approximation of many of the ratios of 13 to quarter-tone
intervals. The 15/13 is another plausible tuning for the interval of five
dieses which was reputed to be a feature of the oldest scales (chapter 6;
Bacchios, 320 cE in Steinmayer 1985). The 16/15 family contains the most
consonant tunings of the chromatic and diatonic genera.

The pentachordal intervals of 4-3 are the mediants (“thirds”) of the triads
which generate the tritriadic scales of chapter 7, where they are discussed in
greater detail. In general, all tetrachords containing a medial ¢/8 may
function as generators of tritriadic scales.

INITIAL PI INITIAL  PI INITIAL Pl
16/15 6/s 10/9 5/4 8/7 o/
28/27 7/6 12/11 27/22 88/81 11/9
13/12 19/32 128/117  16/13 22/21 33/28
112/99 14/11 40/39 15/13 52/45 13/10
44739  33/26 104799 13/11 56/51 21/17
68/63 17/14 64/57 24/19 19/18 19/16
25§6/243 32/27 o/8 81/64 52/51 39/34
136/117 17/13 7/6 21/16 64/63 8/7
Bo/68  30/23 56/45 23/20 24/23 27/23
02/81  23/18 184/171  57/46 76/69  23/19

x=gq40/39, PI=15/13
ENHARMONIC

40/39 - 39/38 - 19/15 ERATOSTHENES 28/27
40/39 - 26/25 - 5/4 AVICENNA

CHROMATIC 28/27 -
40/39 - 13/12 - 6/5 BARBOUR 18/27 -
40739 - 39135 - 7/6 28/27.
40/39 + 11/10 - 13/11

DIATONIC 28/27 .
40/39 - 52/45 - 9/8 28/27 -
40/39 - 91/8o - 8/7

x=28/29, PI=7/6

ENHARMONIGC
36/35 - 5/4 ARCHYTAS
CHROMATIC
243/224 - 32/27 ARCHYTAS
15/14 - 6/5 PTOLEMY
29/26 - 26/21 MAIN CATALOG
DIATONIC
8/7.9/8 ARCHYTAS

39/35 + 15/13 MAIN CATALOG
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16/15 -
16/15 -
16/15 -

16/15 -
16/15 -

x=16/15, PI=6/5

CHROMATIC

25/24 - 6/5 DIDYMOS

15/14- 7/6 AL-FARABI

20/19 - 19/16 KORNERUP
DIATONIC

9/8 . 10/9 PTOLEMY

13/12 - 15/13 MAIN CATALOG



4-4. Means: formulae and equivalent expressions

from Heath 1921, 1:85-87, except  for the
logarithmic, vatio, and root mean square means.

Number 12 is the framework of the scale whena =12
and b = 6. The tetrachords generated by number 17

are extremely close numerically to the counter-
logarithmicmean tetrachords of the other kinds.

They also resemble the subcontraries to the geometric

means.

I. ARITHMETIC
@-b)/G-c) =ala=blb=c/c a+c=zb

2, GEOMETRIC

@-B)/(b-c)=alb=blc ac=b

3. HARMONIC

(a-b)/(b-¢)=ale,1/a +1/c=2/b b=2ac/(a+c)

4. SUBCONTRARY TO HARMONIC

@-0)/(b-c)=cla  (a*+c2)/(a+c)=b
§. FIRST SUBCONTRARY TO GEOMETRIC
@-b)/b-c)=c/h a=bic-32/b
6. SECOND SUBCONTRARY TO GEOMETRIC

@-b)/(b-c)=bla c=a+b-a®/b

7- UNNAMED
@-)/(b-c) mate E=zac-ab

8. UNNAMED

(@-/@-b)=alc @ +2=ab+c)

0. UNNAMED

@-9/-c)=blc P+d=c(a+h)

Mean tetrachords

The mathematician and musician Archytas may have been the first to rec-
ognize the importance of the arithmetic, harmonic, and geometric means
to music. He was credited with renaming the mean formerly called the
“subcontrary” as the harmonic mean because it produced more pleasing
melodic divisions than the arithmetic mean (Heath [1921] 1981; Erickson
1965). His own tunings were constructed by the application of only the
harmonic and arithmetic means, but there were actually nine other means
known to Greek mathematicians and which might be used to construct
tetrachords (Heath [1921] 1981).

To this set of twelve may be added the root meean square or quadratic mean
and four of my own invention whose definitions are given along with the
historical ones in 4-4. The logarithmic mean divides an interval into two
parts, the ratio of whose widths is the inverse of the ratio of the extremes
of the interval, For example, the logarithmic mean divides the 2/1 into two

10. UNNAMED (SAME AS FIRONACCI SERIES)
(a-c)/(a-b)=blc a=b+c
11, UNNAMED
(@-o/a-b)malh 4 =2ab-bc
I2. MUSICAL PROPORTION
a:(a+b)/2mz2ab/(a+b):b
13. LOGARITHMIC MEAN
bogh=(cloga+aloge)/(a+q) (B/a)=(/b)?
14. COUNTER-LOGARITHMIC MEAN
logh=(aloga+clogd/(a+e) (Ba)a=(/b)c
I5. RATIO MEAN
(@-c)/t-c) mxty c=(bx-ay)/(x-3)
16, SECOND RATIO MEAN
(a-c)/(a-b)=xly c=(ay-ax+bx)ly

17. ROOT MEAN SQUARE

baV(@+/2) B=(@?+2)/2
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4-5. Generating tetrachords with means.

MEAN TETRACHORDS OF THE FIRST KIND

8/9 1/1 4/3 3/2

HYPERH., H.MESON PARHYPATE LICHANOS MESE PARAMESE

[N i N}

FIRST MEAN

| {
~—1

SECOND MEAN

Lichanos is defined as the appropriate mean between
bypate meson (1/1) and mese (4/3). Parhypate is then
computed as the identical mean between lichanos and
hypate.

MEAN TETRACHORDS OF THE SECOND KIND

8/9 1/1 4/3 3/2

HYPERH, H.MESON PARHYPATE LICHANOS MESE PARAMESE

1 l !

FIRST MEAN

SECOND MEAN

Parbypate is defined as the appropriate mean between
bypate mesom (2/1) and mese (4/3). Lickanos is then
computed as the identical mean between parbypate and
mese.

MEAN TETRACHORDS OF THE THIRD KIND

8/9 1/1 4/3 3/2

HYPERH, E.MESON PARHYPATE LICHANOS MESE PARAMESE

\ 1 .
FIRST MEAN
. L i

SECOND MEAN

Lichanos is defined as the appropriate mean between
bypare meson (1/1) and paramese (3/2). Parbypate is
then computed as the identical mean berween mese (4/3)
and byperhypate (8/9),

intervals of 400 and 800 cents in the proportion of 1:2 (0, 400, and 1200
cents). The counter-logarithmic mean effects the same division in the op-
posite order, i.e., 800 and 400 cents (0, 800, and 1200 cents).

The two ratio means, numbers 15 and 16, are variations of numbers 7 and
8 of 4-4, differing only in that the ratio of the difference of the extremes to
the difference between the mean and one of the extremes is dependent
upon the parameter x/y.

There are still other types of mean, but these seventeen are sufficient to
generate a considerable number of tetrachords (4-6-8) and may be of fur-
ther utility in the algorithmic generation of melodies.

The most obvious procedures for generating tetrachords from these
means are shown in 4-5. Mean tetrachords of the first kind are constructed
by first calculating the lichanos as the mean between 1/1 and 4/3, or
equivalently between 4 = 4 and and ¢ = 3. The next step is the computation
of parhypate as the same mean between 1/1 and the just calculated lichanos
(4-6). Tetrachords of the second kind have the mean operations performed
in reverse order (¢4-7). Tetrachords of the third kind are found by taking the
means between 1/1 and 3/2 and between 8/9 and 4/3 (4-8); the smaller is
defined as parhypate; the larger becomes the lichanos.

The construction of sets of genera analogous to those of Archytas, which
are composed of a mean between 8/9 and 4/3 and its “subcontrary” or
“counter”-mean between 8/¢ and 32/27 (Erickson 1965; Winnington-
Ingram 1932), is left for future investigations as it involves deep questions
about the integration of intervals into musical systems.

Multiple means may be defined for the arithmetic, harmonic, and geo-
metric means. The insertion of two arithmetic or harmonic means into the
4/3 results in Ptolemy’s equable diatonic and its intervallic retrograde,
12/11 - 11/10- 10/9, 10/9 - 11/10 - 12/11. The geometric mean equivalent is
the new genus 166.667 + 166.667 + 166.667 cents (see the discussion of
tempered tetrachords below).
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4~6. Mean tetrachords of the first kind. The lichanoi are the means between 1/1 and 4/3; the
parbypatai are the means hetween 1/1 and the lichanoi,

I, ARITHMETIC
2, GEOMETRIC

. HARMONIC

. SUBCONTRARY TO HARMONIC

. FIRST SUBCONTRARY TO GEOMETRIC

3
4
5
6, SECOND SUBCONTRARY TO GEOMETRIC
7. UNNAMED
8. UNNAMED

9. UNNAMED

10, FIBONACCI SERIES

II. UNNAMED

12, MUSICAL PROPORTION

13, LOGARITHMIC MEAN

14. COUNTER-LOGARITHMIC MEAN

IS, RATIO MEAN (X/Y = 4/3)

16, SECOND RATIO MEAN (X/¥ = 4/3)

I7. ROOT MEAN SQUARE

1 13/12 7/6 4A3

1.0 107457 LI5470 1.33333
/1 16/15 8/7 4/3

/1 §33/483 25/21 4/3

1.0 1.09429 1.18046 1.33333
1.0 1.09185 1.I7704 1.33333
1/1 6/5 s5/4 4/3

/1 157/156 13712 4/3

1.0 1.21677 1.26376 1.33333
NO SOLUTION

/1 256/255 16/15 4/3

1/1 8/7 7/6 4/3

1.0 1.05956 1.13122 1.33333
1.0 1.09301 ILI7867 1.33333
11 19/16 5/4 4/3

/1 157/156 13/12 4/3

.0 1.09200 LI7851 1.33333

13/12 - 14/13 - 8/7
1.07457 : 1.07457 - 1.15470
16/1515/14-7/6

533/483 - 575/533 - 28/25
1.09429 - 1.078%74 - 1.12050
1.09185 - 1.07803 - 1.13278
6/5-25/24-16/15
157/156 - 169/157 - 16/13
1.21677 - 1.03862 - 105505
256/255 - 17/16 - 5/4
8/7-49/48 -8/

1.05956 - 1.06763 - 1.17867
1.09301 + 1.07837 - 1.13122
19/16 - 20/19 - 16/1§
157/156 - 169/157 - 16/13
1.09291 - 1.078328 - 1.13137

4-7. Mean terrachords of the second kind, The parkypatai ave the means between 1/1 and 4/3; the

lichanoi are the means between the parkypatai and 4/3.

I. ARITHMETIC
2. GEOMETRIC
HARMONIC
SUBCONTRARY TO HARMONIC
FIRST SUBCONTRARY TO GEOMETRIC

3
4
5
6. SECOND SUBCONTRARY TO GEOMETRIC
7. UNNAMED

8. UNNAMED

9. UNNAMED

10, FIBONACCI SERIES

II. UNNAMED

12, MUSICAL PROPORTION

I13. LOGARITHMIC MEAN

14. COUNTER-LOGARITHMIC MEAN

I5. RATIO MEAN (X/v=4/3)

16, RATIO MEAN (X/¥=4/3)

17. ROOT MEAN SQUARE

11 7/6 5/4 4/3

1.0 I.I5470 I1.24081 1.33333
1/t 8/7 16/13 4/3

/T 25/21 1409/1113 4/3
.o 1.18046 1.25937 1.33333
1.0 1.17704 1.2§748 1.33333
1/t s5/q4 8s5/64 4/3

/1 13/12 217/192 413

Lo 126376 13209 133333
NO SOLUTION

/1 16/15 1079 4/3

/1 87 9/6 4/3

.o 113122 1.21987 1.33333
10 117867 1.25839 1.33333
1/t 5/4 2116 473

/1 13/12 55/48 4/3

.o 117851 1.22583 1.33333

7/6-15/14- 16/15

1.15470 1.07457 - 1.07457
8/714/13 - 13/12

25/21 - 1409/1325 - 1484/1409
1.18046 - 1.06685 - 1.05873
1.17704 - 1.06833 - 1.06032
§/4-17/16 . 2§6/255
13/12+217/208 - 256/217
1.26376 - 1.0§321 - 1.00260
16/15 - 25/24 - 6/5
8/7-49/48 - 8/7

1.13122 - 1.07837 - 1.09301
1.17867 - 1.06763 - 1.05956
5/4-21/20-64/63

13/12 - §5/52 - 64/55

1.17851 - 1.067708 - 1.059625
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130+ 128 +231
12§+ 12§ +249
1124119+ 267
I7I+I3I+196
156+ 131 + 211
152 +130+216
316+ 71 + 112
11 +128+ 359
340+ 66 +93
7+ 105 + 386
231+ 36+ 231
100+ 113 + 285
154+ I31 4213
208+8g+112
11 +128+350

154+ 131 +214

267+ 119+ 112
249 + 12§ + 12§
231+ 128+ 130
302 + 106 + 9O
287+ 112 + 99
282 + 114 + 101
386+ 105+ 7
139+ 73 +286
405+88+4
Y12+ 71 +316
231+36+ 23
213+ 131+ 154
285+ 113 + 100
386+84+27
130+ 07 +262
284+ 113+ 100




4-8. Mean tetrachords of the third kind. The Ji-

chanoi of these tetrachords ave the means berween 1/1

and 3/2; the parbypatai are the means berween 8/9

and 4/3, These tetrachords are also tritriadic genera,

AR

Lo T o R B B B B S R ]
~N AWM bW e - O

ARITHMETIC

GEOMETRIC

HARMONIC

SUBCONTRARY TO HARMONIC

FIRST SUBCONTRARY TO GEOMETRIC
SECOND SUBCONTRARY TO GEOMETRIC
UNNAMED

UNNAMED

UNNAMED

. FIBONACCI SERIES

. UNNAMED

. MUSICAL PROPORTION

. LOGARITHMIC MEAN

. COUNTER-LOGARITHMIC MEAN
. RATIO MEAN (X/¥ = 2/1)

. RATIO MEAN (X/Y = 2/1)

. ROOT MEAN SQUARE

Summation tetrachords

Closely related to these applications of the various means is a simple
nique which generates certain historically known tetrachords as v
some unusual divisions. Wilson has called this freshman sums, and h
plied it in many different musical contexts (Wilson 1974, 1986, 1989
numerators and denominators of two ratios are summed separat
obtain a new fraction of intermediate size (Lloyd and Boyle 1978
example, the freshman sum of 1/1 and 4/3 is §/4 , and the sum of 5.
1/11s 6/5. These ratios define the tetrachord 1/1 6/5 5/4 4/3. Similar
“sum” of §/4 and 4/3 is 9/7, and these ratios delineate the 1/1 5/4 9
tetrachord. The former is a permutation of Didymos’s chromatic gen
the latter is the inversion of Archytas’s enharmonic. If one emp
multiplier/index as in 4-2 and expresses the 1/1 as 2/2,3/3..,,an i
set of graded tetrachords may be generated. The most important a
teresting ones are tabulated in 4-9.

Similarly, the multiplier may be applied to the 4/3 rather than the
yield 8/6, 12/9. .. . The resulting tetrachords fall into the enharmor
hyperenharmonic classes and very quickly comprise intervals too st
be musically useful. A few of the earlier members are listed in 4-10.

1/1 10/9 §5/4 4/3

1.0 1.08866 1.22474
/1 16/15 6/5 4/3
/1 52/45 13/12 4/3
1.0 113847 1.28078
LO I.I2050 I1.27069
NO SOLUTION

/1 28/27 /6 4/3
NO SOLUTION

NO SOLUTION

NO SOLUTION

NOT DEFINED

1.0 1.04540 I.17608
Lo ILI3371 I.27542
/1 10/9 5/4 4/3

/1 10/9 5/4 4/3

1.0 I.I331 L2747%
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1.33333

1.33333
1.33333

1.33333
1.33333

1.33333

10/9-9/8 - 16/15
1.08866 . 1.125 - 1.08866
16/15-9/8 - 10/9
52/45-9/8 - 40/39
1.13847 - 1.12§ - I.04I0
LI29§« I.12§ « 1.0403

28/27.9/8 .8/

10454+ 1.12§ + 1.1337
1.I337+1.1251.0454
10/9-9/8 - 16/13
10/9-9/8 - 16/15
1.I331-1.125-1.0450%

182 + 204 + X1
I47 + 204 + 14
112 + 204+ 18
250 + 204 + 44
225 + 204 + 7Q
211 + 204+ B3
63 +204+23X

77+ 204+ 215
217 +204+ 75
182 + 204+ 11
182 + 204+ 11
216+ 204+ 7§



TETRACHORD RATIOS SOURCE

1. 1/1 6/5 5/4 4/3 6/5-25/24-16/15 DIDYMOS

4-9. Summation tetrachords of the first type. . 1/1 5/4 9/7 4/3 5/4-36/35 - 28/27 ARCHYTAS
Unreduced ratios bave been retained to clarify the 3. 2/2 8/7 6/5 4/3 8/7-21/20- 10/9 PTOLEMY
generating process. 4. 2/2 6/5 10/8 4/3 6/5-25/24-16/1% DIDYMOS
5. 3/3 10/9 7/6 4/3 10/9 + 21/20-8/7 PTOLEMY

6 3/3 7/6 11/9 4/3 7/6-22/21 - 12/11 PTOLEMY

7. 4/4 12/11 8/7 4/3 12/11-22/21-7/6 PTOLEMY

8. 4/4 8/7 12/10 43 8/7-21/20- 10/9 PTOLEMY
9. 5/5 14/13 9/8 4/3 14/13 - 117/112 » 32/27 MISC. CAT.
10. 5/5 9/8 13/11 4/3 9/8-104/99 - 44/39 MAIN CAT.

11. 6/6 16/15 10/9 4/3 16/15 - 25/24 - 6/5 DIDYMOS

12. 6/6 10/9 14/12 4/3 10/9 - 21/20+7/6 PTOLEMY
13. 7/7 18/17 11/10 4/3 18/17 - 187/180 - 40/33 MISC. CAT.

14. 7/7 11/10 15/13 4/3 11/10 - 150/143 - §2/45 MISC. CAT.

15. 8/8 20/19 12/11 4/3 20/19- §7/55 - 11/9 MAIN CAT,

16. 8/8 12/11 16/14 4/3 12/11 - 22/21 . 9/6 PTOLEMY

17. 9/9 22/21 13/12 413 22/21 - 91/88 - 16/13 MISC. CAT.
18. 9/9 13/12 17/15 4/3 13/12 - 68/65 - 20/17 MAIN CAT,

19. 10/10 24/23 14/13 4/3 24/23-161/156-26/21 MISG. CAT.

20. 10/10 14/13 18/16 4/3  14/13-117/112-32/27 MISC. CAT.

L. I1/1t 26/25 15/14 4/3  26/25-375/364 - 56/45 MISC. CAT.

22, I1I/11 15714 19/17 4/3  15/14-266/255 - 68/57 MISC. CAT.

23. 12/12 2B/29 16/15 4/3  2B/27.36/35.5/4 ARCHYTAS

24. 12/12 16/15 10/18 4/3 16/15-15/24-6/5 DIDYMOS

TETRACHORD RATIOS SOURCE

I. 1/t 10/8 9/7 8/6 5/4-36/35 - 28/27 ARCHYTAS

4-~Y0. Summation tetrachords of the second type. 2. 1/t 9/7 17/13 8/6 9/7-119/117 - 52/51 MISC. CAT.
Unreduced ratios bave been retained to clarify the 3. I/t 14/11 13/10 12/9 14/11 - 143/140 - 40/39 MISC, CAT.
generating process. 4. 1/1 13/10 25/19 12/9 13/10 - 250/247 - 76/75 MISC. CAT.
s. 1/t 1B/14 17/13 16/12  9/7.119/117 - 52/51 MISC. CAT,

6. /1 17/13 33/2§ 16/12  17/13-429/425-100/99  MISC. CAT.

7. 1/t 22/17 21/16 20/15  22/17.357/35264/63 MISC. CAT.

8. 1/1 21/16 41/31 20/15  21/16-656/651 . 124/123  MISC. CAT,

9. 1/t 26/20 25/19 24/18  13/10-250/247-76/75 MISC. CAT.

10. I/1 2§5/19 49/37 24/18  25/19-931/925148/147  MISC, CAT.
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PARTS CENTS APPROXIMATION PTOLEMAIC INTERPRETA

ENHARMONIGC

L§+1.5+27  25+25+450 80/79 - 79/78 - 13/10 80/79-79/78 - 13/10
4-11, Neo-Aristoxenian generawith I+2+27 I7+ 33 +450 120/119 - 119/117 - 13/10 120/119 - 119/117 - 13/1
constant CI. 2+2+26 33+ 33+433 56/55-55/54-9/7 60/59 - 59/58 - 58/45

2.5+2.5+25 42+42+417 44/43 - 43/42 - 14/11 48/47 - 47/46 - 23/18
2+3+25 33+ 50 +417 55/54-36/35 - 14/11 60/59 - 118/115-23/18
2+4+24 33+ 67 + 400 60/59 - 59/57 - 19/15 60/59 - 59/57 + 19/15
3+3+24 50+ 50+ 400 40/39 - 39/38 - 19/15 40/39-38/39 - 19/15
2+5+23 33+ 83 +383 56/55 - 22/21 - 5/4 60/59 - 118/113 - 113/9¢
3+4+123 50+ 67+383 36/35-28/27- 5/4 40/39 - 117/113 - 113/9¢
3.5+3.5+23 58+58+383 32/31+31/30- 5/4 240/233 - 233/226 - 113,

CHROMATIC
2+6+22 33 + 100 + 367 51/50+ 18/17+ 100/81 60/59 - 59/56 - 56/45
8/3+16/3+22 44+89+367 40/39 - 21/20: 26/21 45/44 - 22/21 - 56/45
3+5+22 50+ 83 +367 34/33 - 22/21 - 21/17 40/39 - 117/112 - 56/45
4+4+22 67+ 67+367 28/27.27/26- 26/21 30/29 - 29/28 - 56/45
2+7+2I 33+ I17+350 §6/55 - 15/14 - 11/9 60/59 - 118/111 - 37/30
3+6+21 50 + I0O0 + 350 34/33 - 18/17. 11/9 40/39-39/37-37/30
4+5+21 67+ 83 +350 28/27.22/21.27/22 30/29 - 116/111 - 37/30
4.5+4.5+2I 75+ 75+350 24/23+23/22 - 11/9 80/77-77/74- 37/30
2+10+18 33 + 167 + 300 45/44 - 11/10 - 32/27 60/59 - 59/54 - 6/5
3+9+18 50+ I50+ 300 33/32 - 12/11+ 32/27 40/39 - 13/12 . 6/5
4+8+18 67+ 133 + 300 28/27.243/224 - 32/27 30/29 - 29/27 - 6/5
4.5+7.5+18 754125+ 300 25/24-279/25 - 32/27 8o/77-77/72 - 6/5
5+7+18 83 + 117 + 300 21/20- 15/14 - 32/27 24/23 - 115/108 - 6/5
6+6+18 100 + 100+ 300  256/243 - 2187/2048 - 32/27  20/19-19/18-6/5

DIATONIC
2413 +15 33+ 217+ 250 45/44 - 44739 - 52/45 60/59 - 118/105 - 7/6
3+ 12+ 1§ 50+ 200+ 250 34/33 - 19/17 - 22/19 40/39-39/35-7/6
4+I1+15 67+183+250 27/26 . 10/9 - 52/45 30/29 - 116/105 - 7/6
5+ 10+ 15 83+ 167 +250 104/99 - 11/10 - 15/13 24/23-23/21-7/6
6+9+15 100+ 2174250  19/18.12/119: 22/19 20/19-38/35-7/6
7+8+15 II7 +217+250 104/97 - 97/909 -15/13 120/113 - 113/105 + 7/6
75+7.5+1I5 I25125+250 15/14 - 14/13 - 52/45 16/15 - 15/14-7/6
2+16+12 33+ 267+ 200 64/63-7/6-9/8 60/59 - 59/51 - 17/15
3+I5+12 50+ 250 +200 40/39 - 52/45 - 9/8 40/39-39/34-17/15
4+14+12 67+ 233 +200 28/27.8/7.9/8 30/29 - §8/51 . 17/15
4.5+I3.5+12 75+ 225+200 24/23-92/81.9/8 80/77 - 77/68 - 17/15
§+I3+12 83+ 217+200 22/21-112/90- 9/8 24/23 - 115/102 - 17/15§
6+12+12 I00 +200+200  256/243-9/8-9/8 20/19 - 19/17 - 17/15
7+ 11412 117 +183 +200  16/15-10/9.9/8 120/113 - 113/102 - 17/1
8+10+12 113 +167+200  320/297- 11/10-9/8 15/14+56/51 - 17/15
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Neo-Aristoxenian tetrachords with Ptolemaic interpretations

While Aristoxenos may have been documenting contemporary practice,
even a cursory look at his tables suggests that many plausible neo-
Aristoxenian genera could be constructed to “fill in the gaps” in his set. The
most obvious missing genera are a diatonic with enharmonic diesis, 3 + 15
+12 (50 + 250 + 200 cents), a parachromatic, 5+ 5 +20(83 + 83 + 334 cents), and
a new soft diatonic, 7.5+ 7.5+15 (125 +I25+250 cents).

Although Aristoxenos favored genera with 1:1 divisions of the pyknon,
Ptolemy and the Islamic writers preferred the 1:2 relation. More complex
divisions, of course, are also possible. 4-11 lists a number of neo-
Aristoxenian genera in which the CI is held constant and the pyknotic di-
vision is varied. With the exception of the first five genera which represent
hyperenharmonic forms and three which are a closer approximation of the
enharmonic (383 cents, rather than 400 cents), only Aristoxenos’s Cls are
used.

For each tempered genus an approximation in just intonation is selected
from a genus in the Main Catalog. Furthermore, an approximation in terms
of fractional parts of a string of 120 units of length, analogous to Ptolemy’s
interpretation of Aristoxenos’s genera, is also provided. While these
Prolemaic interpretations are occasionally quite close to the ideal tempered
forms, they often deviate substantially. One should note, however, that the
Ptolemaic approximations are more accurate for the smaller intervals than
the larger.

Intervals whose sizes fall between one third and one half of the perfect
fourth may be be repeated within the tetrachord, leaving a remainder less
than themselves. These are termed reduplicated genera and a repre-
sentative set of such neo-Aristoxenian tetrachords with reduplication is

shown in g4-12.

4-12. Neo-Aristoxenian genera with PARTS CENTS APPROXIMATION PTOLEMAIC INTERPRETATION

reduplication. 1+14+14  34+233+233 49/48-8/7-8/7 60/59 - 59/52 - 52/45
4+13+1I3  67+217+217 300/289 - 17/15 - 17/1§  30/29 - 116/103 - 103/90
6+12+12  I00+200+200 256/243-9/8:9/8 20/19 - 19/17 - 17/15
8+rr+11r  133+183+183  27/25.10/9.10/9 15/14 - 112/101 + 101/90

I0+10+10 I66+167+167 11/10-11/10-400/363  I2/11-11/10-10/9
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4-13. Neo-Aristoxenian genera with

constant pyknotic proportions.

I:I PYKNON
1§+ 1.5+27
2+2+126
2.5 +2.5 +25
3+3+24
3.5+ 3.5 +23
4+4+22
4.5+4.5+2f
§+5+120
55+5-5+19
6+6+18
6.5+6.5+17
7+7+16
7-5+7.5+15
8+8+14
8.5+8.5+13
9+9+12
0.5 +0.5 +II
I0+ 10 + IO

I:2 PYKNON
I+2+27
4/3+8/3+26
5/3 +10/3 + 25
2+4+24
7/3 +14/3 + 23
8/3+16/3+ 22
3+6+21
10/3+20/3 + 20
I1/3+22/3+ 19
4+8+18
13/3+26/3 +17
14/3+28/3 + 16
5+ I0+ 15
16/3 + 32/3 + 14
17/3 +34/3 +13
6+1z+12

CENTS
25+25+450
33+33+433
42 +42 + 417
50 + 50 + 400
58 +58+1383
67 + 67 + 367
75+75+350
B3 +83+334
92 + 092 + 317

100+ I00 + 300

108 + 108 + 283
117+ 117 +267
125+ 125 +250
I33+133+234
142 + 142 + 217
150+ 150 + 200
158 + 158 + 183
166 + 166 + 167

17 +33+450
22 +44+433
28+ 56+ 417
33 + 67+ 400
39+78+383
44+ 89+ 367
50 + 100 + 350
56+ 111+ 333
61 + 122 +317
67 +133+ 300
72 + 144 + 283
78 + 156 + 267
83 +167+250
89 +178+233
04 + 189+ 217

I00+ 200+ 200
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APPROXIMATION

8o0/79

32/31

28/27.

24/23
22/21

20/19 -
18/17
17/16 -
16/15 -
15/14 -
-13/12
37/34-
59/54 -

14/13

40/37 -
64/59 -
12/11-
11/10 -

120/119 - 119/117 - 13/10

-79/78
56/55 -
44/43 -
40/39

55/54 -
43/42

.21/20+
19/18 -
17/16 -
-20/17

16/15

14/13

11/10 -
11/10 -

39/38
-31/30 -
27/26-
.23/22 .

15/14 -
©52/45
+7/6

-13/10
9/7

- 14/11
19/15
5/4
26/21
11/9
40/33
6/s
32/27

2/6

17/1§
9/8
10/9
400/363

84/83-83/81-9/7

64/63

57/56 -
46/45 -
40/39 -
34/33 -
33/32 -
28/27 .
27/26 -
51/49 -
22/21 -

+33/32

28/27.

24/23

15/14
13/12
49/45
12/11 -

21/20-
18/17 -
16/15 -
-+ 6/5

. 14/11.
24/19
" 5/4
26/21
11/9

40/33

+32/27
. 20/17
7/6

104/99 - 11/10 - 15/13
21/20-10/9- 8/7
20/19 - 19/17 » 20/17
2§6/243-9/8.9/8

PTOLEMAIC INTERPRETAT
80/79 - 79/78 - 13/10
60/59 - 59/58 - 58/45
48/47 - 47/46 - 23/18
40/39 - 39/38 - 19/15
240/233 - 233/226 - 113/,
30/29-29/28 - 56/45
8o/77-77/74 - 37/30
24/23-23/22 . 11/g
240/229 - 229/218 - 109/
20/19 - 19/18 - 6/5
240/227 - 227/214 - 107/,
120/113 - 113/106 - §3/4;
16/15 - 15/14 - 7/6
15/14 - 14/13 - §2/45
240/223 - 223/206 - 103/
40/37 - 37/34 - 17/15
240/221 - 221/202 - 101/}
12/11 - 11/10 - 10/9

120/119 - 119/117 - 13/1¢
90/8g - 89/87 - 58/45
72/71 « 71/69 - 23/18
60/59 - 59/57 - 19/15
360/353 - 353/339 - 113/t
45/44 - 22/21 - 56/45
40/39 - 39/37 - 37/30
36/35 - 35/33 - 11/9
360/349 - 349/327 - 109/
30/29 . 2g/27:6/5
360/347 - 347/321 - 107/,
180/173 - 173/159 - §3/4;
24/23 - 23/22 - 7/6
45/43 - 43/39 - 52/45
360/343 - 343/309 - 103/:
20/19 .+ 19/17 - 17/15



4-14. Aristoxenian realizations. The framework is
the number of “parts” in the rwo tetrachords and the
digjunctive tone. The corresponding equal
temperament is the sum of the paris of the
framework. The articulated genera are rhose that
may be played in the corvesponding equal
temperaments. The scheme of 144 parts was used by
Avicenna and Al-Farabi (D'Erlanger 1930).

Finally, in 4-13, the pyknotic proportions are kept constant at either 1:1
or 1:2 and the CIs are allowed to vary.

These neo-Aristoxenian tetrachords may be approximated in just in-
tonation or realized in equal temperaments whose cardinalities are zero
modulo r2. The zero modulo 12 temperaments provide opportunities to
simulate many of the other genera in the Catalogs as their fourths are only
two cents from 4/3 and other intervals of just intonation are often closely
approximated. One may also use them to discover or invent new neo-
Aristoxenian tetrachords.

To articulate a single part difference, a temperament of 72 tones per
octave is required. The 1/2 parts in the hemiolic chromatic and several
other genera normally demand 144 tones unless all the intervals including
the disjunctive tone have a common factor. In this case, the 48-tone system
suffices. For the 1:2 pykna which employ 1/3 parts, 216-tone temperament
is necessary unless the numbers of parts share common factors. These data
are summarized in 4-14.

FRAMEWORK ET ARTICULATED GENERA

s 25 12 Diatonic and syntonic chromatic.
10 4 IO 24  Enbarmonic, syntonic and soft diatonics, syntonic chromatic,
15 6 15 36 Syntonic diatonic, syntonic and saft chromatics, unnamed.

Chromatic, diatonic with soft chromatic dieses.

20 8 20 48  Hemiolic chromatic, soft and syntonic diatonics, synronic chromatic,
diatonic with bemiolic chromatic dieses. See 24-tone ET.

25 10 25 60  Syntonic diatonic and chromatic,

30 12 30 72 Al previous genera except hemiolic chromatic and genera with
hemiolic chromatic dieses (see 24-tone ET).

35 14 35 8g  Synrwonicdiatonic and chromatic,

40 16 g0 96  Enbarmonic, syntonic diatonic, soft diatonic, syntonic and bemiolic
chromatic. See 24-tone ET.

45 18 45 108 See 36-tome ET.

50 20 50 120 See 24-tme ET.

55 22 55 132 See 12—tone ET.

60 24 60 144 All genera except 1:2 pykna with 1/3 parts.

90 36 go 216 Al genera defined in text,
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4-35. Semi-tempered Aristoxenian tetrachords,
These tetrachords are literal interpretations of
Aristoxenos’s genera under Barbera’s assumption
that Aristoxenos meeant to divide the perfect fourth of

Semi-tempered tetrachords

"The computation of the mean tetrachords also generates a number of genera
containing irrational intervals involving square roots. These tetrachords
contain both tempered intervals as well as at least one in just intonation, the
4/3, and may therefore be called semi-tempered. There also are the semi-
tempered tetrachords resulting from a literal interpretation of the late clas-
sical theorists Nichomachos and Thrasyllus (Barbera 1978). The first of
these is Nichomachos’s enharmonic, defined verbally as a ditone with an
equally divided limma and mathematically as V(256/243) - V(256/243)-81/ 64
(45 + 45 + 408 cents). The second is Thrasyllus’s chromatic, described
analogously' as having a Pythagorean tribemitone or minor third and a whole
tone pyknon. Literally, this genus would be V(9/8) - V(9/8) - 32/27 (102 + 102
+ 294 cents), but it is possible that Thrasyllus meant the standard Py-
thagorean tuning in which the pyknon consists of a limma plus an apozome,
i.e., 256/243-2187/2048 -32/27 (90 + 114 + 294 cents).

Other semi-tempered forms result from Barbera’s assumption that Aris-
toxenos may have intended that the perfect fourth of ratio 4/3 be divided
geometrically into thirty parts. Barbera (1978) offers this literal version of
the enharmonic: 1%V(4/3) - 10V(4/3) - 1%V(65536/6561), or 50 + 50 + 398 cents,
where 65536/6561 is (4/3)8. It is an easy problem to find analogous inter-
pretations of the remainder of Aristoxenos’s genera. These and a few closely
related genera from 3-1-3 have been tabulated in 4-15.

ratio 4/3 into 30 equal parts.

PARTS ROOTS

3+3+24 4/31/10 . 4/31/10 . 4/34/5
2 4egea 43S . 4315 . /3115
3 astasezl /30 4330 L 473710
4. 6+6+18 4/31/5 4315 41335
5 649415 4133 413310 413172
6 6+12+12 4/3"7 « 41325 . 4/3¥5
7 4rige1z 41215 L 4J3705 . 4y3205
8. q.5+13.5+12 4/3320. 43920, /3205
9. 4+8+18 4/32/15 . 4/34/15 . 4/33/5
10, 6+3+21 4/3V5 < 43110 473710
. gst35e2z 430 473700 4/3111S
12. 10+I0+10 4313 . 4313 . 4315
13. 124949 /35 . 4133110 . 4733110

CENTS
50+ 50+ 398
66 + 66 + 365
75+75+349
100 + 100 + 209
100+ 140 + 250
100+ 109 + 199
66 +232 + 109
75+224+199
66+ 133 +200
100 + 50 + 349
75+ 58 +365
166 + 166 + 166
200+ 149 + 149

GENUS

ENHARMONIC

SOFT CHROMATIC

HEMIOLIC CHROMATIC

INTENSE CHROMATIC

SOFT DIATONIC

INTENSE DIATONIC

DIATONIC WITH SOFT CHROMATIC DIESES
DIATONIC WITH HEMIOLIC CHROMATIC DIESES
UNNAMED

REJECTED

REJECTED

SEMI-TEMPERED EQUABLE DIATONIC
ISLAMIC DIATONIC
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Equal divisions of the 4/3

The semi-tempered tetrachords suggest that equally tempered divisions of
the 4/3 would be worth exploring. Such scales would be analogous to the
equal temperaments of the octave except that the interval of equivalence is
the 4/3 rather than the 2/1. Scales of this type are very rare, though they
have been reported to exist in contemporary Greek Orthodox liturgical
music (Xenakis 1971).

A possible ancestor of such scales is the ancient Lesser Perfect System,
which consisted of a chain of the three tetrachords hypaton, meson, and
synemmenon. In theory, all three tetrachords were identical, but this was
not an absolute requirement, and in fact, in Ptolemy’s mixed tunings, they
would not have been the same. (See chapter 6 for the derivations of the
various scales and systems, and chapter 5 for the analysis of their
properties.)

The most interesting equal divisions of the 4/3 resemble the equal
temperaments described in the next section and in 4-14 and 4-17. The
melodic possibilities of these scales should be quite rich, because in those
divisions with more than three degrees to the 4/3 not only can several tet-
rachordal genera be constructed, but various permutations of these genera
are also possible.

The harmonic properties, however, may be very different from those of
the octave divisions as the 2/1 may not be approximated closely enough for
octave equivalence to be retained. Moreover, depending upon the division,
other intervals such as the 3/2 or 3/1 may or may not be acceptably
consonant.

The equal divisions of the 4/3 which correspond to equal octaval tem-
peraments are described in 4-16. A few supplementary divisions such as the
one of 11 degrees have been added since they reasonably approximate
harmonically important intervals. For reasons of space, only a very limited
number of intervals was examined and tabulated. To gain an adequate un-
derstanding of these tunings, the whole gamut should be examined over a
span of at least eight 4/3’s.

Additionally, the nearest approximations to the octave and the
number of degrees per 2/1 are listed. This information allows one to
decide whether the tuning is equivalent to an octave division, or
whether it essentially lacks octave equivalence. Composition in scales
without octave equivalence is a relatively unexplored area, although the
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DEGREES PER 4/3 CENTS/DEGREE DEGREES/OCTAVE CENTS/OCTAVE  OCTAVE DIVISION OTHER CONSONANT INTERVA

3 166.0 7.228 1162.1 7(=) GOLDEN RATIO (PHI) = §

4 124.5 9.638 1245.1 10 (+) 7/1=27

5 90.61 12.0§ 1195.3 12 (=) 5/1=28

6 83.01 14.46 1162.1 14 (=) /5 =7

7 71,15 16.86 1200.5 17 (+) -

8 62.26 19.27 11829 19 (=) 7/1 =54

9 55.34 21.68 1217.4 22 (+) 5/3=16,6/1=56

10 49.80 24.00 1195.3 24 () 3/2=14,5/1=56

11 45.28 26.50 1222.5 27 (+) 3/1=42,4/1=53,5/2=35,
13 38.31 31.32 1187.6 31(=) 6/1=81,7/1=88,8/1=94
4 35.57 33.73 1200. 34 (+) 7/2 = 61

15 3320 36.14 1195.3 36 (0 5/1= 84, PHI = 2§

17 20.30 40.96 120L.2 41 (+) 3/2=24,7/2 =74

20 24.90 48.19 1195.3 48 (=) 5/1=112,7/4=39

22 22.64 53.01 1196.8 53> 3/2=131,5/3=39

24 19.92 60.24 1195.3 6o (-) 5/1=140,7/1 =169

28 17.79 67.46 1191.8 67 (- 3/1=107,4/1=135

30 16.605 v2.28 1195.3 72 (=) 7/1=203,7/5=135

35 14.23 84.33 1195.3 84 (=) 7/4=68,7/5 =41

40 12.45 96.38 1195.3 96 (=) 6/1=1249,5/3=171

45 11.07 108.4 1195.3 108 () 3/I=172,4/1=217

50 9.061 120.5 1195.3 120 (-) 3/1=191,4/1 =241

55 0.055 132.5 1204.4 133 7/4 = 107, PHI = 92, 3/1 = 21
6o B.301 144.6 1203.6 145 (+) 3/1=1229,4/1=28¢

90 5.534 2168 12008 217 (+) 3/2=127

4-16, Equal divisions of the 4/3. These are equal temperaments of the 4/3 ratber than the 2/1. “Degrees/octave” is the
number of degrees of the division corresponding to the 2/1 or octave. For many of these divisions, the octave no longer
Sunctions as an interval of equivalence. “Cents/octave” is the cent value of the approximations to the 2/1. “Octave division”
isthe closest whole number of degrees to the 2/1. (=) indicates that the octave is compressed and less than 1200 cents. (+)
means that it is stretched and larger than 1200 cents. “Consomnant intervals” are the degrees in good approximations ro the
intervals listed. All divisions of the 4/3 bave good approximations to the 10/1 as (4/3)° + the skhisma equals 10/1. Divisons
that are multiples of 3 also bave good approximations to the 11/1. 17 is a slightly stretched 4 1—tone equal temperament. 22
is audibly equivalent to s 3—tone equal temperament. 28 is analogous ro the division of the fourth imo 28 parts according to
Tiby’s theory of Greek Orthodox livurgical music (Tiby 1938). 30 is analogous to Aristoxenos’s basic system. 5§ is
analogous to 132—tone equal temperament. 60 is analogous to 144-tome equal temperament. 9o is analogous to 2 16-tone
equal temperament. The Golden Ratio or Phi is (14 5)/2, approximately 1.618.
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4-17. Terrachords in non-zero modulo 12 equal
temperaments. These genera are defined in ET5
where the perfect fourth does not equal 2 1/2 “whole
tones.” The framework is the number of “parts” in
the two fourths and the disjunctive tone. More than
one framework is plausible in some temperaments
without good fourths or with more than 17 notes.
The corresponding equal temperament is the sun of
the parts of the framework, The genera in a gener-
alized, non-specific sense may be approximated in
these equal termperaments. “Diatonic/chromatic”
means that there is no melodic distinction berween
these genera. The chyomatic pykna in 9-, 10-, and
11- tone ET consist of two small intervals and one
large, while the disfunction may larger or smaller
than the Cl. Genera indifferently enharmonic and
chromatic occur avound 19 tones per octave and neo-
Aristoxenian forms may be realizable in many of the
ETs,

composer and theorist Brian McLaren has recently written 2 number
of pieces in non-octaval scales mostly of his own invention (McLaren,
personal communication, 1991). Xenakis has also mentioned chains of
fifths consisting of tetrachords and disjunctive tones (Xenakis 1971).
These suggest analogous divisions of the 3/2, including both those with
good approximations to the 4/3 and those without. Similarly, there are
divisions in which octave equivalence is retained and those in which it
is not. An example of one with both good fourths and octaves is the
seventh root of 3/2, which corresponds to a moderately stretched 12-
tone equal temperament of the octave (Kolinsky 19509).

Tetrachords in non-zero modulo 1z equal temperaments

Tetrachords may also be defined in non-zero modulo 12 equal tempera-
ments. For some combinations of genus and tuning the melodic and har-
monic distortions will be negligible, but for others the mappings may
distort the characteristic melodic shapes unacceptably. As an illustration,
the three primary genera, the enharmonic, the syntonic chromatic, and the

FRAMEWORK ET GENERA
313 7  DIATONIC/CHROMATIC
323 8  DIATONIC/CHROMATIC
414 CHROMATIC

42 4 I0 CHROMATIC

413 4 II  CHROMATIC

535 I3 DIATONIC, CHROMATIC
626 I4 DIATONIC, CHROMATIC
636 I5  DIATONIG, CHROMATIC
727 I6 DIATONIC, CHROMATIC
737 17 DIATONIC, CHROMATIC
7 4 7 (8 2 8) 18 DIATONIC, CHROMATIC (ALL THREE)
8 3 10  DIATONIC, CHROMATIC
848 20 ALL THREE

9309, 8 § 8 21 ALL THREE

949 22 ALL THREE

9509 103 I0 23 ALL THREE

13 § I3 31  ALL THREE

14 6 14 34 ALL THREE

17 7 17 41  ALL THREE

22 ¢ 22 §3  ALL THREE
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4-18. Augmented and diminished tetrachords.
These tetrachords are closely related to those in 85
and 8-15. For tetrachords with perfect fourths
incorporating the diminished fourths as intervals, see
the Main and Miscellaneous Catalogs. A few
additional intervals of similar size bave been used as
Clsin ¢-1, but not divided due to their complexity.
The last three intervals are technically diminished

[ifths, but they function as augmented fourths in
certain of the barmoniai of chapter 8.

RATIOS
14/11
23/18
32/25
9/7
3124
22/17
13/10
30/23
17/13
21/16
29/22
31/23
23/17
19/14
15/11
26/19
11/8
40/29
18/13
25/18
32/23
75
1024/720
45/32
24/17
17/12
44/31
10/7

CENTS EXAMPLES
418  14/13-13/12 . 12/11
424  23/212-1¥/10- 10/9
427 31/31-31/30-6/5
435  18/17-17/16- 8/7
443  31/30-10/9-9/8
446  11/10- 10/9 - 18/17
454  13/12-12/11 - 1V/10
460  15/14-7/6-24/23
464  17/16.8/7 - 14/13
471 21/20-10/9-9/8
478  20/28.7/6 - 12/11
517 31/30-5/4-24/23
523 23/22-11/9- 18/17
529  19/18.6/5 - 15/14
537  15/14-7/6- 12/11
543  26/125.5/4-20/19
551 11/10-10/0-9/8
557  8/7-7/6-30/29
563  9/8.8/7.14/13
569  5/4.20/19 - 19/18
572 16/15-5/4+24/23
s83  14/13-13/12.-6/5
588  256/243.8/7-7/6
590  16/15-10/9 - 6/5
597  6/5.10/9 - 18/17
603  17/16.8/7.7/6
606  11/10- 5/4- 32/31
617 10/9.9/8.8/7

diatonic, will be mapped into the 12-, 19~, 22-, and 24-tone equal tem-

perament (ET) below:
ET FOURTH  ENHARMONIC  CHROMATIC  DIATONIC
1z 5° - I+1+3 I+2+2
19 8 I+1+6 2+42+4 2+3+3
22 ¢° I+I+7 2+2+5 I+4+4
24 10° T1+1+8 2+2+6 2+4+4

The enharmonic is not articulated in 12-tone ET, or at least not dis-
tinguishable from the chromatic except as a semitonal-major third pen-
tatonic. In 19-tone ET, the soft chromatic is identical to the enharmonic
and the syntonic chromatic is close to a diatonic genus like 125 + 125 + 250
cents. The enharmonic is certainly usable in 22-tone ET but the diatonic
is deformed, with a quarter-tone taking the place of the semitone. These
distortions, however, are mild compared to the 9-tone equal temperament
in which not only are the diatonic and chromatic genera equivalent as 1 +
I + 2 degrees, but the semitone at two units is larger than the whole tone.
Whether these intervallic transmogrifications are musically useful remains
to be tested.

There are, however, many fascinating musical resources in these non-
12-tone tunings. As Ivor Darreg has pointed out, each of the equal tem-
peraments has its own particular mood which suffuses any scale mapped
into it (Darreg 1975). For this reason the effects resulting from transferring
between tuning systems may be of considerable interest.

Because of the large number of systems to be covered, the mappings of
the primary tetrachordal genera into the non-zero modulo 12 equal tem-
peraments are summarized in 4-17. The tetrachordal framework and pri-
mary articulated genera in the equal temperaments of low cardinality or
which are reasonable approximations to just intonation are shown in this

figure.
Augmented and diminished tetrachords

The modified or altered tetrachords found in some of the non-zero modulo
12 equal temperaments of 4-17 suggest that tetrachords based on aug-
mented and diminished fourths might be musically interesting. This sup-
position has historical and theoretical support. The basic scales (thazs) of
some Indian ragas have both augmented and perfect fourths (Sachs 1943),
and the octaval barmoniai of Kathleen Schlesinger contain fourths of di-
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magnitudes (Schlesinger 1939; and chapter 8). Wilson has exploited the fact
that any scale generable by a chain of melodic fourths must incorporate
fourths of at least two magnitudes (Wilson 1986; 1987; and chapter 6). His
work implies that scales may be produced from chains of fourths of any
type, but that their sizes and order must be carefully selected to ensure that
the resulting scales are recognizably tetrachordal.

A number of altered fourths are available for experimentation. 4-18 lists
those which commonly arise in conventional theory and in the extended
theory of Schlesinger’s harmoniai described in chapter 8. Scales may be
constructed by combining these tetrachords with each other or with normal
ones and with correspondingly altered disjunctive tones to complete the
octaves. Alternatively, the methods described in chapter 6 to generate
non-heptatonic scales may be employed.
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Classification, characterization, and

analysis of tetrachords

THIs CHAPTER CONTAINS a complex mixture of topics regarding the descrip-
tion or characterization of tetrachords. Some of the concepts are chiefly
applicable to single tetrachords, while others refer to pairs of tetrachords or
the complete tetrachordal space. The most interesting of the newer meth-
ods, those of Rothenberg and Polansky, are most usefully applied to the
scales and scale-like aggregates described in detail in chapter 6. Moreover,
Polansky’s methods may be applied to parameters other than pitch height.
The application of these techniques to tetrachords may serve as an model for
their use in broader areas of experimental intonation.

The first part of the chapter is concerned with the historical approach
to classification and with two analyses based on traditional concepts. These
concepts include classification by the size of the largest, and usually
uppermost, incomposite interval and subclassification by the relative sizes
of the two smallest intervals. A new and somewhat more refined class-
ification scheme based on these historical concepts is proposed at the end
of this section.

These concepts and relationships are displayed graphically in order that
they may become more intuitively understood. A thorough understanding
of the melodic properties of tetrachords is a prerequsite for effective com-
position with tetrachordally derived scales. Of particular interest are those
tetrachords which lie near the border of two categories. Depending upon
their treatment, they may be perceived as belonging to either the diatonic
or chromatic genera, or, in other cases depending on the CIs, to either the
enharmonic or chromatic. An example is the intense chromatic or soft

45 CLASSIFICATION, CHARACTERIZATION, AND ANALYSIS OF TETRACHORDS




diatonic types, where the interval near 250 cents may be perceived as either
a large whole tone or a small minor third. This type of ambiguity may be
made compositionally significant in a piece employing many different
tetrachords.

The middle portion of the chapter deals with various types of harmonic
and melodic distance functions between tetrachords having different inter-
valsor intervallic arrangements. Included in this section is a discussion of the
statistical properties of tetrachords, including various means (geometric
mean, harmonic mean, and root mean square; see chapter 4) and statistical
measures of central tendency (mean deviation, standard deviation, and var-
iance). Both tabular and graphical representations are used; the tabular is
useful to produce a feeling for the actual values of the parameters.

These concepts should be helpful in organizing modulations between
various tetrachords and tetrachordal scales. For example, one could cut the
solid figures generated by the various means over the whole tetrachordal
space by various planes at different angles to the axes. The intersections of
the surfaces with the planes or the interiors of the bounded portions of the
figures of intersection define sets of tetrachords. Planes parallel to the bases
define tetrachordal sets with invariant values of the means, and oblique
planes describe sets with limited parametric ranges. Similarly, lines (geo-
desics) on the surfaces of the statisical measures delineate other tetra-
chordal sets, These techniques are similar to that employed by Thomas
Miley in his compositions Z-View and Distance Music, in which the inter-
. sections of spheres and planes defined sets of intervals (Miley 1989).

The distance functions are likewise pertinent both to manual and algo-
rithmic composition. James Tenney has used harmonic and melodic dis-
tance functions in Changes: Sixty-four Studies for Six Harps, a cycle of pieces
in 11-limit just intonation, Polansky’s morphological metrics are among the
most powerful of the distance functions. Polansky has used morphological
metrics in a number of recent compositions, although he has not yet applied
them to sets of tunings (Polansky, 1991, personal communication). His
compositions employing morphological metrics to date are 17 Simsple Mel-
odies of the Same Length (1987), Distance Musics I-VI (1 987), Duet (1989),
Three Studies (1989) and Bedbaya Sadra/Bedbays Guthrie (1988-1991).

In the absence of any published measurements known to the author of
the perceptual differences between tetrachordal genera and tetrachordal
permutations, the question of which of the distance functions better models
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perception is unanswerable. There may be a number of interesting research
problems in the psychology of music in this area.

The chapter concludes with a discussion Rothenberg’s concept of pro-
priety as it applies to tetrachords and heptatonic scales derived from tetra-
chords. Rothenberg has used propriety and other concepts derived from
his theoretical work on perception in his own compositions, i.e., Inbarmonic
Figurations (Reinhard 1987).

Historical classification

The ancient Greek theorists classified tetrachords into three genera
according to the position of the third note from the bottom. This note was
called lichanos (“indicator”) in the hypaton and meson tetrachords and
paranete in the diezeugmenon, hyperbolaion, and synemmenon tetrachords
(chapter 6). The interval made by this note and the uppermost tone of the
tetrachord may be called the characteristic interval (CI), as its width defines
the genus, though actually it has no historical name. If the lichanos was a
semitone from the lowest note, making the CI a major third with the 4/3,
the genus was termed enharmonic. A lichanos roughly a whole tone from
the 1/1 produced a minor third CI and created a chromatic genus. Finally,
a lichanos a minor third from the bottom and a whole tone from the top
defined a diatonic tetrachord.

The Islamic theorists (e.g., Safiyu-d-Din, 1276; see D’Erlanger 1938)
modified this classification so that it comprised only two main categories
translatable as “soft” and “firm.” (D’Erlanger 1930; 1935) The soft genera
comprised the enharmonic and chromatic, those in which the largest
interval is greater than the sum of the two smaller ones, or equivalently, is
greater than one half of the perfect fourth. The firm genera consisted of the
diatonic, including a subclass of reduplicated forms containing repeated
whole tone intervals. These main genera were further subdivided according
to whether the pykna were linearly divided into approximately equal (1:1)
or unequal (z:2) parts. The 1:1 divisions were termed “weak” and the 1:2
divisions, “strong.”

These theorists added many new tunings to the corpus of known tetra-
chords and also tabulated the intervallic permutations of the genera. This
led to compendious tables which may or may not have reflected actual

musical practice.
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Crocker’s tetrachordal comparisons

Richard L. Crocker (1963, 1964, 1966) analyzed the most important of the
ancient Greek tetrachords (see chapters 2 and 3) in terms of the relative
magnitudes of their intervals. Crocker was interested in the relation of the
older Pythagorean tuning to the innovations of Archytas and Aristoxenos.
He stressed the particular emphasis placed on the position of the lichanos
by Archytas who employed 28/27 as the first interval (parhypate to 1/1) in
all three genera. In Pythagorean tuning, the chromatic and diatonic par-
hypatai are a limma (256/243, 9o cents) above hypate, while the enhar-
monic division is not certain. The evidence suggests a immatic pyknon, but
it may not have been consistently divided much prior to the time of
Archytas (Winnington-Ingram 1928).

Archytas’s divisions are in marked contrast to the genera of Aristoxenos,
who allowed both lichanos and parhypate to vary within considerable
ranges. With Archytas the parhypatai are fixed and all the distinction
between the genera is carried by the lichanoi. These relations can be seen
most clearly in §-1, 5-2, and 5-3. These figures have been redrawn from
those in Crocker (1966).

This type of comparison has been extended to the genera of Didymos,
Eratosthenes and Ptolemy in 5-4, §-5, and 5-6. The genera of Didymos and
Eratosthenes resemble those of Aristoxenos with their pykna divided in
rough equality.

Ptolemy’s divisions are quite different. For Aristoxenos, Didymos, and
Eratosthenes, the ratio of the intervals of the pyknon are roughly 1:1,
except in the diatonic genera. Ptolemy, however, uses approximately a 2:1
relationship.

Barbera’s rate of change function

C. André Barbera (1978) examined these relations in more detail. He was
especially interested in the relations between the change in the position of
the lichanoi compared to the change in the position of the parhypatai as one
moved from the enharmonic through the chromatic to the diatonic genera.
Accordingly, he defined a function over pairs of genera which compared the
change in the location of the lichanoi to the change in that of the par-
hypatai. His function is (lichanos; — lichanos;) / (parhypate; — parhypate;)
where the corresponding notes of two tetrachords are subscripted. This
function is meaningful only when computed on a series of related genera
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5~X. Archytas’s genera. These genera have a con-
stant 28/27 as their parhypate.

5-3. Aristoxenos’s genera, expressed in Cleontdes’s
parisrather thanratiss. One part equals 16,667

ENHARMONIC
28/27 36/35 5/4 cents.
o 63 112 498
ENHARMONIC
CHROMATIC
28/297  243/224 32/27 50 100 500
o 63 204 408 3+ 3+ 24 PARTS
DIATONIC SOFT CHROMATIG
28/27 8/3 o/8 67 133 500
o 63 204 498 4 + 4+ 22 PARTS
HEMIOLIC CHROMATIC
75 I50 500
4.5 + 4.5 + 21 PARTS
INTENSE CHROMATIC
5-2. Pythagorean genera. These genera are tradi- Too 00 s00
tionally attributed to Pythagoras, but in fact are of 6+ 6+ 18 PARTS
Babylonian origin (Duchesne-Guillemin 1963,
1969). The division of the enbarmonic pyknon is not SOFT DIATONIC
known, but several plausible tunings are listed in the Too 250 500
Main Catalog. 6+ 9+ I§ PARTS
INTENSE DIATONIC
ENHARMONIC s s —
I 81/64 3 3
—_—— 6+ 12 + 12 PARTS
o ? go 408
CHROMATIC
256/243 2187/2048 32/27
o 90 204 498
DIATONIC
256/243 9/8 o/8
° 90 294 498
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5-4. Didymos’s genera. Didymos’s chromatic is
probably the mast consenant tuning for the 6/5

genus. His digtonic differs from Prolemy's only in the 5-6, Ptolemy’s genera. Only Prolemy’s own genera
order of the 9/8 and 10/9. areshown. Prolenty's tonic diatonic is the same as
Archytas’s diatonic. His ditone diatonic is the
Pythagorean diatonic,
ENHARMONIC
32/31 31/30 5/4
o §5 1I2 498 ENHARMONIC
46/45 24/23 5/4
CHROMATIC o 38 113 498
16/15  15/24 6/5
o 11z 183 498 SOFT CHROMATIC
28/27  15/14 6/5
DIATONIC o 63 182 498
16/15 10/9 o/8
o 112 204 498 INTENSE CHROMATIC
22/21 12/11 7/6
o 81 232 498

SOFT DIATONIC
21/20 10/9 8/7

o 85 267 498

5-5. Eratosthenes’s geners. Eratosthenes’s diatonic
INTENSE DIATONIC
is the same as Ptolenty’s ditone diatonic.

16/15 0/8 10/9
o 112 316 498
ENHARMONIC EQUABLE DIATONIC
:10_/39_3_9_/38 19/15 I2/11 11/10 10/9
© 44 89 498 o I51 316 498
CHROMATIC
20/19  19/18 6/5
) 89 183 498
DIATONIC
256/243 9/8 9/8
o 90 294 498
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§~7. Barbera’s function applied to Aristoxenos’s and

Prolemy’s genera.

SOFT CHR./ENH.
SOFT CHR./ENH.

HEM. CHR./SOFT CHR,
INT. CHR./SOFT CHR.

INT, CHR./HEM. CHR.
INT. DIA/INT, CHR.

§-8. Ratio of lichanos to parhypate in Aristoxenos’s

and Prolemy’s genera.

2.0

ENHARMONIC R 2.047
ot 1.474

mmsmn 2.0
o 2.580

SOFT CHROMATIC

INTENSE CHROMATIC

SOFT DIATONIC

INTENSE DIATONIC

HEMIOLIC CHROMATIC
TONIC DIATONIC P
DITONE DIATONIC ¥

EQUABLE DIATONIC ¥

B ARISTOXENOS
# PTOLEMY
% RATIO (PTOLEMY/ARISTOXENOS)

such as Aristoxenos’s enharmonic and his chromatics or on the cor-
responding ones of Ptolemy. The extent to which such calculations give
consistent values is a measure of the relatedness of the tetrachordal sets.

In §-7, the results of such calculations are shown. The value for Aris-
toxenos’s non-diatonic genera is 2.0. Ptolemy’s genera yield values near 3.0,
and the discrepancies are due to his use of superparticular ratios and just
intonation rather than equal temperament. The proportion of the Ptol-
emaic to the Aristoxenian values is near 1.4.

These facts suggest that both theorists conceived their tetrachords as
internally related sets, not as isolated tunings. Presumably, the increase
from 2.0 to about 3 of this parameter reflects a change in musical taste in
the nearly 500 years elapsed between Aristoxenos and Ptolemy.

Both ancient theorists presented additional genera not used in this
computation. Some, such as Aristoxenos’s hemiolic chromatic or Prolemy’s
equable diatonic, had no counterpart in the other set. Ptolemy’s soft dia-
tonic appears to be only a variation or inflection of his intense (syntonic)
chromatic. His remaining two diatonics, the tonic and ditonic, were of
historical origin and not of his invention. The same is true of Aristoxenos’s
intense diatonic which seems clearly intended to represent the archaic
ditone or Pythagorean diatonic.

A comparison of the corresponding members of these two authors’ sets
of tetrachords by a simpler function is also illuminating. If one plots the
ratio of lichanos to parhypate or, equivalently, the first interval versus the
sum of the first two, it is evident that Aristoxenos preferred an equal divi-
sion of the pyknon and Ptolemy an unequal 1:2 relation. These preferences
are shown by the data in 3-8, where the lichanos/parhypate ratio is 2.0 for
Aristoxenos’s tetrachords and about 3.0 for Ptolemy’s non-diatonic
genera,

One may wonder whether Ptolemy’s tetrachords are theoretical
innovations or whether they faithfully reflect the music practice of second
century Alexandria. The divisions of Didymos and Eratosthenes, authors
who lived between the time of Aristoxenos and Ptolemy, resemble
Aristoxenos’s, and there are strong reasons to assume that Aristoxenos is
a trustworthy authority on the music of his period (chapter 3). The lyra
and kithara scales he reports as being in use by contemporary musicians
would seem to indicate that the unequally divided pyknon was a musical
reality (chapter 6). Ptolemy’s enharmonic does seem to be a speculative
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§-0. Neo-Aristaxenian classification. a+ b+ c= 500
cents. This classification is based on the size of the
largest or characteristic interval (CI); the equal
division of the pyknon (a+b) is anly illustrative and
other divisions exist. The hyperenbarmomic geners
bave CLs between the major third and the fourth and
pykmotic intervals of commatic size, The enbarmonic
genera contain CLs approximating major thirds, The
chromatic genera range from the soft chromatic to
the soft diatonic of Aristoxenos or the intense
chromatic of of Polensy. The diatonic are all those
generawithout pykna, i.c., whose largest interval s
lessthan 250 cents.

HYPERENHARMONIC
dro<a+b <3017
23+23+454 10 37.5+37.5+425 cents
Bo/79-79/78-13/10 to 50/49.49/48.32/25
ENHARMONIC
317<a+bscy
37-5+37.5+425 to 62.5+062.5+375 cents
48/47:47/46-23/18 to 30/29-20/28-56/45
CHROMATIC
d3<a+hsc
62.5+62.5+375 #0 125+125+250 cents
29/28.28/27-36/29 1 15/14-14/13+52/45

DIATONIC
c<a+h<ac
125+125+250 0 167+167+167 cents
104/97+97/90-15/13 10 11/10- 11/10- 400/363

construct as the enharmonic genus was extinct by the third century Bce
(Winnington-Ingram 1932). His equable diatonic, however, resembles
modern Islamic scales and certain Greek orthodox liturgical tetrachords
(chapter 3).

These historical studies are important not only for what they reveal
about ancient musical thought but also because they are precedents for
organizing groups of tetrachords into structurally related sets. The use of
constant or contrasting pyknotic/apyknotic proportions can be musically
significant. Modulation of genus (uetafole xata yevoo) from diatonic to
chromatic or enharmonic and back was a significant stylistic feature of
ancient music according to the theorists. Several illustrations of this tech-
nique are found among the surviving fragments of Greek music (Win-

nington-Ingram 1936).

Neo-Aristoxenian classification

The large number of new tetrachordal divisions generated by the methods
of chapter 4 indicates a need for new classification tools. A conveniently
simple scheme is the neo-Aristoxenian classification which assumes a tem-
pered fourth of 500 cents and categorizes tetrachords into four classes
according to the sizes of their CIs. For tetrachords in just intonation, the
fourth has 498.045 cents, and the boundaries between categories will be
slightly adjusted. The essential feature of this scheme is the geometrical
approach of chapter three.

Those new genera whose CIs fall between a major third and perfect
fourth may be denoted hyperenbarmonic after Ervin Wilson (personal
communication) who first applied it to the 56/55 - 55/54 - 9/7 genus. The
hyperenharmonic Cls range from roughly 450 cents down to 425 cents.
The next class is the enharmonic with Cls ranging from 425 to 375 cents,
a span of 5o cents. The widest division is the chromatic, from 375 cents to
250 cents as it includes CIs whose widths vary from the neutral thirds of
approximately 360-350 cents (16/13, 11/9, 27/22) through the minor and
subminor thirds (6/5, 7/6) to the “half-augmented seconds” (15/13, 52/45)
near 2 50 cents. Beyond this limit, a pyknon no longer exists and the genera
are diatonic,

This neo-Aristoxenian classification is summarized in 5-9. The limits of
the categories are illustrated with representative tetrachords in just
intonation,
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These four main classes may be further subdivided according to the
proportions of the two intervals which divide the pyknon, or apyknon in the
case of the diatonic genera. Because of the large number of possible divi-
sions, it is clearer and easier to display the various subgenera graphically
than to try to name them individually. Thus a number of representative
tetrachords from the Main Catalog have been plotted in §-10-12 to illus-
trate the most important types.

s-x0. Plot of characteristic intervals versus In 5-10, the first interval, as defined by the position of the note parkypate,

parbypatai. The four notes of the illustrative meson has been plotted against the characteristic interval. For most of the his-
tetrachord in ascending order of pitch are hypate, torical tetrachords of chapters 2 and 3, this is equivalent to plotting the
parkypate, lichanos, and mese. The Cl is the interval smallest versus the largest intervals or the first against the third. The
between lichanos and mese. exceptions, of course, are Archytas’s enharmonic and diatonic and Didy-

mos’s chromatic.

5-11 shows the position of the third note, lichanos, graphed against the
second, parhypate. This is equivalent to comparing the size of the whole
pyknon (or apyknon) to its first interval. This particular display recalls the
Greek classification by the position of the lichanoi and the differentiation
into shades or chroai by the position of the parhypatai.

The first interval is plotted against the second in 5-x2. In this graph,
however, all of the permutations of this set of typical tetrachords are also
plotted. This type of plot reveals the inequality of intervallic size between

5-1X. Plot of lichanoi versus parbypatai.

§-12, First interval plotsed against second intervals
of major tetrachordal genera. The tetrachords plotted
here are 50 + 50 + 400, 100 + 100 + 300, 100 +I§0

+2§0, 100 +200 +200,and 166.67 + 166.67 +

166.67 cents in all of their intervallic permutations. genera and distinguishes between permutations when the tetrachords are
The permeutations of the soft diatonic genus delineate not in the standard Greek ascending order of smallest, medium, and
the region of Rothenberg-proper diatonic scales. large.
5-10. 5-I1. 5-12.
400 - 400 4 400 ENHARMONIC
HYPERENHARMONIC DIATONIC INTENSE CHROMATIC
1 ENHARMONIC 1 d SQFT DIATONIC
. ; INTENSE DIATONIC
(%) EQUAL DIATONIC
1 CHROMATIC [o
E CHROMATIC
. 5 2
o 5 ENHARMONIC o
@
DIATONIC HYPERENHARMONIC « o o
N — T 1 — T T )
100 200 100 200 200 400
PARHYPATE PARHYPATE FIRST INTERVAL
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5-13. Intervallic inequality functions on just and
tempered tetrachords.

RATIOS

CL/MIN CI/MID MID/MIN
HYPERENHARMONIC

§6/55 - 55/54 - 9/7 13.95 I13.70 1.0I8
ENHARMONIC
28/27.36/35 - 5/4 7.021 66,136 I.291
32/31+31/30+ 5/4 7.028 6.805 1.033
46/45-24/23-5/4 1015 5243 1.936
CHROMATIC
20/19 - 19/18 - 6/5 3.554 3.372 1.054
28/27 - 15/14 - 6/5 5.013 2642 1.897
26/15-25/24-16/13 5,204 5.0B6 1.041
19/38-19/18 . 16/13 7.994 3.840 2.081
14/23-23/22-11/9  4.715 4.514 1.044
34/33 - 18/17-11/9  6.722 3.511 191§
16/15 - 15/14 - 7/6 2.389 2.234 1.069
22/21- 12/11 + 7/6 3.314 1772 1870
DIATONIC
14/13 - 13/12 - 8/7 1.802 1.668 1.080
2120 10/9 - 8/7 2737 1267 2159
28/27.9/8 - 8/7 3.672 LI33 3.239
16/15 - 10/9 - /8 1.825 1118 1.633
2§6/243-9/8.9/8  2.260 I1.000 2.260
12/11-11/10.10/9  1.2I1 1.IO§ I.09§
TEMPERED TETRACHORDS
50 + 50 + 400 8,00 8.00 1.00
66.67 + 133.33 + 300 4.50 2.2§ 2,00
100 + 100 + 300 3.00 3.00 I1.00
100 + I50 + 250 2.50 L.67 1.50
100 + 200 + 200 2,00 1.00 2,00
166.67 + 166.67 + 166,67 1.00 I1.00 I1.00

Intervallic inequality functions
More quantitative measures of intervallic inequality are seen in 5-13. The
first measure is the ratio of the logarithms of the largest interval to that of
the smallest. In practice, cents or logarithms to any base may be used. This
ratio measures the extremes of intervallic inequality. The second measure
is the ratio of the largest to the middle-sized interval. For tetrachords with
reduplicated intervals, i.e., 256/243 - 9/8 - 9/8 or 16/15 - 16/15 - 75/64, the
middle-sized interval is the reduplicated one, and this function is equal to
one of the other two functions. The third measure is the ratio of the mid-
dle-sized interval to the smallest. This function often indicates the relative
sizes of the two intervals of the pyknon and distinguishes subgenera with
the same CI.

These functions measure the degree of inequality of the three intervals
and may be defined for tetrachords in equal temperament as well as in just
intonation. All of these functions are invariant under permmtation of

intervallic order.

Harmonic complexity functions

In addition to being classified by intervallic size, tetrachords may also be
characterized by their harmonic properties. Although harmony in the sense
of chords and chordal sequences is discussed in detail in chapter 7, it is
appropriate in this chapter to discuss the harmonic properties of the tet-
rachordal intervals in terms of the prime numbers which define them.

The simplest harmonic function which may be defined on a tetrachord
or over a set of tetrachords is the largest prime function. The value of this
function is that of the largest prime number greater than 2 in the numer-
ators or denominators of three ratios defining the tetrachord. The tetra-
chord (or any other set of intervals) is said to have an #-Jimit or be an n-limit
construct when # is the largest prime number in the defining ratio(s),
irrespective of its exponent and the exponent’s sign.

One limitation of the n-limit function is that it uses only a small part of
the information in the tetrachordal intervals. As a result, numerous genera
with different melodic properties have the same #-limit. However, this
one-dimensional descriptor is often used by composers of music in just
intonation (David Doty, personal communication). For example, the fol-
lowing diverse set of tetrachords all contain § as their largest prime number:
25/24 - 128/125 - §/4, 256/243 - 81/80 - §/4, 16/15 . 25/24 - 6/5,256/243 -
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§-14. Harmonic complexity and simplicity func-
tions on tetrachords in just intonation. (1) CI com~
plexity: the sum of the prime factors of the largest
interval. (2) Pyknotic complexity: the joint cornplex-
ity of the two intervals of the pyknon. (3) Average
complexity: the arithmetic mean of the Cl and pyk-
notic complexities. (¢) Total complexity: the joint
complexity of the entire tetrachord. (5) Harmonic
stmplicity: I over the sum of the prime factors greater
than 2 of the ratio defining the CI. It bas been nor-
malized by dividing by 0.2, as the maximum value of
the unscaled function is 0. 2, corvesponding to 5/4
whose Wilson's complexity is 5.

RATIOS 1 2 3 4 5
HYPERENHARMONIC
56/55-55/54-9/7 13 32 22.5 32 .3846
ENHARMONIC

28/27-36/35-5/4 § 21 13 21 1.000
32/31-31/30-5/4 § 39 22 3§ 1.000
46/45-24/23-5/4 5 34 19.5 34 1.000
CHROMATIC
20/19.-19/18.6/5 8 30 19 30 .6250
28/27-15/14-6/5 8 21 14.5 21 .6250
26/25-25/24-16/13 13 26 19.5 26 .3846
39/38-10/18.16/13 13 38 25.5 38 .3846
24/23.23/22-11/9 17 37 27 40 .2041
34/33-18/17-11/9 17 34 25.5 34 .2041
16/15-15/14.7/6 10 15 1I12.§ 15 .5000
22/21.12/11-7/6 10 21 I5.§ 2I .5000
DIATONIC
14/13-13/12.8/7 7 23 15 23 .7143
21/20-10/9-8/% 7 18 12.5 18 .7143
28/27-9/8-8/% 7 16 115 I6 .7143
16/15-10/9-9/8 6 11 B85 11 .8333
256/243-9/8.9/8 6 15 105 15 .8333
I

12/11-11/10+10/9 I1 I0 1§ 22 .4545

135/128 - 6/5, 16/15 - 75/64 - 16/15, 10/9 - 10/9 - 27/25, and 16/15 - 9/8
10/9. Similarly, all the Pythagorean tunings in the Catalog are at the
3-limit.

The second limitation of the largest prime number function when
applied to the whole tetrachord is that it does does not distinguish between
intervals which may be of differing harmonic importance to the composer.
Primary distinctions between genera are determined by the sizes of their
characteristic intervals. Genera with similarly sized CIs may have quite
different musical effects due to the different degrees of consonance of these
intervals. Similar effects are seen with the pyknotic intervals as well, par-
ticularly those due to the first interval which combines with mese or the
added note, hyperhypate, to form an interval characteristic of the oldest
Greek styles (Winnington-Ingram 1936 and chapter 6). In these cases, the
largest prime function must be applied to the individual intervals and not
just to the tetrachord as a whole.

For these reasons, other indices of harmonic complexity have been
developed which utilize more of the information latent in the tetrachordal
intervals. These indices have been computed on a representative set of
tetrachords and their component intervals. The first of the indices is
Wilson’s complexity funcdon which for single intervals may be defined as the
sum of their prime factors (greater than 2) times the absolute values of their
exponents. For example, the complexities of 3/2 and 4/3 are both 3 and
those of 6/5 and 5/3 are both 8 (3 + 5). Similarly, the intervals 9/7 and
14/9 both have complexities of 13 (3 + 3 + 7). The complexities of the Cls
of some important genera are tabulated in §-14.

Wilson’s complexity function may also be applied to sets of intervals by
finding the modified least common multiple of the prime factors (with all
the exponents made positive). The pyknon of Archytas’s enharmonic con-
sists of the intervals 28/27 and 36/35. The first ratio may be expressed as
7 + 3% and the second as 32 + § + 7. The modified least common multiple of
this setis 33 . 5 - 7and the Wilson’s complexity is 21 (3 + 3+ 3 + 5+ 7). The
average complexity, which is the arithmetic mean of the complexities of the
CI and the pyknon, and the total complexity, which is the joint complexity
of all three intervals, are also shown in §-14. In most cases the latter index
equals the pyknotic complexity.

An alternative index which may be more convenient in some cases is the
harmonic simplicity, which is the reciprocal of the complexity. This function
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§-15. Euclidean distances between genera in fust
intomation. The upper set of numbers is the distance
calculated on the largest versus the smallest intervals
of the tetrachords. The lower set is computed from the
first and second intervals. The Euclidean distance is
the square root of the sum of the squares of the
differences berween corvesponding intervals, Values

art i cents,

§-16. Euclidean distances between tempered genera,
The 1:2 chromatic is the “strong” form cor-
responding to the intense chromatic of Aristaxenas,
The equal diatonic is 166,67 + 166,67 + 166.67
cents.

may be normalized, as it is in 5-14, by dividing its values by 5, which is the
maximum simplicity of a CI or tetrachord (because 5/4 is the simplest
interval smaller than 4/3).

Euclidean distances between tetrachords

The methods described in chapter 4 and in the compilations of the historical
authors provide many tetrachords with diverse melodic characteristics. To
bring some order to these resources, some measure of the perceptual dis-
tance between different genera or between different permutations of the
same genus is desirable. While a useful measure of the distance between
genera may be obtained from the differences between the characteristic
intervals, this measure does not distinguish between the subgenera (i.e., the
r:1 and 1:2 divisions of the pyknon). A more precise measure is afforded by
the Euclidean distances between genera on a plot of the CI versus the

28/27-15/14+6/5 25/24-16/15.6/5 22/21-12/11-7/6  16/15-9/8 .10/9 12/11-11/10- 10/9
28/27-36/35 - 5/4 72.09 73.99 123.59 192.96 227.94
70.67 63.43 103.37 162.62 145.59
28/27-15/14 . 6/5 771 51.84 121.91 159.50
10.91 35.81 97.54 98.81
25/24+16/15 . 6/5 49.76 119.04 155.39
40.14 100.9X 96.09
22/21 - 12/11 - 7/6 70.26 109.77
61.73 71.56
16/15+9/8 - 10/9 44.45
§5.02
I:2 CHROMATIC INTENSE CHROMATIC SOFT DIATONIC INTENSE DIATONIC EQUAL DIATONIC
ENHARMONIC 101.36 111.80 158.11 206.16 160.8
(50 + 50 + 400) 84.89 70.71 111.80 158,11 164.9‘;
(I;z CHROMATIC 33.33 60.09 105.41 166.67
7+ 133 + 300) 47.14 37.27 74.54 105.41
INTENSE CHROMATIC 50.0 100.0 149.07
(100 + 100 + 300) 50.0 100.0 94.28
SOFT DIATONIC o
(100 + 150 + 250) go.g 123-7-’:
INTENSE DIATONIC ;
(100 +200 + 200) 7454
74-54
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§-17. Buclidean distances berween permutations of
Avehytas’s enharmonic genus. The function tab-
ulated is the distance calculated on the plot of the first
by the second interval of the tetrachord. The other
distance function, computed from the graph of the
grentest Versus the least interval, is always zero
berween permutations of the same genus.

5-18. Euclidean distances between permutations of
tempered genera.

28/27 . 5/4 - 36/35

36/35 - 5/4 - 28727

smallest interval or of the first versus the second interval.

The distances are calculated according to the Pythagorean relation: the
distance is defined as the square root of the sum of the squares of the dif-
ferences of the coordinates. The Euclidean distance is V[(CI, ~ CIL)? + (par-
hypate; —paryhypate,)?}inthe firstcase and V[(firstinterval, - first interval) )2
+ (second intervaly _ second interval,)?] in the second. It is convenient to
convert the ratios into cents for these calculations. The distances between
some representative tetrachords in just intonation are tabulated in 5-15 and
some in equal temperament with similar melodic contours in §-16.

One may also use the second Euclidean distance function to distinguish
between permutations of tetrachords as shown in §-17 and 5-18.

36/35-28/27.5/4  §/4-28/27.36/35 5/4-36/35-28/27

337.84
14.19

28/27 - 36/35 - 5/4 337-54
28/27+ 5/4 - 36/35
36/35 - 5/4 - 28/27
36/35 - 28/27 - 5/4

5/4-28/27-36/35

20.07 323.66 323.35
323.66 45729 467.43
323.55 467-43 155.39

337-54 337.84
14.19

ENHARMONIC 50 +400 + 50 400 +§0 + 50
50 + 50 + 400 350.0 350.0
50+400 + 50 494.97
INTENSE CHROMATIC| 100 + 300 + I00 300 + 10O + 100
100 + 100 + 300 200.0 200.0

100 + 300 + 100 282.84
INTENSE DIATONIC 200 + 1004 200 200 + 200 + 100
100 + 200 + 200 141.42 100.0

200 + I00 + 200 100.0

SOFT DIATONIC

100 + 250 + 150

I50 + 100 + 250

150 + 250+ 100

250+ 100 + 150

250 + 150 + 100

100 + 150+ 250
100+ 250 + 150
150+ 100+ 250
150 + 250 + 100

250+ 100 + 150

100.0

70.71 111.81 158.11 150.0
158.11 50.0 212.13 180.28
150.0 100.0 111.80
180.28 141.42

50.0
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Minkowskian distances between tetrachords

The closely related Minkowski metric or city block distance function is shown
in 5-19 and 5-20 for the same sets of tetrachords. The two functions shown
here are defined as the sum of the absolute values of the differences between
corresponding intervals. For the upper set of numbers, the function is (1 CI,
— CI; | + | parhypate, ~ paryhypate; | ) and for the lower set, (! first interval, ~
firstinterval | + i second interval, ~second interval, | ). These computations
have also been done in cents throughout for ease of comparison.

5-19. Minkowski or “city block” distances berween The distances between permutations may also be compared by means
genera in just intonation. of the second distance function (5-21 and §-22).

28/27 . 15/14-6/5  25/24-16/15.6/5 22/21-12/11-7/6 16/15-9/8.10/9 12/11-11/10-10/9

28/27 -
28/27 .
25/24+
22/21 -

16/15 -

36/35 - 5/4
15/14 - 6/5
16/15 - 6/5
12/11 - 7/6

9/8. 10/9

84.86 92.57 I§51.21 245.36 305.78
70.67 70.67 119.44 203.91 203.91
7.71 66.35 160.50 220.91

I5.42 48.77 133.24 133.24

58.64 152.79 213.20

48.77 133.24 133.24

94.16 109.77

84.47 84.47

77.81

60.41

§=20. Minkowski or “city block” distances between tempered genera.

I:2 CHROMATIC INTENSE CHROMATIC SGFT DIATONIC INTENSE DIATONIC EQUAL DIATONIC

ENHARMONIC 116.67 150.0 200.0 250.0 350.0
(50 + 50 + 400) 100.0 100.0 150.0 200.0 233.33
1:2 CHROMATIC 33.33 83.33 133.33 233.33
(67 + 133 + 300) 66.67 50.0 100.0 200.0
INTENSE CHROMATIC 50.0 100.0 200.0
(100 + 100 + 300) 50.0 100.0 133.33
SOFT DIATONIC 50.0 150,
(100 + 150 + 250) 50.0 83.33
INTENSE DIATONIC 100.0
(100 + 200 + 200) 100.0

§8 CHAPTER §



§-21. Minkowski or “city block” distances between permutations of
Archytas’s enbarmonic genus.

2B/27 - 5/4 - 36735

36/35 - 5/428/27  36/35.28/27-5/4  5/4-28/27.36/35 s5/4-36/35 28/27

28/27-36/35 - 5/4
28/27 - 15/14 - 6/5
25/24 - 16/15 - 6/5
22/21 - 12/11 - 7/6
16/15-9/8 - 10/9

337.54

351.73 28.38 337.54 323.35
14.19 337.54 646.71 660.90
323.35 660.90 675.00

337:54 351.73

14.19

5-22. Minkowski or “city block” distances berween
permutations of tempered genera.

ENHARMONIC 50 +400 + §0 400 + 50 + §0
50 + 50 + 400 350.0 350.0
100 + 250 + 150 700.0

INTENSE CHROMATIC

100 + 300 + 100

300 + 100 + 100

100 + 100 + 300

100 + 300 + 100

INTENSE DIATONIC

200.0

200+ 100+ 200

200.0
400.0

200 +200+ 100

I00 + 200 + 200

200+ 100 + 200

SOFT DIATONIC

200.0

100 + 250 + I50

I100.0

I100.0

I50 + 100+ 2350 I50 +250 + I0O 250+ 100+150 250 + 150 + I0O

100 + 150 + 250
100 + 250 + 150
150 + 100 + 250
150 + 250 + 100
250+ 100 + 150

I00.0

100.0 150.0 200.0 150.0
200.0 50.0 300.0 250.0
150.0 100.0 150.0

250.0 200.0

§0.0
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§-~23. Tenmey pitch and barmonic distance funcions

on the intervals of tetrachords in just intonation.

56/55 -
28/27.
32/31
46/45 -
20/19 -
28/29.
26/25 -
39/38-
24/23 -
34/33-
16/15 -
12/21-
14/13 -
21/20-
28/27.

16/15 -

55/54 -
36/35 -
- 31730+
24/23 «
19/18 -
15/14 -
25/24 -
19/18 .
23/22..
18/17.
15/14 -
12/11-

13/12 .

9/7
5/4
5/4
5/4
6/5
6/5
16/13
16/13
11/
11/9
7/6
9/6

8/7

10/9- 8/7

9/8.8/7

10/9 - 9/8

256/243 - 9/8 . 9/8

12/11 + 11/10 « 10/9

SMALL
0078
3-489
0122
3.100
0138
2.997
.0096
3.156
0223
2.580
0158
2.878

0170
2.813
0113
3.I71
0185
2,742
.0I30
3.050
.0280
2.380
0202
2.664

0322
2.260

.0212
2.623

1.580
2.879

.0280
2.380
.0226
4794

0378
2.121

Tenney’s pitch and harmonic distance functions

The composer James Tenney has developed two functions to compare
intervals (Tenney 1984), and has used these functions in composition,
particularly in Changes: Sixty-four Studies for Six Harps. The first function
is the pitch-distance function defined as the base-2 logarithm of 4/b where
4 and b are the numerator and denominator respectively of the interval in
an extended just intonation. This function is equivalent to Ellis’s cents
which are 1200 times the base-2 logarithm. The second function is his
barmonic distance, defined as the logarithm of 4 . b. This distance function
is a special use of the Minkowski metric in a tonal space where the units
along each of the axes are the logarithms of prime numbers. Thus the pitch
distance of the interval 9/7 is log (9/7) and the harmonic distance is 2 - log
() + log (7).

These functions may be used to characterize tetrachords by computing
distances for each of the three intervals. This has been done for the set of
representative tetrachords in §-23. The upper set of numbers is the pitch
distances; the lower, the harmonic distances. Alternatively, one could also
apply it to the notes of the tetrachord after fixing the tonic and calculating
the notes from the successive intervals.

By a slight extension of the definition, the pitch distance function may
also be applied to tempered intervals. The pitch distance is the tempered
interval expressed as a logarithm. For intervals expressed in cents, the
formula is pitch distance = cents / 1200 log (2); other logarithmic measures
could be used. This function will be most interesting for intervals which
are close approximations to those in just intonation. The harmonic dis-
tance function is not well defined for tempered intervals unless they closely
approximate just intervals,

The Tenney functions also may be used to measure the distance between
tetrachords. The pitch distance between the Cls of two genera is the log-
arithm of the quotient of their ratios; i.e., the pitch distance between 5/4,
the CI of the enharmonic, and 6/3, the CI of the intense chromatic, is the
logarithm of 25/24. The harmonic distance is the logarithm of 3/2, the
product of §/4 and 6/5.

The pitch distance and harmonic distance functions on the Cls dis-
tinguish genera quite well, though obviously not permutations of the gen-
era. The Tenney distance functions between representative set of
tetrachords in just intonation are shown in 5-24. One could also apply the
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Tenney distance functions on the pyknotic intervals to distinguish sub-
genera with the same CL

The distances between tetrachords in equal temperament may also be
measured by the Tenney functions. The pitch distance of the ClIs is sitply
the difference in cents or tempered degrees. The harmonic distance is the
sum of the ClIs. Data on representative tempered tetrachords are shown
in §-25.

§5-24. Tenney pitch and harmonic distances between genera in just intonation.

28/27 . 15/14.6/5  2§/24-16/15-6/5 22/21-12/11-7/6 16/15-9/8.10/9 12/11.11/10-10/9
18/27.36/35 - 5/4 .0177 0177 0270 0458 0512
1761 1761 1638 .1481 1427
28/27 - 15/14 - 6/5 0.0 .0I22 0280 0334
1584 1461 1303 1249
2§/24 - 16/15 - 6/5 .0122 0280 0334
1461 1303 1249
22/21 - 12/11 - 7/6 0158 0212
1181 121
16/15 - 9/8 - 10/9 .0054
0969

5-25. Tenney pitch and barmonic distances between tempered genera.

I:2 CHROMATIC INTENSE CHROMATIC SOFT DIATONIC INTENSE DIATONIC EQUAL DIATONIC
ENHARMONIC 100.0 100.0 150.0 200.0 233.33
50 + 50 + 400 700.0 700.0 650.0 600.0 566.67
I:2 CHROMATIC 0.0 50.0 100.0 133.33
67 + £33 + 300 600.0 550.0 500.0 466.67
INTENSE CHROMATIC 50.0 100.0 133.33
100 + 100 + 300 550.0 500.0 466.67
SOFT DIATONIC 50.0 83.33
100 + 150 + 250 450.0 416.67
INTENSE DIATONIC 33.33
I00 + 200 + 200 366.67
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5-27. Barlow’s specific harmonicity function on
tetrachords and tetrachordal scales. The specific
barmonicity function is the square of the number of
tones in the scale divided by sum of the reciprocals of
the barmonicities of the combinatorial intervals
(Barlow 1987) without regard to sign. For the
tetrachord, the number of tones is 4, n® = 16, and
there are six combinatorial intervals (see 5-28). The
specific harmonicity of the Dorian mode is defined as
above save that n = § (including the octave), n* = 64,
andithereare 28 intervals (- (n-1)/2).

RATIOS TETRACHORD
L. 56/55:55/54-9/7 .1063
2. 28/27-.36/35-5/4 .1859
3. 32/31:31/30-5/4 0724
4. 46/45-24/23-5/4 0885
5. 20/19-19/18.6/5 .1042
6. 28/27-15/14.6/5 1911
7.  26/25.25/24-16/13 .1062
8. 39/38.19/18.16/13 .0719
9. 24/23.23/22.11/9 0767
10. 34/33:18/17.11/9 .0848
11, 16/15-15/14 - 7/6 .2170
12. 22/21-12/11.7/6 1375
13. 14/13-13/12.8/7 1247
14. 21/20-10/9-8/7 1739
15. 28/27-9/8-8/7 2101
16. 16/15.10/9-9/8 2658
17. 256/243-9/8.9/8 2212
18. 12/11-11/10.10/9 .1609
19. 11/10-11/10:400/363 .0829
z0. 16/15-25/24-6/5 2374

DORIAN

0973

1633
.0660

08135
.0946
1721
0908
0677
.0698
.0807
.1879
1274

1143
1627

.1885
.2363
202§
-1437
0797
2133

factor of 2 - E(hcf), where hcf is the highest common factor, must be sub-
tracted from the denominator of the formula.

Barlow’s harmonicity function is applied to set of tetrachords in just
intonation in 5-26. The harmonicities of the three intervals are computed
separately. The harmonicity of 4/3 is the constant —0.2143. The har-
monicities of the pykna are also included to complete the characterization
of the tetrachords.

In the case of the general tetrachord 4 - b . ¢, where ¢ = 4/34b, there are four
ratios, 1/1,4,4 - b, and 4/3. The n - (n - 1)/2 = 6 combinatorial intervals are
a, ab, 4/3, b, 4/3a, and 4/3ab. For example, Archytas’s enharmonic, 28/27 -
36/35 - 5/4, yields the tones 1/1, 28/27, 16/15, and 4/3. The combinatorial
intervals are 28/27, 16/15, 4/3, 36/35, 9/7, and 5/4 the six non-redundant
differences between the four tones of the tetrachord. The definition of
these intervals for equally tempered tetrachords is shown as the Polansky
set in §-48. In just intonation, the sums and differences become products
and quotients and the zero and 500 cents are replaced by 1/1 and 4/3
respectively.

For scales and other sets of ratios, Barlow defined a third function,
termed specific harmonicity. The specific harmonicity of a set of ratios is the
square of the number of tones divided by the sum of the absolute values of
the reciprocals of the harmonicities of the combinatorial intervals (Barlow
1987). For the tetrachord, # = 4 and #? = 16. The specific harmonicities are
presented in 5-27~29 for various sets of tetrachords.

Similarly, the specific harmonicities of scales generated from tetrachords
may be computed. In the case of heptatonic scales, there are eight tones
including the octave (2/1) and 28 combinatorial relations, which are defined
analogously to the six of the tetrachord. The specific harmonicities of the
same set of tetrachords as in §-26 are given in 5-27. The specific har-
monicities of both the tetrachords and a representative heptatonic scale are
included in this table. :

The Dorian mode was selected for simplicity, but other scales could have
been used as well (see chapter 6 for a detailed discussion of scale construction
from tetrachords). It is the scale composed of an ascending tetrachord, a
¢9/8 tone, and an identical tetrachord which completes the octave. Abstractly,
the tones are 1/1 @ ab 4/3 3/2 3a/2 3ab/2 2/1, where a - b - 4/3ab is the gener-
alized tetrachord in just intonation. The set of combinatorial intervals is 4,
ab, 413, 3/2, 3a/2, 3ab/2, 2/1, b, 4/34, 3/24, 3/2, 36/2, 2/a, 4/34b, 3/24b, 3/25,
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§-28. Barlow’s specific barmonicity function on the

perenutations of Ptolemy's intense diatonic genus.

S

RATIOS TETRACHORD DORIAN

16/15+9/8 - 10/9
16/15 - 10/9 - 9/8
0/8 . 10/9 - 16/15
9/8 . 16/15 - 10/9
10/9 -+ 16/15 - 9/8
10/9-9/8 - 16/15

2794 2567
.2658 2363
.2658 253§
2586 .2407
.2586 2398
2794 .2486

3/2, 2/ab, 9/8, 9a/8, 9ab/8, 3/2, a4, ab, 4/3, b, 4/34, 4/34b. The repeated
intervals are a consequence of the modular structure of tetrachordal scales.

As can be seen from §-27, the specific harmonicity function distinguishes
different tetrachords and their derived scales quite well. 5-28 shows the
results of an attempt to use this function to distinguish permutations of
tetrachords from each other. Although the specific harmonicity function
does not differentiate between intervallic retrogrades (¢ - & - c versusc- b - 4)
of single tetrachords, it is quite effective when applied to the corresponding
heptatonic scales.

Finally, since the specific harmonicity function is basically a theoretical
measure of consonance, it would be interesting to use it to determine the
most consonant tunings or shades (chroai) of the various genera. Accord-
ingly, a number of tetrachords whose intervals had relatively “digestible”
prime factors were examined. The results are tabulated in §-29. It is clear
that while the diatonic genera are generally more consonant than chro-
matic and they in turn are more harmonious than the enharmonic, there is
considerable overlap between genera and permutations.

In particular, the most consonant chromatic genera are more consonant
than many of the diatonic tunings.

5-29. Themast consonant genera according to Barlow’s specific barmonicity function.

IA.
IB.
24,
2B,
3A.
3B.

IA.
IB.

34.
3B.

RATIOS TETRACHORD  DORIAN
ENHARMONIC
256/243 - 81/80-5/4 .1878 1669
5/4-81/80+256/243 .1878 1715
28/27.36/35-5/44  .1859 1633
5/4-36/35 - 28/27 .1859 1667
25/24 - 128/125 - 5/4  .1806 1550
5/4-128/12525/24 .1806 1556
CHROMATIC
16/15-25/24 - 6/5 2374 L2133
6/5-25/24 16/15 .2374 2145
16/15 - 75/64 - 16/15 2317 2008
10/9-81/80-32/27  .2200 .2046
32/27-81/80.10/9  .2200 2035
25/24+27/25 - 32/27  .1926 1745

6A. 9/8-64/63-7/69 2137 1937

68, 7/6-64/63-9/8 2137 1903
7A. 10/9-36/35 - 7/6 .2032 1783
78. 7/6-36/35-10/9 .2032 1797
DIATONIC
1A 9/8.28/27.8/7 2176 2027
1B, 8/7.28/27.9/8 2176 1914
24, 10/9:21/20-8/7 .2104 .1888
28, 8/7.21/20-10/9 .2104 1856
3. 16/15-9/8 - 10/9 .2794 2567
38 10/9.9/8.16/15 2794 2486
4A. 256/243-9/8-9/8 2212 .202§
48. 9/8.9/8-256/243 2212 210§
5. 10/9-27/25-10/9 2251 1993
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5-30. Euler’s gradus suavitatis function on tetra-
chords in just intonation. (1) is 4 byperenbarmonic
gentis, (2)—(4) are enbarmonic, (5)~(12) and (20)
are chromatic, and (13)—(19) are diatonic. The tet-
rachords are in their standard form with the small
intervals at the base and the largest interval at the
tap. See 5-3 2 and 5-33 for other permutations of the
tetrachord.

Euler’s gradus suavitatis function

A function somewhat similar to Wilson’s, Tenney’s, and Barlow’s functions
is Euler's gradus suavitatis (GS) or degree of harmoniousness, consonance,
or pleasantness (Euler 1739 [1960}; Helmholtz [1877] 1954). Like the other
functions, the GS is defined on the prime factors of ratios, scales, or chords.

Unlike Barlow’s functions, the GS is very easy to compute. The GS of
a prime number or of the ratio of a prime number relative to 1 is the prime
number itself, i.e., the GS of 3/1 is 3. The GS of a composite number is the
sum of the GSs of the prime factors minus one less than the number of
factors. The GS of a ratio is found by first converting it to a section of the
harmonic series and then computing the least common multiple of the
terms. The GS of the least common multiple is the GS of the ratio.

Sets of ratios such as chords and scales may be converted to sections of
the harmonic series by multiplying each element by the lowest common
denominator, For example, the harmonic series form of the major triad

RATIOS INTERVAL A INTERVALB CI PYKNON

I.  §6/55-55/54-9/7 24 22 11 15 (28/27)
2. 28/27.36/35-5/4 15 17 7 11 (16/15)
3. 32/31-31/30- 5/4 36 38 7 11 (16/15)
4. 46/45-24/23 - §/4 32 28 7 11 (16/15)
5. 20/19-19/18 -6/ 25 24 8 10 (10/9)
6. 28/27-15/14.6/5 I5 I4 8 1o (10/9)
7. 26/25.25/24 . 16/13 22 14 17 17 (13/12)
8. 309/38-19/18.16/13 34 24 17 17 (13/12)
9. 24/23-23/22-11/9 28 34 1§ 15 (12/11)
10. 34/33-18/17-11/9 30 22 1§ 15 (12/1)
I1. 16/15-15/14-7/6 11 14 10 10 (8/7)
12. 22/21-12/11 - 7/6 20 15 10 10 (8/7)
13. 14/13-13/12.8/7 20 17 10 10 (7/6)
14. 21/20-10/9-8/7 I§ 10 10 10 (7/6)
15, 28/27.9/8.8/7 15 8 10 10 (7/6)
16. 16/15.10/9:9/8 1 §¢ 10 8 12 (32/27)
17. 256/243-9/8.9/8 19 8 8 12 (32/27)
18, 12/11.11/10-10/9 15 16 1o 8 (6/5)

I9. I1/10-11/10:400/363 16 16 35 31 {121/100)
20. 16/15.25/24-6/5 1 14 8 10 {10/9)
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5-31. Euler’s gradus suavitatis function on tetra-
chords and tetrachordal scales. (1) is a byper-
enbarmonic genus, (2)~(g) are enbarmontc, (5)-

(12) and (20) are chromatic, and (13)-(19) are dia-

tonic. The barmonic series representation of the
Dorian mode of 16/15 - 9/8 - 10/9 is 30:32:36:40:
45:48:54:60. Its least common multiple is 4320 and

its GSis 16,

RATIOS TETRACHORD
1. 56/55-55/54-9/7 30
2, 18/27.36/355/4 21
3. 32/31.31730.5/4 42
4. 46/45-24/23-5/4 35
5. 20/19.19/18.6/5 29
6. 28/27.15/14-6/5 19
7. 26/25.25/24-16/13 27
8. 39/38-19/18.16/13 39
9. 24/23.23/22-11/9 40
1o. 34/33.18/17.11/9 33
11. 16/15-15/14-7/6 17
12. 22/21-12/11-7/6 22
13. 14/13-13/12-8/7 24
14. 21/20.10/9.8/7 19
15. 28/27.9/8.8/7 16
16. 16/15.10/9-9/8 16
17. 256/243 -9/8-9/8 19
18, 12/11-11/10-10/9 21
I9. I11/10.I11/10:400/363 35
20. 16/15-25/24+6/5 17

DORIAN

33
24
45
38
32
22
30
42
43
36
20
25
27
23
19
I9
22
4
38

20

5-32. Buler's gradus suavitatis function on the
permutations of Ptolemy’s intense diatonic genus.
(1) is the prime form. (2) is the order given by

Didymas.

1/1 §/4 3/2 is 4:5:6. The least common multiple of this series is 60 and the
GS of the major scale thus is 9.

The GSs of the component intervals of the usual set of tetrachords are
shown in g-30. The GS of 1/1 is 1 and that of 4/3 is 5. In 5-31, the GSs
of both the tetrachords and the Dorian mode generated from each tetra-
chord are tabulated. The GSs of the Dorian mode are 3 more than the GSs
of the corresponding tetrachords, reflecting the structure of the mode
which has the identical series of intervals repeated at the perfect fifth.

The GS seems not to be particularly useful for distinguishing per-
mutations of tetrachords, as evidenced by 5-32. It is noteworthy that the
most harmonious arrangements of Ptolemy’s intense diatonic are those
which generate the major and natural minor modes (see the section on
tritriadic scales in chapter 7).

As with Barlow’s functions, the GS ranks the enharmonic the least har-
monious of the major genera, though the most consonant tunings and
arrangement overlap with those of the chromatic (5-33). Similarly, the most
harmonious chromatic tunings approach those of the diatonic.

Interestingly, however, the most harmonious enharmonic tuning is
28/27 - §/4 - 36/35 and its retrograde which have the largest interval medi-
ally. The same is true for the chromatic 16/15 - 6/5 - 25/24. Of the diatonic
forms, the two arrangements of Ptolemy’s intense diatonic with the ¢/8
medial are the most consonant.

Although the GS is an interesting and potentially useful function, it does
have one weakness. Because the ratios defining small deviatons from
ideally consonant intervals contain either large primes or large composites,
the GS of slightly mistuned consonances can become arbitrarily large.
Thus the GS would predict slightly mistuned consonances to be extremely
dissonant, a prediction not consistent with observation.

RATIOS TETRACHORD DORIAN
1. 16/15.9/8.10/9 13 16
2. 16/15-10/9-9/8 16 19
3. 9/8.10/9-16/15 16 19
4. 9/8.16/15-10/9 16 19
5. I0/9.16/15.9/8 16 19
6. 10/9-9/8.16/15 13 16
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RATIOS TETRACHORD DORIAN This failure, however, is a feature shared by the other simple theories of

ENHARMONIC consonance based upon the prime factorization of intervals. Helmholtz’s

14, 2_; f/ 243 '651/ 80/’ 5/4 23 26 beat theory (Helmholtz [1877] 1954) and the semi-empirical “critical band”

z:- : 8/2; ‘ ;/43 53.653‘; i I 24 theories of Plomp and Levelt (1965) and Kameoka and Kuriyagawa (1969a,
. . . 22 . . . . . .

26 36035 - 2827 5/a 2? oy 1969b) avoid predicting infinite dissonance for mistuned consonances, but

3o 25/24- 1287125 - 5/4 22 2 are more complex and difficult to use. The prime factor theories are ade-

quate for theoretical work and for choosing between ideally tuned musical

CHROMATIC
1A, 16/15:25/24- 6/5 17 20 structures.
1B. 25/24-16/15:6/5 18 21 ..
1c. 16/15-6/5 25024 6 19 Statistical measures on tetrachordal space
2. 16/15-75/64-16/15 17 20 The concepts of the degree of intervallic inequality and of the perceptual
34 10/981/B0- 32/27 18 21 differences between tetrachords may be clarified by computing some of the
38. 32/27-81/80- 10/9 18 21

standard statistical measures on a set of representative tetrachords. The
4A.  25/24-27/25 - 32/27 20 23

4B, 32/27.27/25-25/24 20 123 arithmetic mean of the three intervals is 500/3 or 166.667 cents in equal

temperament or >Y(4/3) in just intonation. The mean deviation, standard

§A.  I6/15-15/14-7/6 17 20
5B, 16/15-7/6-15/14 19 22 deviation, and variance are calculated according to the usual formulae for
6a.  ©/8-64/63-7/6 19 22 entire populations with # = 3. These data are shown in §-34 for some rep-
68. 64/63-9/8-7/6 17 20 resentative tetrachords in just intonation and in 5-3 5 for a corresponding set
74 10/9-36735 - 7/6 18 e in equal temperament. While not distinguishi ions, these fun
o 716 - 36135 . . q mperament. e not distinguishing permutations, these func-
7R 10797 3513 ? tions differentiate between genera quite well, although the degree to which
7¢.  36/35-10/9 - 7/6 20 23 . . ) .
the mathematical differences correlate with the perceptual is not known.
DIATONIC The geometric mean, harmonic mean, and root mean square {or quad-
1a. 9/8.28/27.8/7 18 21 €8 mean, . T ) q q :
8. 8/7-9/8.18/27 16 19 ratic mean) may be calculated in a similar fashion. Like the other statistical
4. 10/9-21/20-8/7 18 21 measures above, these are non-linear functions of the relative sizes of the
2B. 21/20-10/9-8/7 19 22 intervals and they have considerable ability to discriminate between the
34 16/15-9/8-10/9 13 16 various genera. The relevant data are shown in 5-36 and 5-37.
38. 10/9-9/8.16/15 13 16 Several properties of these functions are apparent: for a given degree of
44 256/243-9/89/8 o2 intervallic asymmetry, the root mean square will show the greatest value,
5. I10/9-27/25-10/9 17 20

5-33. The most consonant genera according to Euler’s gradus suavitatis function. These
ratios are the most consonant permutations of the most consonant tunings of each of the gen-
era. In cases where the most consonant permutation according to Barlow's functions is differ-
ent from the one(s) according to Euler’s, both are given. The gradus suavitatis of a set of
ratios is the GS of their least common multiple after the set bas been transformed into a bar-
™MONic series.

67 CLASSIFICATION, CHARACTERIZATION, AND ANALYSIS OF TETRACHORDS




§-34. Mean deviations, standard deviations, and
varignces of the intervals of tetracbords in just into-
nation. The arithmetic mean bas the constant value
166.67 cents (500/3) for all genera. In just intona-
tion its value isthe cube root of 4/3. The standard
deviation and variance are computed with n=3.

§-35. Mean deviations, standard deviations, and
variances of the intervals of tempered tetrachords.

§-36. Geomterric mean, harmonic mean, and root
mean square of the intervals of tetrachords in just
intonation, For n = 3, the geometric mean is the cube
root of a-b-(500 —a —b); the barmonicmean is 3/
(1/1), where 1/i=1/3, 1/b, and 1/(500 —a—1); the
root mean square is N(E(12)/3), where i2 = a2, b2,
(so0-a—b)2.

5-37. Geometric mean, barmonic mean, and root
mean sguare of tempered tetrachords.

MEAN DEV. STANDARD DEV. VARIANCE
28/27.36/35 - 5/4 146.87 155.88 24299.31
28/27- 15/14 - 6/5 99.75 108.20 11725.73
25/24 - 16/15 - 6/5 99.75 107.12 11474.97
22/21-12/11-7/6 67.24 76.84 5904.95
16/15 - 9/8 - 10/9 36.19 39.38 1550.44
12/11 - 11/10 - 10/9 10.93 12.99 168.70
MEAN DEV. STANDARD DEV. VARIANCE
ENHARMONIC 155.56 164.99 27222.22
(50 + 50 + 400)
1:2 CHROMATIC 88.89 98.13 9629.62
(67 + 133 + 300)
INTENSE CHROMATIC 88.8¢ 94.28 8888.8¢
(100 + 100 + 300)
SOFT DIATONIC 55.56 62.36 3888.89
(100 + 150 + 250)
INTENSE DIATONIC 44.44 47.14 2222.22
(100 + 200 + 200)
EQUAL DIATONIC 0.0 0.0 0.0
GEOMETRIC ~ HARMONIC RMS
28/27. 36135+ 5/4 105.86 76.97 227.73
28/27 . 15/14 - 6/5 133.40 109.40 198.21
25/24 - 16/15 - 6/5 135.58 I14.21 197.58
22/21 - 12/11 - 7/6 147.90 131.57 182.94
16/15-9/8 - 10/9 160.77 155.15 170.62
12/11 . 11/10 10/9 165.51 165.01 166.52
GEOMETRIC ~ HARMONIC RMS
ENHARMONIC 100.0 70.59 234.52
(50+ 50 + 400)
I:2 CHROMATIC 138.79 116.38 193.41
(67 + 133 + 300)
INTENSE CHROMATIC 144.23 128.57 191.41
(100 + 100 + 300)
SOFT DIATONIC 155.36 145.16 177.95
(100 + 150 +250)
INTENSE DIATONIC 158.74 150.0 173.21
(100 + 200 + 200)
EQUAL DIATONIC 166.67 166.67 166.67
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§-38. The third interval function, seen frontally and
obliguely. The three intervals are parbypate to
hypate, lichanos to parhypate, and mese to lichanos.
They always sum 500 cents (3/2 injust intonation).

the geometric the next, and the harmonic the least, except for the arith-
metic mean, which is insensitive to this parameter.

The set of all possible tetrachords instead of just representative examples
or selected pairs may be studied by computing these standard statistical
measures over the whole of tetrachordal space. This space may be defined
by magnitudes of the first and second intervals (parhypate to hypate and
lichanos to parhypate) as the third interval (mese to lichanos) is completely
determined by the values of the first two.

This idea may be made clearer by plotting a simple linear function such
as the third tetrachordal interval itself versus the first and second intervals.
The third interval may be defined as 500 ~ x — y, where x is the lowest
interval and y the second lowest. The domain of this function is defined by
the inequalities 0 < x < 500 cents, 0 <y £ 500 cents, and x + ¥ < 500 cents.
5-38 depicts the “third interval function” from two angles. Its values range
from o to 500 cents.

The arithmetic, geometric, harmonic, and root mean square functions
are shown in 5-39 through 5-41. The arithmetic mean is a plane of constant
height at 166.667 cents for all values of the thre¢ intervals. The geometric
and harmonic means have dome and arch shapes respectively, while the
root mean square somewhat resembles the roof of a pagoda. The shapes of
these latter means may be clearer in the contour plots in the lower portions
of the figures.

One may conclude that the arithmetic mean obscures the apparent dis-
tance between genera, the geometric mean reveals it, the harmonic mean
maximizes it, and the root mean square exaggerates it. This conclusion is
illustrated in 5-43 where a cross-section through the plot is made where the
second interval has the value 166.667 cents and the first interval varies from

THIRD INTERVAL THIRD INTERVAL

FIRST INTERVAL

SECOND INTERVAL

SECOND INTERVAL PFIRST INTERVAL
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5-39. Arithmeticmean of the three tetrachordal
intervals. The arithmeticmean bas the constant
value of 166.67 cents. The domain of this function is
thexandy axes (0 <x< §00), (0 <y < 500), andthe
liney = 500 —x, where x andy are the first and
second intervals of the tetrachord. The third interval
may also approach zero,

ARITHMETIC MEAN

FIRST INTERVAL SECOND INTERVAL

5-40. Geometric mean of the three tetrachordal
fntervals,

GEOMETRIC MEAN

I l
/,4',"

"um,
mm”

FIRST INTERVAL

b

rMJ

.ul‘

Jin

SECOND INTERVAL

500

SECOND INTERVAL

FIRST INTERVAL

0t0 333.333 cents, The means are all equal when all three intervals of the
tetrachord are 166.667 cents.

The analogous representation is applied to the mean deviation, standard
deviation, and variance, which are shown in §5-44-46. The variance has
been divided by 100 so that it may be plotted on the same scale as the other
statistical functions.

These functions have a minimum value of zero when all three intervals
of the tetrachord are 166.667 cents each. This is seen most clearly in the
cross-section plot of 5-47.

Based on its properties with respect to the four means and three sta-
tistical measures, the equally tempered division of the fourth appears to be
a most interesting genus. It is the point where the three means are equal and
where the statistical functions have their minima.

5-42. Root mean square of the three terra-
chordal intervalks.

5-41. Harmonic mean of the three tetrachordal
intervals.

HARMONIC MEAN ROOT MEAN SQUARE

FIRST INTERVAL SECOND INTERVAL FIRST INTERVAL SECOND INTERVAL
500 500

E &

: :

z 2

g 3

o 8

o 500 o 500

FIRST INTERVAL

FIRST INTERVAL
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5~43. Cross-sections of the various means of the
three tetrrachordal intervals when the second

interval equals 166.67 cents.
300 -
RMS
ARITHMETIC
] GEOMETRIC
HARMONIC
400

FIRST INTERVAL

§-44. Mean deviation of the three tetrachordal

intervals.

MEAN DEVIATION

FIRST INTERVAL

2

o 500
FIRST INTERVAL

SECOND INTERVAL

500

SECOND INTERVAL

§~477. Cross-section of the mean deviation, standard
deviation, and variance of the three tetrachordal
intervals when the second interval equals 166.67

cents.
200 VARIANCE/I00
STAND. DEV.
J MEAN DEV.
(o] 300

FIRST INTERVAL

5-45. Standard deviations of the three retra- §-46. Variance of the three tetrachordal

chordal intervals. intervals.,
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5-48. Interval sets of the abstract tetrachord, 0 a
a+b soo. Injust intonation the abstract tetrachord
maybewritten 1/1 3 a-b g/3 010 a a+b 498 cents,
and the intervals adjusted accordingly.

SUCCESSIVE INTERVALS

a a+h 500
b s00~4-b
POLANSKY SET
a a+h 500
a+h 500
b 500 -4
500—a~b

DIFFERENCE SET

a a+h 500

b 500—a~b
b~a 500—a~2b
500 — 3k

Polansky’s morphological metrics

A more sophisticated approach with potentially greater power to dis-
criminate between musical structures has been taken by Larry Polansky
(1987b). While designed to handle larger and more abstract sets of ele-
ments than tetrachords, i.e., the type of scale and scale-like aggregates
discussed in chapters 6 and 7, and even sets of timbral, temporal, or
rhythmic information, Polansky’s morphological metrics may be applied to
smaller formations as well.

Morphological metrics are distance functions computed on the notes or
intervals between the notes of an ordered musical structure. A morpho-
logical metric is termed linear or combinatorial according to the number
of elements or intervals used in the computations: the more intervals or
elements used in the computation, the more combinatorial the metric. In
other words, combinatorial metrics tend to take into account more of the
relationships between component parts. A strictly linear interval set as well
as two of the possible combinatorial interval sets derived from an abstract,
generalized tetrachord are shown in 5-48. For a strictly linear interval set
of a morphology (or scale) of length L, there are L — 1 intervals. The maxi-
mum combinatorial length for a morphology of length L is the binomial
coefficient (L2—L)/ 2, notated as L,,. ‘

The simplest of Polansky’s metrics is the ordered linear absolute mag-
nitude (OLAM) metric which is the average of the absolute value of dif-
ferences between corresponding members of two tetrachords. In the case
of two tetrachords spanning perfect fourths of 500 cents, this function re-
duces to the sum of the absolute values of the differences between the two
parhypatai and the two lichanoi divided by four. Given two tetrachords 4;
+b1+500~a;—by and a3 +b2+ 500—42-b), the equation is:

L

pX | er;_ey I /1L,

in2
where L = 4 and e;= (0, 41, 41 + b1, 500) cents and (o, 42, 42 + b2, 500) cents.
When not divided by L, this metric is identical to the Minkowski or “city
block” metric previously discussed. Note that the OLAM metric does not
take intervals into account, so it looks at L rather than L — 1 values.

A simpler formula, ( |a2_a1 | and |4+ 5, - a1 —b;| )/ 2, would be de-
fensible in this context as zero and 500 cents are constant for all tetrachords
of this type. If the tetrachords are built above different tonics or their
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fourths spanned different magnitudes, i.e., 500 and 498 or 583, etc., the
first equation must be used.

The next simplest applicable metric is the ordered linear intervallic
magnitude (OLIM) metric which is the average of the absolute values of the
difference between the three intervals which define the tetrachords. In the
case of the two tetrachords above, the intervals are 21,5;, §00—4; ~b;and a3,
by, 500-a3~k; The equation for this metric functon is:

L
5-49. Ordered linear absolute magnitude (upper) I .E( | e1,—e5;_; |- lea~ez;_; N /(L-1), L—1 =3,
and ordered linear intervallic magnitude (lower) i=2
metrics on tetrachords in just intonation.

where i ranges from 2 through L, since intervals are being computed.

In 5-40, these two simple metrics are applied to a group of representative
tetrachords in just intonation. The melodically similar tempered cases are
§-50. Ordered linear absolute magnitude (upper) shown in §-50. Permutations of genera are analyzed in 5-5x and 5-52. The
and ordered linear intervallic magnitude (lower) OLAM metric distinguishes between these genera quite well; the OLIM

metrics on tempered genera. less so, but patterns are suggested which data on a larger set of tetrachords

28/27-15/14-6/5  25/24-16/15-6/5  22/21-12/11.7/6 16/15-9/8.10/9  12/11-11/10-10/9

28/27 . 36/35 - 5/4 17.67 19.60 34.2§ 63.17 72.90

47.11 47.11 79.63 135.94 135.04

28/27 - 15/14 - 6/5 1.93 16.59 45.50 55.23
5.14 32.51 88.83 88.83

25/24 - 16/15 - 6/5 14.66 43.57 53.30
32.51 88.83 88.83

22/21 - 12/11 - 7/6 28.092 38.64
56,31 56.31

16/15-9/8 - 10/9 973

25.94

1:2 CHROMATIC INTENSE CHROMATIC SOFT DIATONIC INTENSE DIATONIC ~ EQUAL DIATONIC

ENHARMONIC 20.17 37.50 50.0 62.50 87.50

(50 + 50 + 400) 66.67 66.67 100.0 133.33 155.56

1:2 CHROMATIC 8.33 20.83 33.33 58.33

(67 + 133 + 300) 22.22 3333 66.67 88.89
INTENSE CHROMATIC 8.333 25.0 50.0

(100 + 100 + 300) 33.33 66.67 88.80

SOFT DIATONIC 12.50 37.50

(100 + 150+ 250) 33.33 55.56
INTENSE DIATONIC 25.0

(xo0 + 200 + 200) 44.44
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§-51. Ordered linear absolute magnitude (upper) and ordered linear intervallic magnitude
(fower) metrics on Avchytas’s enbarmonic genus.

§/4-28/27-36/35  5/4-36/35-28/27

2827 5/4-36/35 3635 5/4-28/27  36/35-28/27-5/4
28/27 36735 5/4 84.39 84.39 3.55 165.22 161.68
225.03 225.03 9.46 225.03 215,57
28/27 < 5/4 - 36/35 7.10 87.93 80.83 84.38
9.46 225.03 215.57 225.03
36/35 - §/4 - 28/27 80.83 87.93 84.39
215.57 225.03 225.03
36/35-28/27 . 5/4 225.03 165.22
225.03 225.03
5/4.28/27 . 36/35 3.55
9.46

§5-52. Ordered linear absobute magnitude (upper) and ordered linear intervallic magnitude

(fower) metrics on permuted tempered tetrachords.

ENHARMONIC 50 + 400 + 50 400 + 50+ 50
50 + 50 + 400 87.50 175.0
2333 233.3
50+ 400 + §0 87.50
233.3
INTENSE CHROMATIC | 10O + 300 + I00 300 + 100 + 100
100 + I00 + 300 50.0 100.0
1333 133.3
100 + 300 + 100 50.0
133.3
INTENSE DIATONIC | 200 + IO0 + 200 200 + 200 + 100
100 + 200 + 200 25.0 50.0
66.67 66.67
200 + 100 + 200 25.0
66.67
SOFT DIATONIC I00 + 250 + I50 I50 + 100 + 250 I50+ 250 + I00 250 + 100 + 150 250 + I§0 + 100
100 + 150 + 250 25.0 12.50 50.0 62.50 75.0
66.67 33-33 100.0 100.0 100.0
100 + 250 + 150 37.50 25.0 37.50 50.0
100.0 33.33 100.0 100.0
150 + 100 + 250 37.50 50.0 62.50
100.0 66.67 100.0
150 +250+ 100 37.50 25.0
100.0 66.67
250 + 100 + I50 12.50
33-33
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5-53. Ordered combinatorial intervallic magnitude
metric on the Polansky (upper) and difference (Jower)
interval sets from tetrachords in just intonation.

28/27 - 15/14 - 6/5

may reveal. In particular, the OLIM metric fails to distinguish between
permutations of tempered tetrachords,

In theory, morphological metrics on combinatorial interval sets have
greater discriminatory power than metrics on linear sets. Two sets of
combinatorial intervals were derived from the simple successive intervals
of 5-48. The first set, the Polansky set, is that described by Polansky
(1987b). The second set, the difference set, was constructed from iterated
differences of differences (Polansky, personal correspondence).

The ordered combinatorial intervallic magnitude (OCIM) metric is the
average of the absolute value of the differences between corresponding

elements of the musical structure. Its definition is:
L1 L

z =z 1A €110~ Aeis €24 ) [/ L,
jul f=

where L,; = the number of intervals in the set (the binomial coefficient,
described above). To apply it to other combinatorial interval sets, it must
be appropriately modified to something like:

L
E =) |/ Loy
jm2

where I; are the elements of a set like the difference set of 5-48.

As can be seen in §-53 and §-54, the OCIM metric calculated on the two
sets of intervals from these tetrachords discriminates between genera very
well. Both sets of intervals are roughly equivalent with this metric.

Permutations are studied in 5-55 and §-56. On neither interval set does
the OCIM metric distinguish permutations completely.

15/24 - 16/15 . 6/5  22/21.12/11.9/6 16/15-9/8-10/9  12/11:11/1010/9

28/27 -
28/27 -
25/24 -
22/21 -

16/15 -

36/35 - 5/4
15/14 - 6/5
16/15 - 6/5
12/11 - 7/6

9/8 - 10/9

35.34
94.23

16.62
86.52

3.86
10.28

62.65 1710.08 116.57
141.68 223.11 184.20
27.31 74.75 81.23
47.45 128.88 104.01
26.03 15.36 79-94
55.16 136.59 106.58
4743 53.92

B1.43 61.10

19.45

51.87
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§-54. Ordered combinatorial intervallic magnitude metric on the Polansky (upper) and
difference (lower) interval sets frome tempered tetrachords.

1:2 CHROMATIC INTENSE CHROMATIC  SOFT DIATONIC INTENSE DIATONIC  EQUAL DIATONIC

ENHARMONIC 52.78 58.33 83.33 108.33 136.11
(50 + 50 + 400) 116.67 83.33 150.0 216.67 104.44
1:2 CHROMATIC 16.67 30.56 55.56 83.33
(67 + 133 + 300) 44.44 38.80 100.0 100.0

INTENSE CHROMATIC 25.0 50.0 77.78
(100 + 100 + 300) 66.67 136.33 ITIII
SOFT DIATONIC 25.0 52.78
(100 + 150 + 250) 66.67 6I.11
INTENSE DIATONIC 38.30
(100 + 200 + 200) 55.56

5-55. Ordered combinatorial intervallic magnitude metric on Polansky (upper) and
difference (lower) interval sets on permutations of Avehytas’s enbarmonic genus.

28/27 . 5/4.36/35  36/35.5/4-28/27  36/35.28/27-5/4  s5/4-28/27.36/35  5/4.36/35-28/27
28/27 . 36735 - 5/4 168.77 168.77 7.10 222.66 215.57
450.06 450.06 18.92 229.76 216.57
28/27 - 5/4 - 36/35 9.46 17114 161.68 168.77
946 43587 431.14 450.06
36735 5/4 - 28/27 161.68 171.14 168.77
43114 43587 450.06
36/35 - 28/27 . 5/4 225.03 222.66
225.03 220.76
§/4+28/27.36/35 7.10
18.92
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5-56. Ordered combinatorial intervallic magnitude metric on the Polansky (upper) and
difference (lower) interval sets from permuted tempered tetrachords.

ENHARMONIC 50 + 400 + §0 400 + §0 + §0
50+ 50 + 400 175.0 233.33
466.67 233.33
50 + 400 + §0 175.0
466.67
INTENSE CHROMATIC | 100 + 300 + 100 300 + 100 + 100
100 + 100 + 300 100.0 133.33
266.67 133.33
00 + 300 + 100 100.0
266.67
INTENSE DIATONIC 200 + 100 + 200 200 + 200 + 100
100 + 200 + 200 §0.0 66.67
133.33 66.67
200 + 100 + 200 50.0
133.33
SOFT DIATONIC 100+ 250 + 150 150 + 100 + 2§0 150 + 250 + 100 250+ 100 + 150 250+ 150 + 100
100 + 150 + 250 50.0 25.0 83.33 91.67 100.0
133.33 66.67 150.0 116,67 100.0
100 + 250 + 150 75.0 33.33 75.0 83.33
200.0 33.33 200.0 150.0
150 + 100 + 250 75.0 66.67 01.67
200.0 66.67 116.67
150 + 250 + I00 75.0 50.0
200.0 133.33
250 + 100 + 1§0 25.0
66.67
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Unordered counterparts of the ordered metrics are also defined. Al-
though the unordered linear absolute or intervallic magnitude metrics are
of little use in this context, the unordered combinatorial intervallic mag-
nitude (UCIM) metric is rather interesting when computed on these two
interval sets.

For the Polansky interval set, the metric is:

I-1 L4 L1114
|Z %A (es;e1,)/ Lim-Z TA(e2i, €24)/ Ly |, L= 6.
jul ini =1 iml

This function is the absolute value of the difference between the aver-
ages of the corresponding intervals. For the difference set, the formula

becomes:
L L
| £ (1)/ L= (1) / Lm |, L=6,
in2 =2

where the I; are the elements of the set.

5-57 and §-58 show the data for the same group of tetrachords as before.
Genera are fairly well discriminated by this metric, especially when cal-
culated on the Polansky interval set, but not as well with the difference set
intervals. Neither are particularly successful for distinguishing per-
mutations with this metric (5-59 and 5-60).

5§~57. Unordered combinatorial intervallic magnitude metric on the Polansky (upper) and
difference (lower) interval sets from tetrachords in just intonation.

28/27 - 15/14-6/5  25/24-1

8/15.6/5 22/21.12/11-7/6 16/15.9/8.10/9  12/11-11/10- 10/9

28/27+36/35 - 5/4
28/27 . 15/14 - 6/5
25/24 - 16/15 - 6/5
22/21 - 12/11 - 7/6

16/15-9/8 - 10/

11.78 10.49
47.11 4454
1.29
2.57

16.98 25.86 19.37
73.77 119.68 106.71
5.20 14.08 7.59
26.65 72.57 59.60
6.48 15.36 8.88
29.23 7514 62.17
8.88 2.39

45-91 32.94

6.48

12.97
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5-58. Unordered combinatorial intervallic magnitude metric on the Polansky (upper) and
difference (lower) interval sets from tempered tetracherds.

1:2 CHROMATIC INTENSE CHROMATIC SOFT DIATONIC INTENSE DIATONIC ~ EQUAL DIATONIC

ENHARMONIC 13.88¢ 8.333 16.67 25.0 19.44
50+ §0 + 400 61.11 50.0 83.33 116.67 116.67
I:2 CHROMATIC 5.556 2.778 II.11 5.556
67+ 133 + 300 1111 22.22 55.56 55.56
INTENSE CHROMATIC 8.333 16.67 II.II
100 + 100 + 300 33.33 66.67 66.67
SOFT DIATONIC 8.333 2.778
I0C + 1§50+ 250 33-33 33:33
INTENSE DIATONIC 5.556
100 + 200 + 200 0.0

5-59. Unordered combinatorial intervallic magnitude metric on Polansky (upper) and
difference (lower) interval sets on permutations of Archytas’s enharmonic genus.

28/27-5/4-3635  36/35.5/4-28/27  36/35-28/27-5/4 5/4.28/27.36/35 5/4-36/35-28/27

28/27.36/35 - 5/4
28/27.5/4 - 36/35
36/35 - 5/4 - 28/27
36/35-28/27 5/4

574+ 28/27 - 36/35

56.26 56.26

225.03 220.30
0.0

4.73

79

2.36 2.36 0.0
473 117.24 107.78
53.89 53.89 56.26
220.30 107.78 117.24
53.89 53.89 56.26
215.57 103.05 112.51
0.0 222,66
112.51 103.0§
2.36
9.46
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§-60. Unordered combinatorial intervallic magnitude merric on vhe Polansky (upper)
and difference (Jower) interval sets from permuted vempered tetrachords.

ENHARMONIC 5O + 400 + 50 400 + 50 + §0
50+ 50 + 400 58.33 0.0
233.33 116.67
50 + 400 + 50 §8.33
116.67
INTENSE CHROMATIC | IOO + 300 + 100 300 + I00 + 100
I00 + I00 + 300 33.33 0.0
133.33 66.67
100 + 300 + 100 33.33
66.67
INTENSE DIATONIC 200 + 100 + 200 200 + 200 + 100
100 + 200 + 200 16.67 0.0
33-33 33-33
200 + 100 + 200 16.67
66.67
SOFT DIATONIC I00 + 250 + 150 I50 +100 + 250 150+ 250 + 100 250+ 100 + I50 250 + 1§50 + 100
100+ I50 + 250 16.67 8.333 16.67 8.333 0.0
66.67 16.67 83.33 16.67 50.0
I00 + 250 + 150 25.0 0.0 25.0 16.67
83.33 16.67 50.0 16.67
150 + 100 + 250 25.0 0.0 8.333
100.0 33.33 66.67
150+ 250+ I0O 25.0 16.67
66.67 33.33
250+ 100 + 150 8.333
33:33
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In addition to absolute and intervallic metrics, directional metrics are
also defined. Directional metrics measure only the contours of musical
structures, i.e., whether the differences between successive elements are
positive, negative or zero. Although these metrics are perhaps the most
interesting of all, they are generally inapplicable to tetrachords because
tetrachords are sets of four monotonically increasing pitches whose dif-

5~61. Ordered (upper) and unordered (lower) ferences are always positive (or negative if the tetrachord is presented in
f;;bmm”ﬂ}mm”l d";“:"‘mf"m o descending order). Directional metrics, however, are very applicable to

ifference sets from tetrachords n just intonation. .
7 melodies constructed from the notes of tetrachords or from tetrachordally

derived scales such as those of chapter 6.

The intervals of the tetrachordal difference set, however, are not
necessarily monotonic and therefore combinatorial directional metrics
may be computed on these intervals. Two such metrics were calculated

5~62. Ordered (upper) and unordered (lower)
combinatorial interval direction metrics on
difference sets from tempered genera. for the same set of tetrachords and permutations used above, the ordered

28727 15/14:6/5  25/24.16/15-6/5  22/2112/11.7/6 16/15-9/8.10/9 12/11 - 11/10 - 10O/9
28/27-36/35 - 5/4 1667 1667 1667 .5000 .1667
-3333 -3333 +3333 -3333 3333
28/27 - 15/14 - 6/5 0.0 0.0 .3333 0.0
0.0 0.0 .6667 0.0
2§/24 - 16/15 . 6/5 0.0 3333 0.0
0.0 6667 0.0
22/21 - 12/11 . 7/6 -3333 0.0
667 0.0
16/15 - 9/8 - 10/9 .5000
-3333
1:2 CHROMATIC INTENSE CHROMATIC  SOFT DIATONIC INTENSE DIATONIC ~ EQUAL DIATONIC
ENHARMONIC 1667 0.0 .1667 5000 3313
(50 + 50 + 400) 3333 0.0 3333 -3333 6667
I:2 CHROMATIC 1667 0.0 3333 .5000
(67 + 133 + 300) 3333 0.0 6667 1.00
INTENSE CHROMATIC I667 5000 3333
(100 + 100 + 300) 3333 3313 6667
SOFT DIATONIC 3333 .5000
(100 + 150 + 250) 6667 1.00
INTENSE DIATONIC .3333
(100 + 200 + 200) 3333
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combinatorial intervallic directional (OCID) metric and its unordered
counterpart, the unordered combinatorial intervallic directional (UCID)
metric. The OCID metric is the average of the differences of the signs
of corresponding intervals. The sign (sgn) of an interval is -1, o, or +1
according to whether the interval is decreasing, constant or increasing.
The difference (diff) is 1 when the signs are dissimilar, otherwise the
difference is zero. The definition of the OCID metric on the difference

set is:
L
X diff(sgn (11, 5g0(13))/ L Ln=6.

The UCID metric is the average of the absolute values of the numbers of
intervals with each sign. The definition of UCID on the difference set is:

L

T | #er— e l)/L,,,,L,,,= 6,

2
where #e,” = the number of intervals in the matrix such thatv = sgn (I,;); i.e,,
v=[-1,0, 1]

The data from these computations are shown in §-61 and §-62. Similar
results were obtained with tetrachordal permutations (5-63 and 5-64).

§5-63. Ordered (upper) and unordered (lower) combinatorial interval direction metrics on
difference sets from permutations of Archytas’s enbarmonic genus.

28/27 . 5/4+ 36/35

36/35+5/4-28/27  36/35-2827-5/4  §/4-28/27-36/35  §/4-36/35 28027

28/27 - 36/35 - 5/4
28/27 - 5/4 - 36735
36/35 - 5/4+ 18/27
36/35 - 28/27 - 5/4

§/4+28/27 - 36/35

5000
-3333

.5000 1667 1667 0.0
-3333 -3333 -3333 0.0
0.0 +3333 -3333 :§000
0.0 .6667 0.0 3333
-3333 +3333 .§000
6667 c.0 3333
3333 1667
6667 13333
1667
°3333
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§-64. Ordered (upper) and unordered (lower) combinatorial interval direction metrics on
difference sets from permuted tempered tetrachords,

ENHARMONIC

50 + 400 + 50

400 + §0 + 50

§0 + 5O + 400

5§50+ 400 + 50

INTENSE CHROMATIC

.5000
6667

100 + 300 + 100

-3333
-3333

.5000
3333

300 + 100 + 100

100 + 100 + 300

100 + 300 + 100

INTENSE DIATONIC

.5000
.6667

200+ 100+ 200

*3333
-3333

.5000
-3333

200 + 200 + 100

100 + 200+ 200

200 + 100+ 200

SOFT DIATONIC

.5000
3333

100 + 250 + 150

3333
-3333

.5000
6667

I50 + 100 + 250

150 + 250 + 100

250 + 100 + 150 250 + I50 + 100

100+ 150+ 250

100 + 250 + 150

I50 + 100 + 250

I50+250+ 100

250 + 100 + 150

-3333
6667

1667 3333
3333 6667

.5000 0.0

3333 0.0
.§000
-3333
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1667 13333
.3333 6667
-5000 -3333
-3333 0.0
0.0 1667
0.0 3333
-5000 -3333
-3333 0.0
1667
*3333
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Rothenberg propriety

David Rothenberg has developed criteria derived from the application of
concepts from artificial intelligence to the perception of pitch (Rothenberg
1969, 1975, 1978; Chalmers 1975, 1986b). In Rothenberg’s own words
(personal communication): “These concepts relate the intervallic structure
of scales to the perceptibility of various musical relations in music using
these scales. Only the relative sizes of the intervals between scale tones, not
the precise sizes of these intervals are pertinent.” These concepts are ap-
plicable to scales of any cardinality whether or not the intervals repeat at
some interval of equivalence. In practice, most scales repeat at the octave,
though cycles of tetrachords and pentachords are found in Greek Orthodox
liturgical music (Xenakis 1971; Savas 1965).

To apply Rothenberg’s concepts, the first step is to construct a difference
matrix from the successive intervals of an n-tone scale. The columns of the
matrix are the intervals measured from each note to every other one of the
scale. The rows p of the matrix are the sets of adjacent intervals measured
from successive tones, These intervals are defined conventionally: the row
of seconds (¢;) comprises the differences between adjacent notes; the row
of thirds () consists of the differences between every other note; etc., up
to the interval of equivalence (). Row ty contains the original scale.

A number of functions may be calculated on this matrix. The most basic
of these is propriety. A scale is strictly proper if for all rows every interval in
YOW 1,1 is less than every interval in row ¢, If the largest interval in any row
tn-1 is at most equal to the smallest interval in row t,, the scale is termed
proper. These equal intervals are considered ambiguous as their perception
depends upon their context. A familiar example is the tritone (F-B in the
C major mode in 12-tone equal temperament), which may be perceived as
either a fourth or a fifth.

Scales with overlapping interval classes, i.e., those with intervals in rows
ta-1 larger than those in rows,, are improper. These contradictory intervals
tend to confound one’s perception of the scale as a musical entity, and im-
proper scales tend to be perceived as collections of principal and orna-
mental tones. Improper scales may contain ambiguous intervals as well.

5-65 illustrates these concepts with certain tetrachordal heptatonic
scales in the 12- and 24-tone equal temperaments. The first example is the
intense diatonic of Aristoxenos. The scale is proper and the tritone is am-
biguous. The second scale is Aristoxenos’s soft diatonic which is also
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5-65. Rothenberg difference matrices. The row
index is t 5. Max (tn) is the largest entry in row tn,
Min () is the smallest enry invow t,,. The intense
diatomic tetrachord is 1 +2 +2 degreesor 6+ 12+ 12
parts. The soft digtonicderivesfrom 2 +3+50r6+9
+ 1§ parts. The neutral diatonicis 3 +4 +3 degrees, a
permutation of 9 +9 + I 2 parts. The intense
chromatic is 1 +1 +3 degrees. The enbarmonic
tetrachord is 1 + 1 + 8 degrees. Intervals in
parentheses are ambiguous; those in square brackets
are contradictory.

INTENSE DIATONIC IN I2—~TONE ET: PROPER
tp o 2 4 6 7 9 11 12/0

proper, but replete with ambiguous intervals. A composer using this scale
might prefer to fix the tonic with drone or restrict modulation so as to avoid
exposing the ambiguous intervals. The next scale is patterned after certain
common Islamic scales employing modally neutral intervals. It is strictly
proper, a feature it shares with the more familiar five-note black key scale
in 12-tone equal temperament.

The final two examples, Aristoxenos’s intense chromatic and his en-
harmonic, are improper. The majority of the intervals of these scales are
either ambiguous or contradictory. These scales are most likely to be heard
and used as pentatonic sets with alternate tones or inflections.

Because the major (o 400 700 cents, 4:5:6 in just intonation), minor (o
300 700 cents, 10:12:15), subminor (o 250 700 cents, 6:7:9), and supra-
major (0 450 700 cents, 14:18:21) triads are strictly proper, they can serve

INTENSE CHROMATIC IN 12-TONE ET; IMPROPER
tp o 1 2 5 7 8 9 12/0

1] I 2 2 2 I 2 2 Max(tz=mIN(4)=6 1) 1 1 [3] (2] 1t 1 [3] max(@y)>mIN ()
23 4 4 3 3 4 3 t2 [2] 4 [s]1 3 [2] 4 4 wmax@>miN(3y)
t3 s & s s 5 5 5 tz 5 (6 (6 4 5 5 5
t+ 7 7 7 7 © 7 7 tg 7 7 7 7 (6) (6 [8]
ty;, 8 o9 9 8 8 9 9 ts 8 8 10 8 [7] 9 10
tg 10 II 10 10 10 II IO tg 9 II II 9 I0 1II II

ty I2 12 12 12 12 I2 12

SOFT DIATONIC IN 24-~TONE ET: PROPER
to o 2 § 10 14 16 19 24/0

t7 I2 12 I2 I2 I2 Iz 1I2

ENHARMONIC IN 24-TONE ET: IMPROPER
to o I 2 10 14 15 I6 24/0

o2 3 () 4 2 3 (5) Max(t)=MIN () t; 1 1 Bl 4 1 1 [B] MAX () >MIN (D)
tz (5 8 (@ 6 (5) 8 (5) Max(tp)=mN(t3) tz 2] 9 [rz2]ls [2] 9 9 max@2)>mMN(3)
t3 10 (12)11 (9) 10 10 10 MAX (t3)=MIN (t4) t3 10 [13)[13][6] 10 10 TO MAX (£3) > MIN (t4)
ty 14 14 14 14 (12) 13 (I5) MAX (t4) = MIN (t5) t¢ 14 14 14 14 [11][11] [18]

tg 16 17 (19) 16 (15) 18 (19) ETC.
tg (19) 22 21 (19) 20 22 21
t7 24 24 24 24 24 24 24

NEUTRAL DIATONIC IN 24-TONE ET: STRICTLY PROPER

to 0 3 7 10 14 17 21 24/0
1 3 4 3 4 3 4 3
2 7 7 7 7 7 7 6
t3 10 II 10 II IO IO IO
t4 14 14 14 14 13 14 I3
Ly 17 18 17 17 17 17 1%
ts§ 21 21 20 21 20 21 120
t7 24 14 24 14 14 24 24

MAX (tp-1) < MIN (2p)

ts 15 15 22 15 [rz]19 22
t¢ 16 23 23 16 20 23 23
t7 24 24 24 24 24 24 24
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5-66. Propriety limits of tetrachords. The
differences are in cents and an underlying zero
modulo 12 equal temperament is assumed. The
results for fist intonation are virtually identical
except that the fourth of 498.045 cents and a whole
tone 0f 203,91 cents replace the 500- and 200-~cent

intervals in the computations.

ROWS DIFFERENCE MATRIX

1y a b 500—a-k
17} a+b 500-4 s00-h

1 500 500 500

CONSTRAINTS: 0 <4 < 250; 0< b < 250; 250 < 4
+b <500,
VERTICES! O, 250; 250, 0; 250, 250.

§-67. Propriety limits for isolated tetrachords and
conjunct chains of tetrachords.

300

300

as sets of principal tones for improper scales. The various sets of principal
tones would be used as the main carriers of melodies, while the auxiliary
tones would be used as ornaments. This topic deserves more extended
discussion than is appropriate here and Rothenberg’s original papers
should be consulted (Rothenberg 1969, 1975, 1978).

The fact that the minor and septimal minor triads are strictly proper may
explain certain musically significant cadential formulae in the Dorian
modes of the enharmonic and chromatic genera. These consist of a
downward leap from the octave to the lowered submediant (trite), then
down to the subdominant (mese) before ending up on the dominant (par-
amese). This formula may be repeated a fifth lower, beginning with a leap
from the subdominant (mese) to the lowered supertonic (parhypate) and
then down to the subtonic (hyperhypate) before ending on hypate (chapters
6 and 7). Minor triads are outlined in the chromatic genus and septimal
minor triads in the enharmonic. The latter chords contain the important
interval of five dieses called eklysis by the Greek theorists, and in fact, the
jump from parhypate to hyperhypate is seen in the Orestes fragment
(Winnington-Ingram 1936). The upper submediants (lichanos and par-
anete) may be substituted in both genera; the major triad appearing in the
chromatic genus is also strictly proper.

As has been seen above, the propriety criterion separates those scales
derived from chromatic and enharmonic tetrachords from those generated
by diatonic genera, As will be seen later, the situation is somewhat more
complex; under certain conditions, some diatonic tetrachords yield only
improper scales, while some chromatic genera can combine with diatonic
tetrachords to generate proper mixed heptatonic scales.

Propriety may be computed for abstract classes of scales or subscalar
modules rather than for specific instances by replacing one or more of the
intervals by variables. If the three subintervals of the tetrachord are written
35 4, b, and 500 -4~ b (4, b, and 4b/34 in just intonation), one can calculate
the Rothenberg difference matrix and determine the propriety limits for
isolated tetrachords or conjunct chains where the interval of equivalence is
the fourth. Such chains were present in the earlier stages of classical Greek
music and are still extant in contemporary Greek Orthodox liturgical music
(chapter 6 and Xenakis 1971).

The computation is performed by solving the inequalities formed by
setting each of the elements of rows #, less than each of those in rows tyel
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In practice, the work may be minimized because only the elements in the
first (# + 1) / 2 rows of an n-tone scale need be considered. One may also

5-68. Propriety limits of pentachords. ignore relations that are tautological when all the intervals are positive.
The result is a set of constraints on the sizes of intervals # and 4, shown
ROWS DIFFERENCE MATRIX in §-66. Tetrachords and conjunct chains of tetrachords spanning perfect
&t a4 b 500-a-b 200 fourths, are strictly proper when intervals # and 4 satisfy these constraints.
t2  4+b 500-4 700-4-b 200+4 The tetrachords and chains are proper when their intervals equal the ex-
t3 500 700-4 700-b 200+4+4 trema of the constraints. For values outside these limits, the tetrachords and

t4 700 700 700 700 . . .
conjunct chains are improper.
GONSTRAINTS: 0< 8 < 250;0<b<250;250<4

+b< 500,22 +b <700, 4+ 2b < 700; -2 < Because the three intervals 4, b, and 500 ~ 4 — b add to a constant value,

200; 300 < 2a +b. there are only two degrees of freedom. Therefore, the domain over which
VERTICES: 250, 0; 50, 200 33.3, 233.3; 100, tetrachords are proper may be displayed graphically in two dimensions.
300; 233.3, 233.3; 250, 200. The region in the 2 - b plane within which tetrachords are strictly proper is

shown in 5-67. The vertices define an area in the # -  plane within which the

constraints are satisfied. Points on the edges of the triangular region cor-

§-69. Propriety limits for isolated pentachords and respond to proper tetrachords. The two points on the axes are also proper
conjunct chains of pentachords. as trichords, which are degenerate tetrachords with only three notes.

Similarly, the propriety limits for pentachords consisting of a tetrachord

and an annexed disjunctive tone (200 cents or 9/8) may be determined. The

300 difference matrix is shown in 5-68. As all circular permutations of a scale

have the same value for propriety, it is immaterial whether the disjunctive

tone is added at the top or bottom of the tetrachord. The region satisfying

the propriety constraints for isolated pentachords and pentachordal chains

is shown in §-68.
300 Similar calculations may be carried out for complete heptatonic scales

consisting of two identical tetrachords and a disjunctive tone. This tone

§-70. Propriety limits for heptatonic scales with identical tetrachords. §-71. Propriety limsits for heptatonic scales
with identical tetrachords.
300 |.
a b s00-a-bF 200 a b 500-4~b
a+b  so0-a4 700-a-b 200+a a+h 500—2  500-b i
§oo  700-4  700-b 200+4+b 500 500 500
700 700 700 700 500+4 §00+h 1000 —a-b -

CONSTRAINTS: I00<4<250;100<b<250;250<a+b< 400,

VERTICES; 100,15§0; 100, 250; 150,100; 150,250; 250,150;2§0,100. 300

87 CLASSIFICATION, CHARACTERIZATION, AND ANALYSIS OF TETRACHORDS



A X 4
INONCT 7~ N ‘.ll“lﬂ!ﬂk
lﬂiﬁhﬁlllllls

5-72. Propriety limits for tetrachords and tetra-
chordal chains. These limits are for chains of confunct
tetrachords such as are found in Greek Orthodox li-
turgical music (Xenakis 1971).

5-73. Propriety limits for pentachords and pen-
tachordal chains,

may be placed between the tetrachords or at either end to complete the
octave (chapter 6). The results of the calculations are given in §-70. The
region of propriety is shown in 5-71.

Complete tetrachordal space

An alternative mode of graphic representation may be clearer. Physical
chemists have long been accustomned to plotting phase diagrams for three
component mixtures on equilateral triangle graphs. The three altitudes are
interpreted as the fractions of each component in the whole mixture, There
are only two degrees of freedom as the sum of the composition fractions
must equal unity. The data from 5-66, 5-68, and 5-70 have been replotted
in 5-72-73.

§-72 shows the range over which the intervals 4, b, and 500 — 2 - b may
vary and still result in proper tetrachords. Pentachords are shown in §-73
and heptatonic scales in §-74.

The advantage of the triangular graph over the conventional rectangular
type is most evident with the heptatonic scales of §-74. All points in the
interior of the semi-regular hexagonal region correspond to strictly proper
scales, while the edges are sets of intervals that define scales that are merely

c=a-§
500
b a
o o
a ¢ b
500 o 500

§-74. Proper beptatonicscales.
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c=ma-b
500

500 o 500

5-75. Non-diatonic genera.

c=a-b
500

500 o 500

5-76. Complete tetrachordal space.

proper. The three triangular spaces lying between the long sides of the
hexagon and the edge of the space contain diatonic genera which yield
improper heptatonic scales. In certain cases to be discussed later, some of
these tetrachords may be combined with other genera to produce proper
mixed scales,

The six vertices of the central hexagon in §-74 are the six permutations
of the soft diatonic genus of Aristoxenos, 100 + 150 + 250 cents. The center
of overall symmetry is the equal diatonic genus, 166.667 + 166.667 +
166.667 cents. The intersection of the altitudes of the triangle and the
midpoints of the long sides of the hexagon are the three permutations of the
intense diatonic, 100 + 200 + 200 cents, while the intersections with the
midpoints of the short sides define the arrangements of the neo-
Aristoxenian genus, 125 + 12§ + 250 cents. This genus lies on the border of
the chromatic and diatonic genera, but sounds chromatic because of the
equal division of the pyknon.

The non-diatonic or pyknotic genera are portrayed in §-75. The empty
border around the filled regions delimits the commatic (25 cents) and
subcommatic intervals. The small triangular regions in dark color near the
vertices are the hyperenharmonic genera whose smallest intervals fall be-
tween 2§ and §o cents in this classification (see the neo-Aristoxenian clas-
sification above for more refined limits on the boundaries between the
hyperenharmonic, enharmonic, and chromatic genera), Next are the trap-
ezoidal enharmonic and chromatic zones which flank the unmarked central
diatonic area. The enharmonic zone contains pyknotic intervals from 5o to
100 cents and the chromatic from 100 to 125 cents.

These data are summarized in §-76. The diatonic tetrachords generating
proper and strictly proper scales map into the central zone. The three tri-
angular zones flanking the central region along the long sides of the hex-
agon are diatonic tetrachords which contain one of the small hyper-
enharmonic, enharmonic, or chromatic intervals. These diatonic genera
yield improper scales. As in §-75, the chromatic tetrachords lie in the large
trapezoidal regions, with the enharmonic and hyperenharmonic beyond.
The outer belts of the chromatic zones depict genera with enharmonic and
hyperenharmonic intervals. Similarly, the enharmonic regions are divided
into realms of pure enharmonic and enharmonic mixed with hyper-

enharmonic intervals.
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§~77. Propriety limits for beptatonic scales with
mixed tetrachords. (Only the first four rows are
shoun.)

Propriety of mixed scales

The computation of the propriety limits for heptatonic scales containing
dissimilar tetrachords is a more complex problem. Since there are now four
degrees of freedom, two for each of the tetrachords, the graphical methods
used for the single tetrachord case are of limited use. It is possible, however,
to consider the upper and lower tetrachords separately and to calculate
absolute limits on the intervals of each. If 4, b, and 500 ~ 4 — b are assigned
to the intervals of the lower tetrachord and ¢, 4, and 500 — ¢ ~d to the upper,
one can compute the range of values for 4 and b over which it is possible to
find an upper tetrachord with which a proper scale can be generated. Similar
computations may be done for ¢ and 4. These results of these calculations
are tabulated in 5-77 and are graphed in 5-78 and §-79. These graphs use

oonly those relations which are solely functions of 2 and 4 or c and 4.

Triangular plots of the same data are depicted in 5-80 and 5-81. The
union of the the upper and lower tetrachord regions corresponds to the
pentachordal limits of 5-68 and 5-73, and their intersection is the proper
diatonic region of 5-74. The upper and lower tetrachord regions are also
the intervallic retrogrades of each other as propriety is unaffected by ret-
rogression or circular permutation of the intervals.

The solution to the general case of finding the limits for mixed tetra-
chordal scales must satisfy all the inequalities that relate 4, 4, ¢, and 4. It is
difficult to display this four-dimensional solution space in two dimensions.
One can, however, choose tetrachords from the lower or upper absolute

a b 500-a~b 200 ¢ d 500~¢—d

a+b  s00-2 700-a—b 200+¢ c+d 500-¢ so0-c—d+a
500 700-2 700—-a4-b+¢ 200+¢+d 500 500-¢+4 s00—¢c—d+a+b
700 700-a4+¢ 700-a-b+c+d 700 s00+4 §00-c+a4+b  1000-c-d

CONSTRAINTS ONZAND b: 0 <4 <250;250 <a+b<§00; 24 +b<700;4 + 25 <700,

VERTICES: 100, I50; 100, 300; 250, 200; 250, 6; 233.3, 233.3.

CONSTRAINTS ONCAND d: € <250; 250 <¢ +d <400; d~¢ < 200; 300 < 2¢ +4d.

VERTIGES: 50, 200; 33.3, 233.3; 100, 300; 250, 150; 250, 0.

MUTUAL CONSTRAINTS ON 4, b, ¢, ANDd: a<c+dib<c+dic<a+byd<a+bc<2a,a +c<500; b +c <500, 4 +d<500;b—c<200; 20— 4 <
300;4-¢<100;c+d-8<300;a+b+c<700; 20 +d—a<500;¢+2d~a<500;a+b+d<700; 28 +2b—c <700; 4 +b~c~d < 100; 300 <4
+c+dic+d<2a+b;200<28 +2b—c—d 20+ d-a-b<300; 24 ~c—d< 500,200 < 20 +b—Gc+b+d—a <500; 500 <a +b+c+d; 300 <

20+2d—a;2a +b—2c~d < 200.
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5-78. Absolute propriety limits for lower
retrachords.

W
Q
[e]
T

INTERVAL &
1

INTERVAL 4 joo

5~79. Absolute propriety limits for upper
terrachords.

A ) A
A : CAANNAVAVA
\INIXT / ANV AVAVA
NOINN, —— X¥7 TNINSAA
LZINININ/ \/ WAVAVARN
a c b
500 0 500

5-8o. Absolute propriety limits for lower
tetrachords.

propriety regions of 5-80 and 5-81 and find companion tetrachords which
produce proper heptatonic scales when joined to them by a disjunctive
tone. These computations are performed in the same way as in §-70 and
§-77, except that the variables in one of the two tetrachords are replaced
by the cents values of the intervals. The result of the calculations will be a
range of values for the companion tetrachord.

The three permutations of the intense diatonic genus in r2-tone equal
temperament (100 + 200 + 200 cents, 200 + 100 + 200 cents, and 200 + 200
+ 100 cents) as well as the neochromatic form of the syntonic chromatic
(100 + 300 + 100 cents) were selected as lower tetrachords. The propriety
limits for the upper companion tetrachords were then computed. These
results are shown in 5-82.

Points in the interiors of the regions yield strictly proper scales, while
those on the peripheries produce scales that are merely proper. The neo-
chromatic tetrachord has only a one-dimensional solution space; the up-
permost point corresponds to a mode of the harmonic minor scale.

Similar calculations were performed for an additional 23 tetrachords and
the results are tabulated in 5-83. In agreement with previous results (5-74
and §-78), no proper scales could be formed from lower tetrachords whose
first intervals were microtones.

c=a-b
500

a ¢ b
500 [¢] 500

5-81. Absolute propriety limits for upper
tetrachords.
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§-82. Propricty ranges for upper companion tetra-
chords: limits for the tetrachords (a) 100 + 200 + 200
cents, (b) 200 + 100 + 200 cents, (¢) 200 + 200 + 100
cents, (d) 100 + 300 + 100 cents..

300 |

INTERVAL b
T

INTERVAL 4 300

INTERVAL 8 3o0

INTERVAL 4 300
300 '—
< F
é \
1 1 1
INTERVAL 4 300

Upper tetrachords may also be chosen and lower companion ranges
subsequently calculated to yield scales that are the intervallic retrogrades
or octave inversions of thase above.

A number of interesting conclusions may be drawn from these data.
Proper heptatonic tetrachordal scales containing microtones are only pos-
sible under certain conditions. The microtonal intervals may be present in
either the upper or lower tetrachord provided they are not in the extreme
positions, i.e., not intervals # or 500—-c~d.

Proper hexatonic scales also exist when tetrachordal intervals 5 or d equal
zero and 4 and ¢ are 250 cents. These scales may be analysed as containing
a tetrachord, a disjunctive tone, and a trichord.

The tetrachordal genera which appear as vertices of the propriet)'r re-
gions are of great interest. In particular, the equal division 166.667 +
166.667 + 166.667 accepts as upper companions both chromatic and im-
proper diatonic genera, including some with subcommatic intervals, Other
new tetrachords occurring as vertices are the improper diatonic genera
33.333 +233.333 + 233.333; this is very close to Al-Farabi's 49/48 - 8/7 . 8/
7, and 50 + 250 + 200, which is approximated rather well by 40/39 - 52/45 -
9/8.

Work of other investigators

Several other investigators have independently developed descriptors
functionally identical to Rothenberg’s strict propriety. Gerald Balzano has
used the notion of “coherence” in his work on microtonal analogs of the
diatonic scale in 12-tone equal temperament (Balzano 1980). Though not
tetrachordal, Balzano’s scales are homologous to the tritriadic scales dis-
cussed in chapter 7. Ervin Wilson (personal communication) has applied
the term constant structure to scales in which each instance of a given interval
subtends the same number of subintervals, but not necessarily subintervals
of the same magnitude or order. This property is also equivalent to
propriety.
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LOWER TETRACHORD VERTICES

5-83, Proper mixed tetrachord scales, in cents. These I. 100200 200 50, 200} §0, 2 §0; 200, 200} 200, §0
tetrachords can combine with a disjunctive tone and 2. 200 100 200 100, 150; 100, 300; 200, 200, 200, §0
any tetrachord in the region defined by the vertices to 3. 200200 100 100, 200; 100, 300; 2§0, 1§0; 2§0, §0
yield proper or strictly proper scales. The retrogrades 4. 100 300 100 100, 200; 200, 100
of these tetrachords can also serve as the upper tetra- 5. 100150250 50, 250; §0, 200; 150, 1§0; 150, 100
chords of proper scales. The third interval of each tet- 6. 100150150 100, 150; 100, 250; 200, 1§0; 200, §0
rachord may be found by subtracting the sum of the 7. 150 1001250 50, 200} §0, 250; 150, 150; 150, 100
two tabulated intervals from soo cents. The neo- B. 1501250100 100, 27§; 100, 200; 150, 2§0; 225, 17§; 225, 7§
chromatic tetrachord number 4 is the upper tetra- 9. 250100150 150, 150; 150, 250; 250, 150; 250, 50
chord of the harmonic minor mode. Its region of pro- 10. 250 I50 100 150, 150; 150, 250; 250, 150; 250, §0
prietyisreduced toa line rather than an area in the I1. §0250200 NO PROPER SCALES
tetrachordal interval plane. Tetrachords 11, 12, and 12, 50200150 NO PROPER SCALES
26 cannot form proper scales with any upper 13. 200350250 100, 150; 100, 200; 150, 1§0; 150, 100
tetrachord. 14. 2001250 50 200, 150; 200, 200; 250, 150; 250, 100
I5. 25050200 150, 150; 150, 250; 200, 200; 200, 100
16. 250 200 §0 200, 150; 200, 200; 2§0, 150; 25G, 100
I7. 125125260 50, 200; §0, 250; 150, 150; 150, 100
18. 125250 12§ 87.5, 187.5; 87.5, 287.5; 212.5, 162.5; 212.5, 62.5
I9. 250 12§ 12§ 150, 150; 150, 2§0; 250, 1§0; 250, 50
20. 150150200 50, 200; §0, 250; 200, 200; 200, §0
2I. 150200 1§0 75, 1753 75, 2255 83.3, 283.3; 150, 250; 225, 175;
228, 2§
22, 200150 1§0 100, I50; 100, 300; 250, I50; 250, 0
23. 100275 12§ 87.5, 187, 5; 87.5,237.5; 200, 1253 200, 75
24. 125275 100 100, 175; 100, 250; 212.5, 137.5; 212.5, 62.§ -

25. 233.33 233.33 3333 233.33, 133-33; 233.33, 166.67

26. 33.33233.33233.33 NO PROPER SCALES

27. 166,7 166.7 166.7 66.67, 183.33; 66.67, 266.67; 88.89, 288.8¢;
133.33, 266.67; 233.33, 166.67; 233.33, 16.67
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6 Scales, modes, and systems

THE FORMATION oF heptatonic scales from tetrachords was mentioned
briefly in chapters 1 and 5. In the present chapter, scale construction will
be examined at greater length—in particular, the formation of non-
traditional and non-heptatonic scales from tetrachordal modules. Before
introducing this new material, however, a brief review of the salient features
of the Greek theoretical system is necessary as an introduction to scale

construction.

The hierarchy of scalar formations

"The ancient Greek theorists recognized a hierarchy of increasingly large
scalar formations: tetrachord, pentachord, hexachord, heptachord, oc-
tachord, and system. The canonical forms of each of these scalar formations
may be seen in 6-1. The smaller formations were finally absorbed into the
Perfect Immutable System which with its fifteen pitch keys or tonoi was the
highest structural level of the Greek theoretical doctrine. As the tetra-
chordal level has been introduced in earlier chapters, the discussion will
focus on the pentachord and larger structures. .

The pentachord

Pentachords may be considered as tetrachords with disjunctive tones added
at either extremity. They divide the perfect fifth into four subintervals and
occur in several forms in the various modes of heptatonic scales. The two
forms of greatest theoretical importance are described in 6-1. While of rel-
atively minor musical prominence, the pentachord has considerable ped-
agogical value in explaining how certain tunings and scales may have arisen.
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6-1. The hierarchy of scalar formations, The
tetrackord may be any of the those listed in chapter 9.
The interval of equivalence is the 4/3. The two
canonical forms of the pentachord are given. Other
forms occur in the various modes of beptatonic scales
of different genera andmay have the 9/8
interpolated between the tetrachordal intervals.
With the addition of the octave 2/1, the beptachord
becumes the Mixolydian mode of the complete
heptaronic or octachordal scale. If the 8/9 is added
below the 1/1 the scale becomes the Hypodorian mode
transpesed dowmwards by a whole tone (9/8). The
next bighest structural level is that of a system which
contains all the lower ones. The octachord is the
beptatonic Dorian miode.

For example, Archytas’s complex septimal tuning system can be best
understood by considering not just the three species of tetrachord, but the
pentachords formed with the note a whole tone below. These would be the
note hyperhypate for the meson tetrachord and mese for the diezeugmenon
(Winnington-Ingram 1932; Erickson 1965). By the use of the harmonic
mean between hyperhypate (8/9) and mese (4/3), Archytas defined his en-
harmonic lichanos as 16/15. His tuning for the note parhypate (28/27) in
all three genera was placed as the arithmetic mean between the 8/g and
32/27, the diatonic lichanos. This construction may be seen in 6-2.

The notes D F G and A form the harmonic series 6:7:8:9 and the notes
D Gy, A a minor triad, 10:12:15. The 7/6 which the hyperhypate (D) makes
with parhypate (F) is found in all three of his genera and is duplicated a
fifth higher between mese (A) and trite (C). This interval was very im-
portant in Greek theory and had its own name, ekbole (Steinmayer 1985).
It occurs in the Dorian harmonia shown in 6-4 and in the fragments of
surviving Greek music.

As this interval has the value of 7/6 only in Archytas’s tunings and those
others of the 7/6 pentachordal family (chapter 4), it is interesting to con-
sider analogous pentachords with the 28/27 replaced by other intervals.
6-2 also depicts such a system, employing a more Aristoxenian 1/4-tone
interval, 40/39, which was used by the theorists Eratosthenes, Avicenna,
and Barbour in their genera (See the Main Catalog and 4-3). This system
has a number of interesting harmonic and melodic intervals and could be

played very well in 24-tone equal temperament.

Miscellaneous pentachordal structures

According to Xenakis, chains of conjunct tetrachords and pentachords
(trochos) are used in the liturgical music of the Greek Orthodox church

FORM NOTES
TETRACHORD /1 2 b 4/3
PENTACHORD I: /1 4 b 4/3 3/2

22 8/9 1/1 4 b 43
HEXACHORD I: I/ a b 4/3 3/2 3b/2

2 114k 4/3 3/2 302
HEPTACHORD 1/1 4 b 4/3 4a/3 4b/3 16/9
OCTACHORD 1/1 2 b 473 3/2 3a/2 3b/2 2/1
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6-2. Pentachordal systems.

ARCHYTAS'S SYSTEM

D E F G G G A
8/ 1/t 2827 16/15 9/8 32/27 4f3
6/5 5/4

7/6 9/7
7/6 8/7
40/30 SYSTEM
D E F G G G A
8/9 1/1  40/39 16/15 10/9 32/27 4/3
6/5 5/4
15/13 13/10
5/4 6/5
15/13 52/45

(Xenakis 1971, and chapters 2 and 5). These chains exhibit cyclic per-
mutation of their constituent intervals. Most importantly, they are ex-
amples of those rare musical systems in which the octave is not the modulus
or interval of equivalence.

Additionally, more traditional heptatonic modes (echoi), some of which
appear to have genetic continuity with classic Greek theory, if not practice,
are employed. These may be analyzed either as composed of two tetra-
chords or as as combinations of tetrachord and pentachords. A number of
tetrachords from these modes are listed in the Catalogs.

Some irregular species of Greek and Islamic origin are also listed in
chapter 8 along with Kathleen Schlesinger’s harmoniai to which they bear
some resemblance. These divide the fourth into four parts and the fifth into
five. The Greek forms are merely didactic patterns taken from Aristoxenos
and interpreted by Kathleen Schlesinger as support for her theories, while
the Islamic scales were apparently modes used in actual music. 8- or g-tone
pseudo-tetrachordal octave scales may be formed by combining these with
appropriate fifths or fourths.

The hexachord, heptachord, and gapped scales

The hexachord and heptachord generally appear as transitional forms be-
tween the single tetrachord and the complete heptatonic scale or oc-
tachord. The hexachord appears as a stage in the evoluton of the
enharmonic genus from a semitonal pentatonic scale similar to that of the
modern Japanese koto to the complete heptatonic octave. This 5-note scale
is often called the enharmonic of Olympos (6-3) after the legendary musi-
cian who was credited with its discovery by Plutarch (Perrett 1926), This
and other pentatonic scales may be construed as two trichords combined
with a whole tone to complete the octave. The two intervals of the trichord
may be a semitone with a major third, a whole tone with a minor third, or
any other combination of two intervals whose sum equals a perfect
fourth.

At some point the semitone in the lower trichord was divided into two
dieses. This produced the spondeion or libation mode which consisted of
a lower enharmonic tetrachord combined by disjunction with an upper
trichord consisting of a semitone and a major third (6-3). This hexachord
or hexatonic scale evolved into the spondeiakos or spondeiazon tropos.
Eventually the semitone in the upper trichord was also split and a hep-
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6-3. Gapped or irvegular scales. The notation used
here reproduces that of the references. The plus sign

indicates a tone 1/g-tome higher than normal.
Unless otherwise noted, no particular tuning is
assumed, but either Pythagorean or Archytas's
stipplemented as required with undecimal ratios
would be appropriate bistorically.

Pentatonic forms

ENHARMONIC OF OLYMPOS
e f a b c ()

SPONDEION (WINNINGTON-INGRAM 1928)
e faboct or e f+ a b o+
/1 12/11 473 3/2 18/ix (2/1)

SPONDEION (HENDERSON 1942)
f a b d#f e+rore e+ f a b

SPONDEION (MOUNTFORD 1023)
1/t 28/27 4f3 3/2 18/11 (2/1)

Hexatonic forms
SPONDEIAKOS 07 SPONDEIAZON TROPOS
(WINNINGTON—INGRAM 1928)

e e+ f a b c
with b+ d' & c' in the accompaniment
DIATONIC OF WEIL & REINACH
(WINNINGTON—INGRAM I1928)

e fgabd
with b, c & €' in the accompaniment
GAPPED SCALE OF TERPANDER & NICOMACHOS

(uELMHOLTZ 1877, 266)
e f g abd (e
DIATONIC OF GREIF
(WINNINGTON-INGRAM 1028)
d e fab ot d

SCHLESINGER (1939, 183)

11 1t/io 119 11/8 11/7 1/6 (2/1)

Heptatonic form

CONJUNCT HEPTACHORD
c fgalbcd

tatonic scale in the enharmonic genus resulted. This transformation may
have been completed about the time of Plato, who writes as if he distrusted
these innovations. In later times, the ancient pentatonic and hexatonic
melodic patterns were retained in compositions for voice and accompani-
ment (Winnington-Ingram 1936).

In principle, a hexachord can be obtained from a heptatonic scale in four
ways by omitting one tone in either tetrachord. 6-3 lists the versions found
in the literature. In these cases, the omitted note is the sixth degree, though
the second version which lacks the seventh instead is a plausible inter-
pretation in some cases. Schlesinger's version is based on her theories which
are described in detail in chapter 8.

Some controversy, however, exists in the literature about the tuning of
these early gapped or transilient scales. The arguments over the relative
merits of enharmonic or diatonic tunings were discussed by Winnington-
Ingram (1928) whose scales and notation are reproduced in 6-3. Notable
are his and Mountford’s undecimal or 11-limit tunings for the pentatonic
forms. Winnington-Ingram’s undecimal neutral third pentatonic could be
the progenitor of the hemiolic chromatic genus (75 + 75 + 350 cents) and
diatonics similar to the equable diatonic such as 150 + 150 + 200 cents.
Henderson (1942) has also offered two quite different non-standard in-
terpretations of the enharmonic pentatonic based on etymological
considerations.

The hypothetical diatonic versions of these scales according to the
suggestions of several scholars are listed in this table as well, Weil and
Reinach provide a conventional diatonic form (Winnington-Ingram 1928).
The version of Greif appears to be derived from the Lesser Perfect or
Conjunct System with the addition of a tone below the tonic as seen in the
Dorian harmonia of 6-4 (ibid.). It should be compared with the ancient
non-octaval heptachord which may also be formally derived from the
conjunct system (6-1).

The medieval diatonic hexachord of Guido D’Arezzo, cd e fga ¢, may
be included with these scales too, although it is much later in time. In just
intonation, it is usually considered to have the ratios 1/1 ¢/8 5/4 4/3 3/2
5/3, derived from the Lydian mode of Ptolemy’s syntonic diatonic instead
of the Pythagorean 1/1 9/8 81/64 4/3 3/2 27/16. In the septimal diatonic
tuning of Archytas it would have the ratios 1/1 8/7 9/7 4/3 32/21 12/7.
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6-4. The oldest harmoniai in three genera,

Dorian
ENHARMONIC def-gyabe-dye’
curoMaTic defgabcedye
puatoNic defgabed'e
Phrygian
enHarMONIC def-gpabe-diyd’
curomaTic defgabedyd
piaTtonNic defgabed’
Lydian
ENHARMONIC f-gyabe-diye' f-'
cHroMaTIc fgabedye'f
piatonic fgabed'e'F
Mixolydian
ENEARMONIC Be-dydef-gyb
cHroMATIC Bedidefgb
puatonic Bedef(g)(a)b
Syntonolydian
ENHARMONIC BC-dyeg
curomaTic BCdyeg
piaTonic cdefg
2np DIATONIC BCdeg
Ionian (Jastian)
ENHARMONIC B C-dpega
curomaTic BCdega
DIATONIC cefga
2nppaTONIC BCdega

The octachord or complete heptatonic scale

The union of a tetrachord and a pentachord creates an octachord or com-
plete heptatonic scale. There is evidence, however, that initially two di-
atonic tetrachords were combined by conjunction, with a shared note
between them, to form a 7-note scale less than an octave in span (6-1). The
later addition of a whole tone at the top, bottom, or middle separating the
two tetrachords, completed the octave gamut. Traces of this early hep-
tachord may be seen in the construction of the Lesser Perfect System and
in the irregular scales of 6-3 and 6-4.

Similarly, two enharmonic tetrachords were joined by disjunction with
the 9/8 tone between them to create the Dorian harmonia to which a lower
tone was added (6-4). An alternative genesis would connect two pen-
tachords whose extra tones were at their bases to produce the ¢-tone
Dorian harmonia to which other tones might accrete. By analogy, both the
enharmonic and diatonic proto-scales converged to the same multi-octave
structures later called by the name of system. In the fifth century Bck the
wide ditone or major third of the enharmonic genus was gradually nar-
rowed to a minor or subminor third by a process termed “sweetening.”
Eventually, this process resulted in the chromatic genus which was raised
to the same status as the diatonic and enharmonic genera.

The Greater and Lesser Perfect Systems

However the early evolution of the Greek musical system actually oc-
curred, the result came to be schernatized as the Perfect Inmutable System.
Its construction was as follows: two identical tetrachords of any genus and
a disjunctive tone (9/8) formed a central heptatonic scale which became the
core of the system. Another identical tetrachord was then added by con-
junction at both ends of the scale and disjunctive tone was patched on at the
bottom of the whole array. A fifth tetrachord, synemmenon, was inserted
conjunctly into the middle of the system to recall the ancient heptachord
and to facilitate commonly occurring modulations at the fourth. This su-
pernumerary tetrachord was also a useful pedagogical device to illustrate
unusual intervals (Erickson 1965; Steinmayer 1985).

The final results consisted of sets of five tetrachords linked by conjunc-
tion and disjunction into arrays of fifteen notes spanning two octaves.
These systems, in turn, could be transposed into numerous pitch keys or
tonoi, at intervals roughly a semitone apart according to the later authors.
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The subset of four alternately conjunct and disjunct tetrachords (hypa-
ton, meson, diezeugmenon, and hyperbolaion) was termed the greater
perfect (or complete) system (oyotepa eretov peilov). The three conjunct
tetrachords (hypaton, meson, and synemmenon), was called the Lesser
Petfect (or Complete) System (ocyompo. teAetov elortov or edooov). Their
union was called variously the Changeless System or the Perfect Immutable
System (ovotuo tedeiov apetaforov) by different authors.

The Perfect Immutable System
By the fourth century Bck, the Greek theorists had analyzed the scales or

harmoniai of their music into sections of this theoretical two octave gamut.
This 15-note span is conventionally transcribed into our notation as lying
between A and a'. The Perfect Immutable System could be tuned to each
of the three genera, and while in theory all five of the tetrachords must be
the same, in practice mixed tetrachords and considerable chromaticism
occurred. Not only was the diatonic lichanos meson (D in the Dorian or
E mode) added, but other extrascalar notes led to successions of more than
two semitones (Winnington-Ingram 1936).

6-5 depicts the Perfect Immutable System in its theoretical form and in
its two most historically important intonations.

The fixed notes (hestotes) of the Perfect Immutable System were
proslambanomenos, hypate hypaton, hypate meson, mese, paramese, nete
diezeugmenon, nete hyperbolaion, and nete synemmon. The moveable
tones (kwvovpevor) were the parhypatai, the lichanoi, the tritai, and the
paranetai of each genus.

Lichanos hypaton, also called hyperhypate, a diatonic note a whole tone
(9/8 in Archytas’s and most other just tunings) below the tonic, was added
to the Dorian octave species in the chromatic and enharmonic genera in the
harmoniai of Aristides Quintilianus, certain planetary scales, and the Eu-
ripides fragment (ibid.).

Erickson (1965) and Vogel (1963, 1975) have shown that a number of
interesting tetrachords occur in the region where the synemmenon tetra-
chord overlaps with the diezeugmenon tetrachord in Archytas’s system.
These include the later and historically important 16/15 . 9/8 - 10/9 (Ptol-
emy’s syntonic diatonic), 16/15 - 10/9 - 9/8 (Didymos’s diatonic), the three
permutations of the Pythagorean diatonic, 256/243 - 9/8 - 9/8, (9o + 204 +
204 cents), the Pythagorean chromatic 32/27 . 2187/2048 - 256/243 (204 +
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6-5. The Perfect Immutable System in the diatonic,
chromatic, and enbarmonic genera, tuned according
to Archytas’s and Pythagorean tuning. The
transcription is in the natural key to avoid accidentals
and the mistaken late shift of emphasis from Dorian
to Hypolydian (Henderson 1957). The - and
indicate that these are different pitches in the
enbarmonic genus. Erickson (1965) proposes 64/45
s an alternative tuning for trite synemmenon.

TRANSCRIPTION
DIA. CHR. ENH.

PROSLAMBANOMENOS A A A
HYPATE HYPATON B B B
PARHYPATE HYPATON C C C-
LICHANGS HYPATON D Dy Dy
HYPATE MESON E E E
PARHYPATE MESON F F F-
LICHANOS MESON G G Gy
MESE a a a
PARAMESE b b b
TRITE DIEZEUGMENON c c c-
PARANETE DIEZEUGMENON d d dy
NETE DIEZEUGMENON e e e
TRITE HYPERBOLAION f f f-
PARANETE HYPERBOLAION g g g
NETE HYPERBOLAION a' a' a'
TRITE SYNEMMENON (28/27) b b by~
PARANETE SYNEMMENON c G (o1}
NETE SYNEMMENON d d D

114 + 9o cents), and Avicenna’s chromatic 7/6 - 36/35 - 10/9 (267 + 49 + 182
cents). Some unusual divisions such as 28/27 - 81/70 - 10/9 (63 + 253 + 182
cents), 28/27 - 2187/1792 - 256/243 (63 + 345 + 90 cents), 16/15 - 35/32 - 8/7
(112+ 155+ 231 cents), 16/15- 1215/1024 - 256/243 (112 + 296 + o cents),
7/6 - 81/80 - 9/8 (267 + 22 + 204 cents), 32/27 - 81/80 - 10/9 (204 + 22 + 182
cents), 28/27-64/63 -81/64(63 +22 + 408 cents), 6/5- 135/128-256/243 (316
+92 +gocents),and 2§6/243 -81/80- §/4 (9o + 22 + 386 cents) are also found
here. Notable are the intervals of 253 cents, another possible tuning for the
ekbole, the neutral third of 345 cents, the three-quarter tone 35/32 (155
cents), and the minor whole tone 10/9.

The alternate tunings 16/15 and 28/27 for the first interval of the syn-
emmenon tetrachord may have been used in order to obtain the spon-
deiasmos, an interval of three dieses approximating 150 cents, mentioned
by Bacchios (Steinmayer 1985; Winnington-Ingram 193 z). These intervals
would measure 3§/32 (155 cents) as the difference between 14/¢9 and 64/43,
or 243/224 (141 cents) as the difference between 112/81 and 3/2. The in-

ARCHYTAS PYTHAGOREAN

DIA. CHR. ENH. DIA. CHR. ENH,

2/3 2/3 2/3 13 2/3 /3

34 3/a 3/4 34 3/4 34

719 7/9 7/9 64/81 64/81 384/499
8/9 27/32 4/5 8/¢ 27/32 64/81

1/1 1/1 1/1 1/1 1/1 11
28/27 28/27 28/27 256/243  256/243  512/499
32/2% 9/8 16/15 32/27 o/8 256/243
4/3 473 4/3 4/3 4/3 4/3

3/2 3/2 3/2 3/2 3/2 3/2

14/9 1479 14/9 128/81 128/81 768/499
16/9  27/16 8/5 16/9 17/16 128/81
/1 b 2/1 2/1 21/t /1

56/27 56/27 56/27 512/243 512/243 1024/499
64/27 0/4 32/15 64/27 9/4 512/243
8/3 8/3 8/3 873 8/3 8/3
112/81  112/81  112/81 1024/729 1024/729 2048/1497
128/81 3/2 64/45 128/81 3/2 1024/729
16/9 16/9 16/9 16/9 16/9 16/9
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6-6. Scales in common use according to Ptolemy. In
the text, the names of the tunings are ahways given in
plural form. (1), not the ditonic or Pythagorean, ap-
pears to have been the standard diatonic. On the ki-
thara, in the Hypodorian mode it was called tritas; in
the Pbrygian, bypertropa. (24) is given in two forms
in different places in the Harmonics; the intense
chromatic (1:84), where it is mistransiated as “di-
atonic chromatic,” and the soft chromatic (2:208).
The tables (2:178) use the intense chromatic; the soft
chromatic fits the sense of the name berter. On the ki-
thara, (2b) in the Hypodorian mode is called rropoi
or tropikot. In the Dorian mode on the kithara, (3) is
called parypatai, (3) is in the Hypophrygian mode.
(5), inthe Dorian mode, is given variously as either
pure tonic diatonic or a mixture of tonic diatonic and
intense and is also referred to as metabolika. (6) is
Jrom Avicenna (D'Erlanger 1935, 2:239), who
sometimes approximated complex ratios like 72/6¢
with superparticulars of similay magnitude such as
22/21, but the exact ratio is clear from the context.

3/2. The interval of three dieses also appears in Archytas’s chromatic as the
difference between the 28/27 and the ¢/8. In many cases the scales con-
taining these tetrachords would be mixed, but deliberately mixed scales
were not unknown. 6-6 lists some varieties of mixed scales recorded by
Ptolemy in the second century ck.

The scales actually employed in Greek music are a matter of some
confusion because of the paucity of extant musical examples and the variety
of theoretical works from different traditions written over a period of sev-
eral centuries (fourth century BCE to fourth century cg). In the theoretical
treatises, the seven octave species or circular permutations of the basic
heptatonic scale are singled out and given names derived from early tribal
groups. These scales are notated in all three genera in 6-7. Their intervals
and notes are in shown in ratios for both Archytas’s and Pythagorean tuning
in 6-8 and 6-9. 6-10 gives the diatonic form in Ptolemy’s syntonic diatonic
(16/15-9/8 - 10/9), and 6-11 gives the retrograde of this genus (10/9 - 9/8 -
16/15). The Lydian mode in the former tuning is the standard just in-
tonation of the major scale, and the latter is that of the natural minor mode
(see chapter 7).

For the Pythagorean tuning of the enharmonic, I have used Boethius’s
much later arithmetic division of the pyknon, as the actual tuning prior to
Archytas is not known. Since the division of the semitone in both tetra-

I. STEREA, A LYRA TUNING; TONIC DIATONIC
1/1 28/27 32/27 4/3 3/2 14/9 16/9 2/1

2. MALAKA, A LYRA TUNING: SOFT OR INTENSE CHROMATIC AND TONIC DIATONIC
A. 1/1 28727 10/9 4/3 3/2 14/9 16/9 2/1
B. 1/1 22/21 8/7 4/3 3/2 14/9 16/9 2/1

3. METABOLIKA, ANOTHER LYRA TUNING: SOFT DIATONIC AND TONIC DIATONIC
1/t 21/20 7/6 4/3 3/2 14/9 16/9 2/1

4. IASTI-AIOLIKA, A KITHARA TUNING: TONIC DIATONIC AND DITONIC DIATONIC
1/1 28/27 32/27 4/3 3/2 27/16 16/9 2/1

§. IASTIA OR LYDIA, KITHARA TUNINGS: INTENSE DIATONIC AND TONIC DIATONIC
1/1 28/27 32/27 4/3 3/2 8/5 9/5 2/1

6. A MEDIEVAL ISLAMIC SCALE OF ZALZAL FOR COMPARISON
1/1 9/8 81/64 4/3 40/27 130/81 16/9 2/1
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6-7. The oczave species in all three genera, The
traditional names are given first and alternate ones
subsequently. The Hypermixolydian was denounced
by Prolemy as otiose and by the city of Argos as
illegal (Winnington-Ingram 1936), This
transeription uses the natural key for clarity. Late
theorists mistakenly built the system and notation
about the F mode (Hypolydian) rather than the
corvect E mode (Dorian) (Henderson 1957).
Although the Dorian, Phrygian, and Lydian modes
bave distinctive tetrachordal forms, these forms
were never named after their parent modes by any
of the Greek theorists. In the chromatic and
enbarmonic genera the tonics of the species are
transformed. An alternative nomenclature for the
enharmonic tetrachord is E E+ F A. The mese kata
thesin is four scale degrees above the tonic with
which it usually makes an interval of a perfect
Jourth.

chords was completed only near end of the fourth century Bce, the division

may not have been standardized and was most likely done by ear during the

course of the melody (Winnington-Ingram 1928), in which case the ap-

proximate equality of the dieses in Boethius’s tuning probably captures the

flavor of the scale adequately. Euler’s eighteenth-century tuning (Euler

[1739] 1960, and Catalog number 79) is similar and considerably simpler.

An impractical, if purely Pythagorean, solution (number 81) as well as some

other approximations are given in the Main Catalog.

Although these scales are analogous to the “white key” modes, the latter

are named out of order due to a misunderstanding in early medieval times.

TONIC NAME

P OUEDORS

wgmmgowg
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Diatonic
HYPERMIXOLYDIAN, HYPERPHRYGIAN, LOCRIAN
MIXOLYDIAN, HYPERDORIAN
LYDIAN
PHRYGIAN
DORIAN
HYPOLYDIAN
HYPOPHRYGIAN, IONIAN
HYPODORIAN, AEOLIAN

Chromatic
HYPERMIXOLYDIAN, HYPERPHRYGIAN, LOCRIAN
MIXOLYDIAN, HYPERDORIAN
LYDIAN
PHRYGIAN
DORIAN
HYPOLYDIAN
HYPOPHRYGIAN, IONIAN
HYPODORIAN, AEOLIAN

Enharmonic
HYPERMIXOLYDIAN, HYPERPHRYGIAN, LOCRIAN
MIXOLYDIAN, HYPERDORIAN
LYDIAN
PHRYGIAN
DORIAN
HYPOLYDIAN
HYPOPHRYGIAN, IONIAN
HYPODORIAN, AEOLIAN
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Diatonic (28/27 - 8/7 - 9/8)
MIXOLYDIAN (B ~ b)
/1 28/27 32/27 4/3 112/81 128/81 16/9 21
28/27 - 8/7 - 9/8 . 28/27 . 8/7 . 9/8 . 9/8
LypiaN (C - ©)
i/t 8/  o/7 43 32021 127 27/14 21
8/7 « 9/8 . 28/27 . 8/7 . 9/8 - o/8 . 28/29
PHRYGIAN (D —d)
/1 o/8 /6 4/3 3/2 276 7/4
o/8 - 28/27 . 8/7 - 9/8 - 9/8 . 28/27 . 8/7
DORIAN (E—e)
/1 287 32/27  4/3 32 4/9  16/9  2/n
28/27 - 8/7 - 9/8 - 9/8 . 28/27 . 8/7 - o/8
HYPOLYDIAN (F ~ f)
11 8/7 ofy 8156 312 12/7  27/14  2/1
8/7 « 9/8 . 9/8 - 28/27 - B/7 - 9/8 - 28/27
HYPOPHRYGIAN (G ~ g)
/v  9/8 81/64 2116 3/2 2916 7/4 2/
9/8 - o/8 . 28/27 . 8/7 . ¢/8 . 28/27 - 8/7
HYPODORIAN (A - a)
1/t 9/8  7/6 473 3/2 14/9 16/9 2/
o/8 - 28/27 . B/7 . o/8 . 28/27 . 8/7 - o/8

Chromatic (28/27 - 243/224 - 32/27)
MIXOLYDIAN (B - b)

1/t 28/27 /8 4/3 112/8x 3/2 16/ 2/t
28/27 « 243/224 - 32/27 - 28/27 - 243/224 - 32/27 - 9/8
rypaN (C-¢)

/1 243/224 9/7 4/3 B1/56 12/7 27/14 2/t
243/124 + 32/27 + 28/27 - 243/224 + 32/27 - 9/8 - 28/2y
PHRYGIAN (D} - dy)

/1 32/27 896/7:9 4/3 128/81 16/9 448/243 2/1

32/27 - 28/27 . 243/224 « 32/27 - 9/8 - 28/27 - 243/224
DORIAN (E - ¢)
1/t 28/27  9/8B 43 3/2 14/ 27/16 2/t
28/27 - 243/224 - 32/27 - 9/8 - 28/27 - 243/224 - 32/27

6-8. The intervals of the octave species in all three genera in Archytas’s tuning.

1/1

1/1

/1

/1

1/t

1/t

1/1

1/1

1/t

11
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HYPOLYDIAN (F —f)

2437224 of7 81/56 3/ 720/448 27/14 2/1

243/224 + 32/27 - 9/8 - 28/27 - 243/224 - 32/27 - 28/27
HYPOPHRYGIAN (G, — g))

32/27  4/3 112/81 3/2  16/9 448/243 2/x

32/27-9/8 - 28/27 - 243/224 - 32/27 - 28/27 - 243/224
HYPODORIAN

o/8 4/6 B1/64 3/2 14l9 29716  2/x

9/8-28/27.243/224 - 32/27+ 28/27 - 243/224 - 32/27

Enharmonic (28/27 - 36/35 - 5/4)
MIxoLyDIaN (B - b)
28/17 16/15 4y 112/81  64/45 16/9 21
28/27 - 3635 + 5/4 - 28/27 - 36735 - 5/4 - 9/8
rypiaN (C-—c-)
36735 ol7 43 4835 12/7  27/14  2/x
36735 « §5/4 - 2827 . 36/35 - §5/4 - 9/8 - 28/27
pHRYGIAN (Dy — dy)
sla  35/27 43 s/3  15/8  35/18 2/1
5/4 - 28/27 « 36735 - 5/4 - 9/8 - 2B/27 - 36/35
poraN (E —€)
2827 16/15 43 32 14/  8/5 2/t
28/27 « 36/35 - 5/4 - 9/8 . 28/27 - 36/35 - 5/4
HYPOLYDIAN (F- —{-)
3635 of7  Bifs6  3/2 54735 2714 2/x
36/35 - §5/4 - 9/8 - 28/27 - 36735 - 5/4 - 28/27
HYPOPHRYGIAN (G — gi)
5/4  45/32 3524 3/2  15/8 3518 2/t
5/4 - 9/8 - 28/27 . 36/35 - 5/4 « 28/27 - 36735
HYPODORIAN (A ~ a)
o/8 716  6/5 3/2 14/9 85 2/t
9/8 - 28/27 - 36/35 - 5/4 + 28/27 . 36/35 - 5/4




Diatonic (256/243 - 9/8 - 9/8)
MIXOLYDIAN (B ~b)

/1 256/243  32/27 4/3 1024/7:29 128/81 16/p 21
2§6/243 - 9/8 . 9/8 . 256/243 - 9/8 - ¢/8 . ¢/8
LYDIAN (C —¢)

1/1 o/8 B1/64 4/3 3/2 27/16  243/128 21
o/8 - of8 . 156/243 - 9/8 - 9/8 . 9/8 .

PHRYGIAN (D —d)

1/1 9/8 32/27 473 3/2 27/16 16/9 2/1
9/8 . 256/243 - 9/8 . 9/8 . 9/8 . 256/243 - ¢/8
powaN (E—¢)

/1 256/243 3227 473 3/2 128/81 16/ 2/
256/243 - 9/8 - 9/8 - 9/8 . 256/243 - 9/8 . ¢/8

HYPOLYDIAN (F ~f)
11 o/8 81/64 y20/512  3/2 27/16
o/8 . o/8 - o/8 . 256/243 - 9/8 . 9/8 .
HYPOPHRYGIAN (G ~g)

/1 9/8 81/64  4f3 3/2 27/16 16/9 2/1
9/8 - 9/8 . 256/243 - 9/8 - 9/8 - 256/243 - 9/8
HYPODORIAN (A —2a)

1/1 9/8 3229 4/3 3/2 128/81 16/9 /1
9/8 . 256/243 - 9o/8 . o/8 . 256/243 - 9/8 . o/8

256/243

243/128  2/1
256/243

Chromatic (256 - 2187/2028 - 32/27)
MIxOLYDIAN (B ~b)

1/1 256/243 o/8 4/3 1024/729 3/2  16/9 /1
2567243 - 2187/2048 - 32/27 - 256/243 - 2187/2048 - 32/27 - 9/8
LYDIAN (C—¢)

/1 2187/2048 81/64 4/3 729/512 29/16 243/128 /1

2187/2048 + 32/27 - 256/243 - 2187/2048 - 32/27 - 9/8 - 256/243
PHRYGIAN (D, —dy)
1/1  32/27 8102/6561 4/3 128/81 16/9 4006/2187 /1
32/27-256/243 - 2187/2048 - 32/27 - 9/8 - 256/243 - 2189/2048

DORIAN (E—¢)

1/t 256/243 9/8 4/3 3/2  128/8r  27/16 21
256/243 - 2187/2048 - 32/27 - 9/8 - 256/243 - 2187/2048 - 32/27
HYPOLYDIAN (F ~f)

1/1 2187/2048 81/64 729/512 3/2 6561/4006 243/128 2/1

2187/2048. 32/27:9/8 . 256/243 - 2187/2048 - 32/27 - 2§6/243
HYPOPHRYGIAN (G~ )
/T 32/27  4/3  7:9/512  3/2 16/9  4096/2187  2/1
32/27-9/8.256/243-2187/2048 - 32/27 . 256/243 - 2187/2048
HYPODORIAN (A —2)
/1 9/8 3227 81/64 312 128/81  27/16 /1
9/8.256/2432187/2048 - 32/27-256/243 - 2187/2048 - 32/27

Enharmonic (512/499 - 499/486 - 81/64)
MIxoLyDIAN (B - b)

1/ §12/499 256/243 4/3 2048/1497 1024/720 16/9 2/1
512/499 - 499/486 - 81/64 + §12/499 - 499/486 - 81/64 - 9/8
LYDIAN (C-—c-)

1/1 499/486 499/384 4/3 998/729 499/288 499/256 2/1
400/486 - 81/64 - 512/490 - 499/486 - 81/64 - 9/8 - 512/499
PHRYGIAN (Dy - dy)

1/t 81/64 648/499 4/3 27/16 243/128 97:/400 2/1
81/64 « 512/499 - 409/486 - 81/64 - 9/8 - 512/499 - 499/486
DORIAN (E —¢)

1/t §12/499 256/:43 4/3  3/2 768/490 128/81 24
§12/499 + 409/486 - 81/64 - 9/8 + 512/499 - 499/486 - 81/64
HYPOLYDIAN (F--f-)

11 499/486 499/384 1407/1024 3/2 499/324 499/256 2/1
499/486 + 81/64 - 9/8 - 512/499 - 499/486 - 81/64 - 512/400
HYPOPHRYGIAN (G — git)

1/t 81/64 720/512 720/499 3/2  243/128  972/499 2/t
81/64 - 9/8 - §12/499 + 499/486 - B1/64 - §12/499 - 499/486
HYPODORIAN (A —a)

/1 9/8 596/400 32/27 3/2  768/409 12B/81 /1

0/8 - §12/499 - 490/486 - 81/64 « 512/499 - 499/486 - 81/64

6-9. The intervals of the octave species in Pythagorean tuning. The tuning of the pre-
Archytas enbarmonic is not known, but at first it had undivided semitones, obtaining the

pyknon later. Boethius's tuning is used here.
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6-10. The intervals of the octave species of Ptolemy’s
intense diatonic genus. See figures 6-3 and 6-6 for
names of notes. The diatonic tetrachord is 16/15 -
9/8 - 10/9. The Lydian mode in this tuning is the
magor mode in just intonation. The Hypodorian or A
mode is not the minor mode as the fourth degree is
27/20 instead of 4/3.

6-x1. The intervais of the octave species of the Prol-
emy’s intense diatonic genus, reversed, The diatonic
tetrachord is r0/9 - 9/8 - 16/15. The Lydian or C
maode in this tuning is the minor mode injust in-
tomation, The Dorian or E mode is not the major
mode as the second degree is 10/9 instead of 9/8. This
scale transposed to C is Jobn Redfield’s tuning for the
miajorscale (Redfield 1928).

MiXoLYDIAN (B —b)

1/t 16/15  6/5 4/3 64/45 85 16/9

Although they are conventionally presented as sections of the two octave
gamut, they were actually retunings of the central octave so that the se-
quences of intervals corresponding to the cyclic modes fell on the notes of
the Perfect Immutable System (hypate meson to nete diezeugemenon, e to
e"). These abstract sequences of intervals are shown in 6-12. Thus, in the
Dorian tonos, the interval sequence of the Dorian mode filled the central
octave; in the Phrygian, the Phrygian sequence was central and the Dorian,
a tone higher. In the Hypolydian tonos, the initial A, proslambanomenos,
was raised a semitone, as was its octave, mese, the supposed tonal center
of the whole system.

From the original set of seven pitch keys (tonoi), a later set of thirteen
or fifteen theoretical keys at more or less arbitrary semitonal intervals de-
veloped, irrespective of genus (Crocker 1966; Winnington-Ingram 1936).
In Roman times, the theorists moved the entire system up a semitone so

MixoLyDIAN (B - b)

2/1 1/1  10/9 5/4 4/3 4o0l27 s5/3 16/ 21

16/15 - 9/8 - 10/9 - 16/15 + 9/8 . 10/9 . 9/8 10/9 - 9/8 - 16/15 - 10/9 - 9/8 - 16/15 - 9/8

LyDIAN (C - ¢)

11 o/8 s5/4 4/3 32 573 15/8
9/8 - 10/9 « 16/15 - 9/8 . 10/9 . 9/8 . 16/15

PHRYGIAN (D - d)

1/1 10/9 32/29 4/3 40/27 53 16/9
10/9 + 16/15 - 9/8 . 10/ - 9/8 - 16/15 - 9/8

DorIAN (E —¢€)

11 18/1s  6/5 4/3 32 B/5 o5
16/15 - 9/8 - 10/9 - 9/8 - 16/15 - 9/8 - 10/9

HyroLYDIAN (F —f)

/1 9/8 s5/4 452 3/2 27/16  15/8
9/8 - 10/9 - 9/8 . 16/15 . 9/8 - 10/9 - 16/15

HYPOPHRYGIAN (G - g)

11 10/9 §5/4 4/3 3/2 53 16/9
10/g - 9/8 . 16/15 - 9/8 - 10/9 - 16/15 - 9/8

HYPODORIAN (A —2)

11 /8 6/5 27720 3/2 B/5  9fs
9/8 . 16/15 - 9/8 . 10/9 - 16/15 - 9/8 . 10/9

LYypaN (C - ¢)

2/1 11 o/8 6/5 4/3 3/2 85 9fs 21

9/8 . 16/15 . 10/9 - 9/8 . 16/15 + 9/8 . 10/9

PHRYGIAN (D ~d)

2/1 /1 16/15 32/27 4/3 64/a5 B/ 16/ 2/1

16/15 - 10/9 - 9/8 - 16/15 - 9/8 - 10/9 - 9/8

DORIAN (E —¢)

2/1 11  10/9 5/4 a3 3/2  5/3 15/8 21

10/9 - 9/8 - 16/15 - 9/8B - 10/9 - 9/8 . 16/15

HYPOLYDIAN (F - f)

2/1 1 9/8 6/5 2720 3/2 27716 9ls 21

9/8 - 16/15 - 9/8 - 10/9 - 9/8 . 16/15 « 10/9

HYPOPHRYGIAN (G - g)

2/1 /1  16/15 6/5 4/3 32 8l 16/ 21

16/15 - 9/8 . 10/9 - 9/8 . 16/15 - 10/9 - 9/8

HYPODORIAN (A - a)

2/1 /1 9o/8 sla 45R2 3/2 §5/3 15/8 21

9/8 . 10/9 - 9/8 . 16/15 - 10/9 - 9/8 . 16/15
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6-x2. Interval sequences of the octave species of the
abstract tetrachorda.b.c.a-b-c=4/3 (c=4/3ab)
injust intonationor a+b + 500-2a-b with the

digjunctive tone equaling 200 cents in the zero

modudo 12 equal temperaments. In the Main

Catalog, c is equal to the CL.

MIXOLYDIAN HYPOLYDIAN
ﬂ'b'C'ﬂ'b'L"Q/B b.[.g/S‘a.b.[.a
LYDIAN HYPOPHRYGIAN
b'C'a'b'C‘Q/B'ﬂ [.9/8.¢.b.[.a-b
PHRYGIAN HYPODORIAN
c-a-bc-g/8-a-b o/8 a-b-coab-c
DORIAN
a-b-c-g/8.a-b.c

that the central octave began on either E or F in modern notation. In this
final form, however, the central octave had the interval sequence of the
Hypolydian mode rather than the Dorian.

The modal retunings could also be considered as transpositions of the
entire Perfect Immutable System. The order of the keys ran in the opposite
direction to that of the homonymous octave species and the octave species
could be described either by the positions of their interval sequences in
relation to the untransposed Dorian or by the relative pitch of the entire
Perfect Immutable System. This duality is reflected in the two no-
menclatures employed by Ptolemy, the “onomasia kata thesin” (by posi-
tion) and “onomasia kata dynamin” (by function). The thetic nomenclature
in the natural key is used in the tables of this chapter and chapter 8 as it is
the same for all tonoi. The dynamic refers all notes to the Dorian tonos for
which the thetic and dynamic nomenclatures are identical.

6-13. Vogel’s transcription of the Greek notations.
Only the upper octave from mese to nete byperbolaion
is shown. Vogel’s German notation bas been tran-
scribed into the American form. His notes bave been
transposed up an octave, and those marked with a bar
in the original are given a + bere. §12/405 (406
cents) replaces 81/64 (408 cents), in Vogel's tuning.
In the upper balfof the scale, 2048/121 5 replaces
27/16.

NOTE RATIO NOTATION
MESE /1 A
TRITE SYNEMMENON 28/27 B~
PARANETE SYNEMMENON 16/15 (ENHARMONIC) B+
PARANETE SYNEMMENON, PARAMESE  ¢/B (CHROMATIC) B
TRITE DIEZEUGMENON 7/6 C-
PARANETE SYNEMMENON 32/27 (DIATONIC) C
PARANETE DIEZEUGMENON 6/5 (ENHARMONIC) C+
896/729 Dy-
512/405 (CHROMATIC) Dy+
4/3 (DIATONIC) D
'NETE SYNEMMENON 112/81 E-
64/45 B
NETE DIEZEUGMENON 3/2 E
TRITE HYPERROLAION 14/9 F-
PARANETE HYPERBOLAION 8/5 (ENHARMONIC) F+
128/81 F
3584/2187 G-

2048/1215 (caromaTic) G
16/9 (DIATONIC)

G
448/243 A-

A

A

PARANETE HYPERBOLAION

256/135
NETE HYPEREOLAION 2/1
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6-14. Unusual tetrachords in Vogel's transcription.

RATIOS

64/63 - 81/8Bo - 35/27

81/8B0 - 2240/2187 - 9/7

36/35 - 2240/2187 - 81/84
36/35-256/243 - 315/256
64/63 - 16/15 - 315/256
64/63 - 2187/2048 - 896/729
896/729 - 36/35 - 135/128
28/27 . 256/243 - 2189/1702
16/15-2240/2187 - 2187/1792
28/27 . 128/105 - 135/128
6/5+35/32 -64/63
6/5-2240/2187 . 243/224
7168/6561 - 36/35 - 1215/1024
16/15 - 1215/1014 - 256/243
28/27 - 1024/945 - 1215/1024
7/6 - 1024/945 - 135/128
28/27 . 81/70 - 10/

81/70. 2240/2187: 9/8
81/70-256/243 - 35/32
135/128 . 7168/6561 - 81/70
16/15 - 280/243 - 243/224
36/35 - 9/8 - 280/243
8/7.81/8Bo- 280/243

9/8 . 7168/6561 - 243/224
9/8 - 4096/3645 - 135/128
35/32 - 1024/045 - 9/8
4096/3645 - 35/32 - 243/224

CENTS

27 + 22 + 449
22 + 41 + 435
49 + 41 + 408
49+ 90+ 359
27+ 112+359
27+ 114 + 357
357 +49+ 92
63 + 90+ 345
112 + 41 + 345
63+343+92
316 + 155 + 27
316 + 41 + 141
153 + 49 + 296
112 + 296 + 90
63+ 130+ 1296
267 + 139 + 92
63 +253+182
153 + 41 + 204
2153 + 90 + 155
92 + 153 +253
112 + 245 + 141
49 +204 + 245
231+ 22 + 24§
204+ 153 + 141
204+ 202 + 92
155+ 139 + 204
202 + 155 + 141

The Greeks named the modes from their keynotes as octave species of
the Perfect Immutable System, while the medieval theorists named them
in order of their transpositions (Sachs 1943). The two concepts became
confused by the time of Boethius, For this reason the names of the ec-
clesiastical modes are different from those of ancient Greece. In more
recent periods, other ecclesiastical nomenclatures were developed.

Greek alphabetic notations

In addition to the thetic and dynamic nomenclatures, which were really
tablatures derived from the names of the strings of the kithara or similar
instrument, there were two alphabetical cipher notations, the vocal and the
instrumental, These were recorded for the each of the tonoi in all three
genera by the theorist Alypius. The independent elucidation of Alypius’s
tables by Bellermann (1847) and Fortlage (1847) have permitted scholars to
transcribe the few extant fragments of Greek music into modern notation.

Vogel (1963, 1967) has translated these cipher notations into a tuning
system based on Archytas’s and Pythagoras’s genera (6-4). This set of tones
includes a number of unusual tetrachords, most of which occur in several
permutations (6-13). Some of these are good approximations to the neo-
Aristoxenian types: 50 + 100 + 3 50 cents, §0+ 150 + 300 CENts, §0 + 250+ 200
cents, and 150+ 150+ 200 cents of chapter 4.

The Greek notations, however, were not entirely without ambiguity,
and some uncertainly exists over the meaning of certain presumed “en-
harmonic” equivalences, i.e. two notes of the same pitch written differently.
Kathleen Schlesinger developed her somewhat fantastic theories, detailed
in chapter 8, in part from deliberations on the apparent anomalies of these
notations,

Concise descriptions of the notational systems may be found in Sachs

(1943) and Henderson (1957).

‘The oldest harmoniai or modes

Although the melodic canons laid down by Aristoxenos (330 Bce) stated
that the smallest interval the melody could move from the pyknon was a
whole tone and that notes four or five positions apart must make either
perfect fourths or fifths, both literary evidence and the surviving fragments
attest to mixed scales and chromaticism (Winnington-Ingram 1936), as
mentioned previously, A late writer, Aristides Quintilianus, gave a list of
what he said were the scales approved by Plato in the Republic. These scales
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are in the enharmonic genus and depart quite strongly from the conven-
tional octave species of 6-7. Since it is known that both diatonic and chro-
matic scales of the same name existed, it is tempting to try to reconstruct
them. 6-4 contains Aristides’s enharmonic harmoniai, Henderson’s (1942)
diatonic versions, and my own chromatic and diatonic forms. The chro-
matic versions are based on Winnington-Ingram’s indication that there is
literary evidence for certain chromatic versions (1936). The diatonic har-
moniai are from Henderson (rg4z), except in the cases of the Syn-
tonolydian and Iastian where I have supplied a second diatonic which I feel
better preserves the melodic contours. In the enharmonic and chromatic
forms of some of the harmoniai, it has been necessary to use both a d and
either 2 d, or dj because of the non-heptatonic nature of these scales. C and
F are synonyms for d, and gy. The appropriate tunings for these scales are
those of Archytas (Mountford 1923) and Pythagoras.

These scales are very important evidence for the use of extrascalar tones
(diatonic lichanos meson, called hyperhypate) and scalar gaps, which were
alluded to by Aristoxenos as an indispensable ingredient in determining the
ethos of the mode. Furthermore, one of the fragments, a portion of the first
stationary chorus of Euripides’s Orestes, uses hyperhypate and the en-
harmonic in such a way as to prove that the middle tone of the pyknon
(mesopyknon) was not merely a grace note, but a full member of the scale

(Winnington-Ingram 1936).

Ptolemy’s mixed scales

Still more remote from the conventional theory are the mixed scales listed
by Ptolemy in the Harmonics. These scales are ones that he said were in
common use by players of the lyra and kithara in Alexandria in the second
century ck (6-6). These scales bear some resemblance to modern Islamic
modes containing 3/4-tone intervals, as does Ptolemy’s equable diatonic,
12/11 - 11/10 - 10/9. They offer important support and evidence for the
combination of tetrachords of varying genera and species to generate new

musical materials.

Permutation of intervals

Although traditional techniques can generate a wealth of interesting ma-
terial for musical exploration, the Greek writers suggested only a small
 fraction of the possibilities inherent in the permutations and combinations
of tetrachords. While Aristoxenos mentioned the varying arrangements of
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6-15. Permutations of sequential fourths. See
Wilsom 1986 for further details. This example begins
with the Dorian mode of the standard ascending
Sorm for clarity and consistency with other sections of
this treatise, The sizes of the fourths range from 6/5
(316 cents) to 35/24 (653 cents). Interval 7 in the
original sequence is a fixed fourth, The pair of per-
muted fourths are in boldface. The last terrachord is
Archytas's diatonic.

ORIGINAL SCALE
1/1 28/27 16/15 4/3 3/2 14/9 8/5 21
28/27+36/35 - 5/4-9/8 - 28/27 - 36/35 - 5/4

FOURTHS SIZE
1/1 to 4/3 4/3
4/3 to 8/5 6/5

8/5 to 16/15 473
16/15t0 1479 35/24
14/9 102827 4/
28117 100 3/2 81/56
3/2to a1 453

- S

ORIGINAL SEQUENCE
1 3 4 5 6 7
4/3  6/s  4/3 3514 4/3 8156 (4/3)
PERMUTED SEQUENCE
I 3 4 3 6 7
4/3 43 6/5 3514 4/3 8156 (4/3)
NEW SCALE
1/1 28/27 16/15 473 3/2 14/9 16/9 2/1
28/27-36/35 - 5/4-9/8 - 28/2% . 8/7 - /8

the intervals of the tetrachord in the different octave species, the Islamic
theorists, such as Safiyu-d-Din, gave lengthy tables of all the permutational
forms of tetrachords with two and three different intervals. However, the
construction of §-, 6-, and 7-tone scales from permuted tetrachords and
trichords (gapped tetrachords) has been studied most thoroughly by the
composer Lou Harrison (1975). Harrison constructed scales from all the
permutations of the tetrachords and trichords and allowed different per-
mutations in the upper and lower parts of the scale.

In chapter s, the melodic properties of scales constructed of either
identical or dissimilar tetrachords, irrespective of permutational order, are
analyzed according to the perception theories of David Rothenberg (1969,
1975, 1978; also Chalmers 1975).

Wilson'’s permutations and modulations

Perhaps the most sophisticated use to date of tetrachordal interval per-
mutation in a generative sense is Ervin Wilson’s derivation of certain North
Indian thats (raga-scales) and their analogs (Wilson 1986a; 1987). In “The
Marwa Permutations” (1986a), Wilson’s procedure is to permute the order
of the sequental fourths of heptatonic scales constructed from two iden-
tical tetrachords. These sequential fourths are computed in the usual
manner by starting with the lowest note of one of the modes and counting
three melodic steps upwards. The process is continued until the cycle is
complete and one is back to the original tone. The resulting seven fourths
are the same as the adjacent fourths of the difference matrices of chapter
5, butin a different order. In abstract terms, if the intervals of the tetrachord
area-b/a - 4/3b,thescaleis 1/1ab 4/3 3/2 3a/2 3b/2,and 2/1. The sequential
fourths from 1/1 are thus 4/3, 3/24, 34/25, 9b/8, 4/3, 4/3, and 4/3.Itis clear
that these fourths must be of at least two different sizes even in Pythagorean
intonation.

While holding the position of one fourth constant to avoid generating
cyclic permutations or modes, pairs of fourths are exchanged to create new
sequences of intervals in general not obtainable by the traditional modal
operations. Both the choice of the positionally fixed fourth and the ar-
rangement of the tetrachordal intervals affect the spectrum of scales ob-
tainable from a given genus.

6-15 illustrates this process with the enharmonic genus of Archytas. The
exchange of the second and third fourths converts the upper tetrachord into
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6-16. Modulations by sequential fourths. This
example begins with the Dorian mode for consistency
with other sections of this treatise. The sizes of the
fourths range from 6/5 (316 cents) to 35/24 (653
cents), In the original sequence the exceptional fourth
is i bold face. In the rotated sequence the scale bas
been modally permuted to separate the exceptional
Sourth (in boldface) from the rest. In the first
modulated sequence the 6/5 (in boldface) bas been
interpolated berween fourths 7 and 1 of the original
series. In the second modulased sequence the 6/5 (in
boldface) has been interpolated between fourths 3 and
4 of the original series. The new tetrachord is
Archytas’s diatonic.

ORIGINAL SCALE
/1 2827 16/15 4/3 3/2 14/9 8/5 /1
28/27-36/35 - 5/4-9/8 . 28/27 - 36/35 - 5/4

FOURTHS SIZE
1/1 710 4/3 43
4/3 10 8/5 6/5
8/5T0 16/15  4/3
16/15T0 14/9 35/24
14/971028/27 4/3
28/277103/2  81/56
3/2 10 2/1 4/3

N o pw oy s

ORIGINAL SEQUENCE
z z 3 4 5 6 7
4/3  6/5 4/3 35124 4/3 B1/56 4/3
ROTATED SEQUENCE
3 4 s 6 7 I 2
4/3 35124 4/3 8156 4/3 4/3 6/
NEW SCALE
/1 5/4 3527 473 5/3 15/8 35/18 2/1
5/4 - 28/27.36/35 - 5/4-9/8 . 28/27 - 36/35

Archytas’s diatonic and yields a mixed scale, half enharmonic and half di-
atonic. Further application of this principle produces additional scales until
the original sequence is restored. Each of these scales could be modally
(cyclically) permuted as well.

Wilson derives a number of the thats of North Indian ragas by operating
on various arrangements of the tetrachords 256/243 - 9/8 - 9/8, 16/15 -
9/8 -10/9,28/27.8/7-9/8,16/15 . 135/128 - 32/27,and 10/9 - 10/9 - 27/25.
He then generates analogs of these scales from other tetrachords, including
those with undecimal intervals.

In his 1987 paper, Wilson described a complementary technique of
modulation (“The Purvi Modulations”). This technique makes use of the
fact that at least one of the fourths differs greatly in size from the rest. The
exceptional fourth may be abstracted from the linear fourth sequence and
interpolated between successive pairs to generate derived scales. At the end
of seven such interpolations, the linear sequence is cyclically permuted by
one position and the process of interpolation continued. After 42 steps the

THE LINEAR SEQUENCE OF FOURTHS
4/3 35124 4/3 Bis6 473 4/3
MODULATED SEQUENCE I
2 3 4 5 6 7 1
6/5 4/3 35/24 4/3 B1/56 4/3  4/3
NEW SCALE I
1/1 9/8 /6 6/5 32 14/9 8/5 21
0/8.28/27.36/35 - 5/4-28/27-36/35 - 5/4
MODULATED SEQUENGE 2
3 : 4 5 6 7 I
4/3  6/5 3524 4/3 8156 43 4/3
NEW SCALE 2
/1 9/8 /6 4/3 32 14l9 8B/5 21
9/8+28/27.8/7.9/828/27-36/35 - 5/4
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6-17. Complexes of one tetrachordal form.

I. TRANSPOSITION BY &
11 ab2aabgf3 qa/3 2/1

2. TRANSPOSITION BY &

11 abab b 4/3 4b/3 2/1

3. TRANSPOSITION BY 4/3, MIXOLYDIAN
1/1 8 b 4/3 44/3 4b/3 16/9 2/1

4. TRANSPOSITION BY 3/2, DORIAN
1/1ab4/3 3/2 3a/2 3b/2 2/1

5. TRANSPOSITION BY 2/
1/1abgly 2/balbalzb 2/t

6. TRANSPOSITION BY 2/4
1/1ab4fy 2/ab/a 4/3a 2/1

original scale is restored, but transposed to a new and remote key. Wilson
also provides an alternate derivation which better brings out the trans-
positional character of the process. In this case the linear sequence of
non-exceptional fourths is tandemly duplicated to form a series of
indefinite extent. Successive overlapping 6-unit segments of this series are
appended with the exceptional fourth to form octave scales. After seven
operations, the sequence repeats with a new mode of the original scale. The
process is illustrated in 6-16.

Non-traditional scale forms

In the remainder of this chapter, some non-traditional approaches to scale
construction from tetrachordal modules will be presented. These ap-
proaches are presented as alternatives to the historical modes and other
types of scales which were discussed in the earlier parts of this chapter.

The first group of non-standard tetrachordal scales is generated by
combining a given tetrachord with an identical one transposed by one of its
own structural intervals or the inversion of one of these intervals (6-17).
This process yields 7-tone scales, including three of the traditional modes
if the interval is 4/3, 3/2, or with a slight stretching of the concept, ¢/8 and
3/2 together. The other tetrachordal complexes, however, are quite dif-
ferent from the historical modes.

*. TRANSPOSITION BY 9/8 & 3/2, HYPODORIAN
1/1 9/8 9a/8 9b/8 3/2 34/2 3b/2 2/1

8. TRANSPOSITION BY 4/3b
1/1 3 b 4/3b 4/3 qa/3b 16/9b 2/1

9. TRANSPOSITION BY 4/34
1/1 2 b 4/3a 4/3 4b/ya 16/9a 2/1

10. TRANSPOSITION BY 4/b
/1 a2/bab 4al3b 4/3 a/b 2/1

I1. TRANSPOSITION BY b/a
1/1 b/a abba/a 4/3 4b3a 2/1
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6-18. Complexes of the prime form of Archytas’s
enharmonic.

I. TRANSPOSITION BY 4
1/1 28/27 16/15 784/729 448/405 4/3 112/81 2/1
063 112 126 175 498 561 1200

2. TRANSPOSITION BY b
1/1 28/27 16/15 448/405 256/225 4/3 64/32 2/1
063 112 175 223 498 610 1200

3. TRANSPOSITION BY 4/3 MIXOLYDIAN
1/1 28/27 16/15 4/3 112/81 64/45 16/9 2/1
063 112 498 561 610 996 1200

4. TRANSPOSITION BY 3/2, DORIAN
1/1 28/27 16/15 4/3 3/2 14/9 8/5 2/1
063 112 498 702 765 814 1200
5. TRANSPOSITION BY 2/b

1/1 28/27 16/15 §/4 4/3 15/8 35/18 2/1
063 112 386 498 1088 1151 1200

6. TRANSPOSITION BY 2/4
1/1 36/35 28/27 16/15 9/7 4/3 27/14 2/1
049 63 112 435 498 1137 1200

6-18 provides examples of the resulting scales when the generating tet-
rachord is Archytas’s enharmonic, 28/27 - 36/35 - 5/4. In this case interval 2
equals 28/27 and b is 16/15 (28/27-36/35).

As some of these tetrachordal complexes have large gaps, one might try
combining two of them, one built upwards from 1/1 and the other down-
wards from 2/1 to create a more even scale, though there are precedents for
such gapped scales, i.e., the Mixolydian harmonia (6-4). While the normal
ascending or prime form of the tetrachord—the one whose intervals are in
the order of smallest, medium and largest—is used to demonstrate the
technique, any of the six permutations would serve equally well. In fact, Ar-
chytas’s enharmonic and diatonic genera are not strictly of this form as 28/
27 is larger than 36/3 5 and 8/7 is wider than 9/8.

The next class of tetrachordal complexes are those composed of a tet-
rachord and its inverted form. 6-1¢ lists some simple examples of this ap-
proach; 6-20 lists the resulting notes in Archytas’s enharmonic tuning.
These scales have six, seven, or eight tones.

7. TRANSPOSITION BY 9/8 & 3/2, HYPODORIAN
1/1 9/8 7/6 6/5 3/2 14/9 8/5 2/1
0204 267 316 702 765 814 1200
8. TRANSPOSITION BY 4/36

1/1 28/27 16/15 5/4 35/27 443 5/3 2/1
063 112 386 449 498 884 1200

. TRANSPOSITION BY 4/34
1/1 28/27 16/15 9/7 443 48135 12/7 2/1
063 11z 435 498 547 933 1200

10, TRANSPOSITION BY &/b
1/1 245/243 28/27 16/15 35/27 4/3 35/18 2/1
014 63 112 449 498 1151 1200

11. TRANSPOSITION BY b/a
1/1 36/35 28/27 16/15 192/175 4/3 48/35 2/1
049 63 112 161 498 561 1200
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6-19. Simple complexes of prime and inverted
forms. Two versions of the pseudo- (¥-) Hypodorian
mode are shown to illustrate the effect of reversing
the placement of the prime and inverted forms. The
twa scales are not modes of each other.

I. TRANSPOSITION AND INVERSION BY 4, 6 TONES, A HEXANY
1/1 a b 48/3b 4/3 4a/3 2/1

2. TRANSPOSITION AND INVERSION BY 4, 6 TONES, A HEXANY
1/1a b 4/3 4b/3a 4b/3 2/1
3. TRANSPOSITION AND INVERSION BY 4/3, 7 TONES, W-MIXOLYDIAN
1/1 a b 4/3 16/9b 16/9a 16/9 2/1

4. TRANSPOSITION AND INVERSION BY 3/2, 7 TONES, Y-DORIAN
1/1ab4/33/22/b2/a2/1

§. TRANSPOSITION AND INVERSION BY 2/5, 8 TONES, AN OCTONY
1/1 ab 4/3 2/b 4/34* 4/3ab 4/3b 2/1

6. TRANSPOSITION AND INVERSION BY 2/4, 8 TONES, AN OCTONY
1/1 a b 4/3 2/a 4/3a% 4/3ab 4/3a 2/1

7. TRANSPOSITION AND INVERSION BY 9/8 & 3/2, 7 TONES, W-HYPODORIAN I
1/1 9/8 3/2b 3/24 3/2 3a/2 3b/2 2/1

8. TRANSPOSITION AND INVERSION BY /8 & 3/2, 7 TONES, W-HYPODORIAN 2
1/1 9/8 9a/8 9b/8 3/2 2/b 2/a 2/1

9. TRANSPOSITION AND INVERSION BY I/1, 6 TONES, A HEXANY
1/1abq/3b4/3a 4/3 2/1
10. TRANSPOSITION AND INVERSION BY 4/3b, 8 TONES, AN OCTONY
1/1 2 b 4/3b 4/3 16/9b% 16/9ab 16/9b 2/1

I1. TRANSPOSITION AND INVERSION BY 4/34, 8 TONES, AN OCTONY
1/1 a b 4/3a 4/3 16/9ab 16/94° 16/9a 2/1

12. TETRACHORDAL HEXANY, 6§ TONES, A-MODE
1/1 b/a b 4/34 4/3 4b/3a4 2/1

I13. EULER'S GENUS MUSICUM, 8 TONES, AN OCTONY
I/1 a b ab 4/3 4s/3 4b/3 4sb/3 2/1

14. TRANSPOSITION AND INVERSION BY B/A, 8 TONES, AN OCTONY
1/1b/aa b 4/34 4/3 4b/3a2 4b/3a 2/1

I§. TRANSPOSITION AND INVERSION BY A/B, 8 TONES, AN OCTONY
1/1 4 b 4238 4/3b 4a/3b 4/3 a/b 2/1
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The 7-tone scales are analogous to the traditional Greek modes, whose

6-20. Simple complexes of the prime and inverted
forms of Archyvas’s enbarmonic, in ratios and cents.
Two versions of the ‘V-bypodorian mode are shown
to illustrate the effect of reversing the placement of
the prime and inverted forms. The two scales are

not modes of each other.

names are appropriated with a prefixed ¥ (for pseudo) to indicate their
relationship to the prototypes. Although these 7-tone scales were produced
by pairing a tetrachord with its inversion, in principle any two dissimilar
permutations would yield a heptatonic scale. This degree of flexibility is not
true of the 6- and 8-tone types for which the pairing of prime and inverted

forms is mandatory.

1. TRANSPOSITION AND INVERSION BY 4, 6 TONES, A HEXANY
1/1 28/27 16/15 35/27 4/3 112/81 21
063 112 449 498 561 1200

2, TRANSPOSITION AND INVERSION BY b, 6 TONES, A HEXANY
1/1 28/27 16/15 4/3 48/35 64/45 2/1
063 112 498 547 610 1200

3. TRANSPOSITION AND INVERSION BY 4/3, 7 TONES, Y-MIXOLYDIAN
1/1 28/27 16/15 4/3 §/3 12/7 16/9 2/1
063 112 498 884 933 996 1200

4. TRANSPOSITION AND INVERSION BY 3/2, 7 TONES, Y-DORIAN
1/1 28/27 16/15 4/3 3/2 15/8 27/14 2/1
063 112 498 702 1088 1137 1200

5. TRANSPOSITION AND INVERSION BY 2/b, 8 TONES, AN OCTONY
1/1 28/27 16/15 75/64 135/112 §/4 4/3 15/8 2/1
063 112 275 323 386 498 1088 1200

6. TRANSPOSITION AND INVERSION BY 2/4, 8 TONES, AN OCTONY
1/1 28/27 16/15 135/112 243/196 9/7 4/3 27/14 2/1
063 112 323 372 435 498 1137 1200

7. TRANSPOSITION AND INVERSION BY 9/8 & 3/2, 7 TONES,
W-HYPODORIAN I
1/1 9/8 45/32 81/56 3/2 14/9 8/5 2/1
0204 590 639 702 765 814 1200
8. TRANSPOSITION AND INVERSION BY 9/8 & 3/2, 7 TONES,
W-HYPODORIAN 2

1/1 9/8 7/6 6/5 3/2 15/8 27/14 2/1
0204 267 316 702 1088 1137 1200

9. TRANSPOSITION AND INVERSION BY I/1, 6 TONES, A HEXANY
1/1 28/27 16/15 §/4 9/7 4/3 2/1
063 112 386 435 498 1200

10. TRANSPOSITION AND INVERSION BY 4/3b, 8 TONES, AN
OCTONY
1/1 28/27 16/15 §5/4 4/3 25/16 45/28 5/3 2/1
063 112 386 498 773 821 884 1200

I11. TRANSPOSITION AND INVERSION BY 4/34, 8 TONES, AN
OCTONY
1/1 28/27 16/15 9/7 4/3 45/28 B1/49 12/7 2/1
063 112 435 498 821 870 933 1200

12. TETRACHORDAL HEXANY, 6 TONES, A-MODE
1/1 36/35 16/15 9/7 4/3 48/35 2/1
049 112 435 498 547 1200
13. EULER'S GENUS MUSICUM, 8 TONES, AN OCTONY

1/1 28/27 16/15 448/405 4/3 112/81 64/45 1792/1215 2/1
063 112 175 498 561 610 673 1200

14. TRANSPOSITION AND INVERSION BY /4, 8 TONES, AN OCTONY
1/1 36/35 28/27 16/15 9/7 324/245 4/3 48/35 2/1
049 63 112 435 484 498 561 1200
15. TRANSPOSITION AND INVERSION BY 4/B, 8 TONES, AN OCTONY

1/1 28/27 16/15 175/144 §/4 35/27 4/3 35/18 2/1
063 112 338 386 449 498 1151 1200
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6-21. The I 3 5 7 tetradic hexany. The factor 1 may
be omitted from: the three tones which contain it. This
diagram was invented by Ervin Wilson and repre-
sents the six tones of the bexanymapped over the six
vertices of the vegular octabedron (Wilson 1989).
Each triangular face is an essential consonant chord
of the bexany harmonic system and every pair of
tones separvated by a principal dingonal is a dis-
sonance. The keynote is 3-5.

I-3 3*5

1.7 3-7

I:9
NOTES AND INTERVALS OF HEXANY

/1 /6 4/3 7/5  8/5  2B/15 2/

7/6 8/7 1120 B8/7 7/6 15/14
¢ b a b c d

6-22. Consonant chords of the I 3 § 7 hexany.

Tetrachordal hexanies

The 6-tone complexes are of greater theoretical interest than either the
seven or 8-tone scales. Because of their quasi-symmetrical melodic strue-
ture, which is a circular permutation of the interval sequence cb 4 b c d (a,
b, ¢, and 4 not necessarily different intervals), they are members of a class
of scales discovered by Ervin Wilson and termed combination product sets
(Wilson 1989; Chalmers and Wilson 1982; Wilson, personal communica-
tion), The same structure results if interval 4 is replaced with interval 4 and
intervals 4 and ¢ are exchanged. A combination product set of six tones is
called a hexany by Wilson.

The notes of the hexany are the melodic expansion of the intervals of a
generating tetrad or tetrachord. They are obtained by forming the six
binary products of the four elements of the generator. If these four ele-
ments are labelled x, y, z, and w, the resulting notesare x - y, x - 2, x . w, y - 2,
y - w, and w - z. In the case where the generator is the dominant seventh
tetrad, 1/1 5/4 3/2 7/4, written in factor form as 1 3 § 7, the resulting hexany
is that of 6-21, where it has been mapped over the vertices of a regular
octahedron. This diagram has been named a “hexagram” by Wilson.

It is convenient to choose one of these tones and transpose the scale so
that it starts on this note. The note 3 - 5 has been selected in 6-21. This note,
however, should not be considered as the tonic of the scale; the combination
product sets are harmonically symmetrical, polytonal sets with virtual or
implicit tonics which are not tones of the scale. Although the hexany is
partiionable into a set of rooted triads (see below), the global 1/1 for the
whole set is not a note of the scale. In this sense, combination product sets
are a type of atonal or non-centric musical structure in just intonation.

The four elements of the generator are related to the melodic intervals
asx=1/1,y=bz=b.candw=a-b. ¢, although the actual tones may have to
be transposed or circularly permuted to make this relationship clearer.

CHORD  HARMONIC SUBHARMONIC
I35 L7 37 57 35 I'5 I3
137 5 35 57 37 7 13
157 3 35 37 57 7 L§
357 3 15 17 57 37 3%
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6-23. The tetrachordal bexany. Based on the
generating tetrad 1/1 a b 4/3. After transposition
by a, it is equivalent to complex 12 of 6-19 and
6-20.

The six tones of the hexany may be partitioned into four sets of three
tones and their inversions. In the hexagram or octahedral representation,
the 3-tone sets appear as triangular faces or facets. The triads of 6-21 are
tabulated in 6-22. These chords are the essential consonant chords of the
1-4/3 hexany, and all chords containing pairs of tones separated by diagonals are
considered dissonant.

Armed with this background, one can now proceed to the generation of
hexanies from tetrachords. Starting with the tetrachord 1/1 4 b 4/3 (the
generator of complex 12 in 6-19), the generative process and the re-
lationships between the notes may be seen in 6-23. Archytas’s enharmonic
(1/1 28/27 16/15 4/3; 28/27 - 36/35 - §/4; = 28/27, b = 16/15) is the specific
generator (see also 6-20, complex 1z). This hexany has been transposed so
that the starting note 1-4is 1/1.

Tetrachordal hexanies are melodic developments of the basic intervals
rather than harmonic expansions of tetrads. The triangular faces of tetra-
chordal hexanies are 2-interval subsets of the three intervals of the original
a-b tetrachord. Since this is basically a melodic development, the faces will be
referred to as essential subsets rather than consonant chords. (For the same

4-4/3 4-bh3

reason, the terms harmonic and subbarmonic are replaced by prime and in-
verted.) These hexanies may be partitioned into essential subsets as shown

NOTES AND INTERVALS OF HEXANY

4bl3a  2/1
4/3 48735 1

vVt ba b 438 4f3
/1 36/35 16/15 9/7 in 6-24.

The generator of complex 1 of 6-19 and 6-20 (inversion and trans-
position by 4) is the permuted tetrachord 1/1 5/ b 4/3 (1/1 36/35 16/15
4/3; 36/35 - 28/27 . 5/4; 4 = 36/35, b = 16/15). The generators of complexes

2z and g are 1/1 b/a b 4b/34 (1/1 36/35 16/15 48/35; 36/35 - 28/27 - 9/7) and

36/35 28/27 135/112 2B8/27 36/35 315/24
¢ b a b ¢ d

6-24. Essential subsets of the hexanies based on the SUBSET PRIME INVERTED T
tetrachords 1/1 a b 4/3 and 1/1 28/27 16/15 4/3 rab 43 qaly b3 ab ba
(Archytas’s enbarmonic). For the sake of darity, 1/1 & 4/3 b ab 4bf3 4al3 413 # e
the factor 1 (1/1) has been omitted from 143, 1-b, 1/1b 473 4 ab qa/3 4873 4/3 b

and 1-4/3. The - signs are also deleted. Both abah 2 b 4h 4b/3 4a/3 ab

bexanies are given in their umtransposed forms.

1/1 28/27 16/15
1/1 28/27 473
1/T 16/15 4/3
28/27 16/15 43

4/3 112/81 64/45
16/15 448/405 64/45
28727 448/405 112/81
28/27 16/15 4/3
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6~25. The 1 3 5 7 tetradic octony. This structure is
also an Euler’s genus (Fokker 1966; Euler 1739).

57

1.7

357

1/1

6-26. Essentinl chords of the 1 3 5 7 tetradic

octony.

CHORD
FACE

VERTEX

PRIME
1/11-3 1:5 37
1/11:5 1:§ 35
/1171557
1/11:31:51.7
1757 1/1 37
151/1573§
133537 1/1

DIAGONAL I/I §+7 35 37

INVERTED

571535357
175737357
133735357
357353757
1-51:335357
371317357
57 1:7 15 3:5:7
3571513147

35

I3

1/1b/ab 4/34 (1/1 36/35 16/15 9/7; 36/35 - 28/27 - 135/112) respectively. In
these hexanies, the tetrachordal generators are bounded by augmented and
diminished fourths rather than 4/3’, but the subset relations are analogous
to those with perfect fourths,

Tetrachordal Euler genera

The 8-tone complexes represent a different type of scale which may be
called an fnterval symmetric set (Chalmers and Wilson 1982; Chalmers
1983). These scales have the melodic sequence d ¢ b 4 4 ¢ d e which is ho-
mologous to the ¢ b 2 b ¢ d sequence of the hexany. However, these 8-tone
scales lack some of the harmonic and structural symmetries that char-
acterize the combination product sets.

Wilson has pointed out that these sets are members of a large class of
scales invented by Leonhard Euler in the eighteenth century and pub-
licized by A. D. Fokker (Wilson, personal communication). While they
have been given the generic name of octony in analogy with the hexany
and other combinadon product sets, the terms Euler genus or Euler-
Fokker genus would seem to have priority as collective names (Fokker
1966; Rasch 1987).

The generation of an octony from the 1 3 § 7 tetrad is shown in 6-25. In
this representation, the eight tones have been mapped over the vertices of
a cube. This diagram may be called an “octagram.” The octony may also
be partidoned into inversionally paired subsets, but the chords are gener-
ally more complex than those of hexanies derived from the same generator
(6-26). Chords considered as the essential consonances of a harmonic
system based on the octony appear not only as faces (face chords), but also
as vertices with their three nearest neighbors connected by edges (vertex
chords) or by face diagonals (vertex-diagonal chords) (Chalmers 1983).
Essential dissonances are any chords containing a pair of tones separated
by a principal diagonal of the cube.

With the exception of the generator itself and its inversion, each of the
4-note chords consists of the union of a harmonic and subharmonic triad
of the form 1/1 x y and x y xy. An analogous chord in traditional theory is
the major triad with the major seventh added, 1/1 5/4 3/2 15/8, which could
be construed as a major triad on 1/1 fused with a minor triad on 5/4.

As in the case of the hexany, octonies may be constructed from tetra-
chords and their inversions (6-27). The clearest example is complex 13 of
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6-27. The tetrachordal octony. This 8-tone Euler’s
genus is generated from the generalized tetrachord
a/aaby/3.

4613

4/3 4abl3

1/1 ab

6-~28. Essential subsets of the tetrachordal octonies
1/1aby/3 and 1/1 28/29 16/15 4/3 (Archytas’s
enbarmonic). The term essential subset rather
than consonant chord i employed as the
tetrachordal octony is primarily a melodic structure.

6-18 which is generated by the tetrachord 1/1 2 b 4/3. Its subset structure
is shown in 6-28. The generating tetrachord and its inversion appear as face
chords. The other chords are more complex intervallic sets. Like the
hexany above, the octony should be viewed as a melodic rather than a
harmonic development of the tetrachord.

The other 8-tone complexes of 6-19 are also octonies. The complexes
generated from Archytas’s enharmonic genus are listed in 6-20.

Tetrachordal diamonds

The next group of non-traditional tetrachordal scales is even more complex
than the previous constructions. The first of these are based on the Partch
diamond (Partch [1949)] 1974) which is an interlocking matrix of harmonic

NOTE AND INTERVALS OF OCTONY

/1 a4 b ab 4/3 44/3 4b/3 4ab/3 /1
/1 28/27 16/15 44B8/405 4/3  112/81  64/45 1792/1215 2/1
28/27 « 36/35 - 28/27 .- 135/112 - 28/27 . 36/35 - 28/27 - 1215/806
d ¢ b a b c d ]

SUBSET PRIME INVERTED
FACE 1/1 4/3 44/34 4ably ab b 4b/3
/T 4/3 4b/3b 4abl3 ab a 4a/3
1/1 a b oab 4ab/3 4b/3 qal3 4/3
VERTEX 1/t a b 4/ 4abl3y 4bly 4al3 ab
4/3 1/1 4af3 4bl3y ab qab/3 b a
4a/3 4 4/3 4abl3b ably ab 1/1
4bly 4/3 b 4abl3a ab qa/3 11
DIAGONAL  1/1 4b/3 4a/3 ab qably a b 473
FACE 1/1 4/3 112/81 28/27 1792/1215 448/405 16/15 64/45
1/1 4/3 64/45 16/15 1792/1215 448/405 28/27 112/81
1/1 28/27 16/15 448/405 1792/121§ 64/45 112/81 4/3
VERTEX 1/1 28/27 16/15 4/3 1792/1215 64/45 112/81 448/405
4/3 1/1 112/81 64/45 448/405 1792/1215 16/15 28/27
112/81 28/27 4/3 16/15 64/45 448/405 1/1 1792/121§
64/45 4/3 16/15 28/27 448/405 112/81 1/1 1792/1215
DIAGONAL I/1 64/45 112/B1 448/405 1792/1215 28/27 16/15 413
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6-29. Tetrachordal diamonds. The

octave modular tetrachordal digmond in
Archytas's enbarmonic tuning is shown

in 6-33.

chords built on roots that are the elements of the corresponding sub-
harmonic ones. An example of what is called a §-/imit diamond may be seen
in 6-30. This example has been constructed from harmonic 1 3 5; major
triads and subharmonic 1 3 §; or minor triads, The structure is referred to
as having a 5-limit because the largest prime number appearing among its
ratios is five. Diamonds, however, may be constructed from any chord or
scale of any cardinality, magnitude, or limit.

The simplest of the tetrachordal diamonds consists of ascending tetra-
chords erected on the notes of their inversions. Either the octave or the
4/3 (numbers 1 and 2 of 6-29) may be used as the interval of identity in the
diamond. In the latter case, the resulting structure is one of the rare ex-
amples of musical scales in which the octave is not the interval of
equivalence,

The second group of diamond-like complexes employs entire heptatonic
scalesin place of triads or tetrachords as structural elements. Four examples
are given, all derived from scales of the Dorian or ¥-Dorian type in which .
prime or inverted tetrachords appear in either or both positions relative to
the central disjunctive tone (6-29, numbers 2, 4, §; and 6-34). The prime-
prime and inverted-inverted diamonds have prime or inverted tetrachords
in both halves of the generating scales. Because of the inversional symmetry

I. THIRTEEN TONE OCTAVE MODULAR DIAMOND
1/1 b/a a b 4/3b 4/34 4/3 3/2 3a/2 3b/2 2/b 2/a a/b 2 /1

2. EIGHT TONE FOURTH MODULAR DIAMOND
1/1a b 4/3b 4/3a 48/3b 4/3 4b/3a

3. PRIME—FRIME AND INVERTED-INVERTED HEPTATONIC DIAMONDS, 27 TONES
1/t b/a a B 9/8 9a/8 ob/8 4/3b 4/3a 4al1b 4/3 4b/3a 4a/y 3/2b 4513 3/24 38/2b 3/2 3b/24 3/2

3b/2 16/9b 16/94 16/9 2/b 2/a a/b 2/1

4. PRIME-INVERTED HEPTATONIC DIAMOND, 2 § TONES

1/1 bla ab % ab o/8 1% 4/3b 4/3a 4/3 4af3 3/2b 4b/33/24 3/2 3a/2 3b/2 2/82 16/ 2/ab 214 2/b

2/a a/b 2/1

5. INVERTED-PRIME HEPTATONIC DIAMOND, 2§ TONES

1/1 b/a a b 9/8 9a/8 gb/8 9a%/8 gab/8 4/3b 9b*/8 4/3a4/3 3/2 38/2 16/98? 3b/2 16/9ab 16/947

16/0b 16/9a 16/92/b 2/a a/b 2/1
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6-30. Five-limit Partch diamond, after “The In- é Thi

cipient Tmality Diamond® (Parich [1945] 197+, .—31. irteen-tone octave modular tetrachordal
110). Based on the 13 5 major triad 1/1 §/4 3/2 and & .

its inversion, the subbarmonic 1 3 § minor triad 2/1

8/54/3.

6-31., Eight tone fourth modular diamond. Based on 6-33. Thirteen-tone octave modular tetrachordal
the tetrachord 1/1 a b 4/3, with 4/3 as the interval diamond based on Archytas’s enharmonic genus.
of equivalence.

9%
B

S
2SS ‘%@3@
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6-34. Tetrachordal bepratonic diamonds. These
tables may be rotated 45 degrees clockwise to bring
the diagonal of 2/1’s into vertical position and comn-
pared 10 fignires 6-30-3 3. The scale derived from the
prime foram of the tetrachord is seen in the rightmost
colurmmn and its inversion in the bottom row.

PRIME—PRIME

of the diamond, both scales are identical. The prime-inverted and in-
verted-prime diamonds are constructed from the corresponding tetra-
chordal forms and are non-equivalent scales, as in general, tetrachords are
not inversionally symmetrical intervallic sequences. 6-35 and 6-36 show
examples of these diamonds based on Archytas’s enharmonic genus and its
inversion.

Stellated tetrachordal hexanies

The last of the non-traditional tetrachordal complexes to be discussed are
two examples of stellated hexanies. Hexanies may be stellated by adding the
eight tones which complete the partial tetrad or tetrachord on each face
(Wilson 1989; Chalmers and Wilson 1982). The result is a complex of four

PRIME—INVERTED

/1 bla b ob/8 3/2 3bl2a 3b/2 /1 bla 4/3a 3/28 2/8b /a2 2/a
alb 2/t a4 9a/8 3ahb 3/2 38/2 alb 2/t 4/3b 3/2b 2/b2 2/ab /b
2/b s 1 9/8 32b 328 32 3¢z 3p/a /1 9/8 3/2b 3/22 32
16/9b 168/9a 16/9 /1 43b 4738 4/3 4a/3  4b3 16/9 /1 4/3b 438 4f3
43 a4bf3a 4By 32 2.1 bla b ab bz 4b/y 32 21 ba b
aal3b 43 4al3 38z alb 2N a a2 ab  galy 342 albh 21 a
43b  4/3a 473 32 b 2/a 1/t a b 473 32 2/b 2/a 11
INVERTED—INVERTED INVERTED—PRIME
/1 bla  4R3b 3/2a  3/2 3b2a 2/a 2/1 bla b ob/B 9ab/8 ¢b2/8 3b/2
alb /1 4qRb 32k 3a2b 32 2/b alb 2/t 4 9a/8 ou2/Boabl8 3a/2
342 3b/2 2/t 9/8 galb obla  3/2 2/b 2/a 2/t 9/8 9a/8 ob/8 3/2
4al3 b3 16/9 21 a b 4/3 16/9b 16/9a 16/9 /1 a b 4/
4/3  4bl3a 16/9a 2/a v bla  4/3a 16/0ab 16/9a2 16/9a 2/a  2/1 bla 4/3a
4ai3b 4/3 16/9b /b alb 21 4/3b 16/9b2 16/9ab 16/9b 2/b  alb  2/1 4/3b
a b 43 32 3ar b2 11 4/3b 4/38  4/3 32 382 32 11
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prime and four inverted tetrachords with a total of fourteen tones, though
certain genera may produce degenerate complexes with fewer than 14 dif-
ferent notes. Wilson has variously termed these structures “mandalas” from
their appearance in certain projections, and “tetradekanies” or “de-
katesseranies” from their fourteen tones. Their topology is that of Kepler’s
stella octangula, an 8-pointed star-polyhedron (Coxeter 1973; Cundy and
Rollett 1961).

The prime form of the tetrachord 1/1 4 b 4/3 generates the hexany tones
a, b, 4/3, 44/3, 4b/3 and ab (& = 1/1-a or 1.4, etc.). This hexany is equivalent

6-35. Tetrachordal diamonds based on Archytas's enbarmonic, in ratios and cents.

I3-TONE OCTAVE MODULAR DIAMOND
1/1 36/35 28/27 16/15 5/4 9/7 4/3 3/2 14/9 8/5 15/8 27/14 35/18 2/1
o 49 63 112 386 435 498 702 765 814 1088 1137 1I5T 1200

8-TONE TETRACHORD MODULAR DIAMOND

/1 28/27 16/15 5/4 9/7 35/27 4/3 48/35
°c 63 112 386 435 449 498 547

PRIME-PRIME AND INVERTED-INVERTED HEPTATONIC DIAMONDS, 27 TONES L
/1 36/35 28/27 16/15 o/8 7/6 6/5 5/4 o7 35/27 4/3 48/35 112/81 . .
o 49 63 112 204 267 316 386 435 449 498 547 561

45/32 64/45 81/56  35/24 32 54/35 4/9 85 s/3 r2/7  16/9  15/8  27/14  35/18 2/t
590 610 639 653 702 751 765 814 884 0933 996 1088 1137 II§I 1200

PRIME-INVERTED HEPTATONIC DIAMOND, 25 TONES
1/1 36/35 28/27 16/15 784/729 448/405 o/8 256/225 5/4 o/7 4/3 112/81

o 49 63 112 126 175 204 223 386 435 498 561

45/32 64/45 81/56  3/2 149  8/5 225/128 16/9  4o05/224  729/392  15/8 27/14  35/18 2/1

5G0 610 639 702 765 814 977 996 1025 1074 1088 113y  II15I 1200
INVERTED-PRIME HEPTATONIC DIAMOND, 2§ TONES

1/1 36/35 28/27 16/15 o/8 7/6 6/s 98/81 56/45 5/4 32/25

o 49 63 112 204 267 316 330 379 386 427

9/7 43 3/2 14/9 25/16 8/5 45/28 81/49 5/3 12/7 15/8 27/14 35/18 2/1 16/9
435 498 702 765 773 814 821 870 884 933 996 1088 1137 II§I 1200
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6-36. Tetrachordal bepratonic diamonds based on Archytas’s enbarmonic. The

generating tetrachords are 1/1 §/4 9/7 4/3 and 1/1 28/27 16/15 4/3.

PRIME~PRIME

PRIME—INVERTED

2/t 36435 16/15 6/5 3/2 54/35 8/5 2/t 36735 9/7 81556 405/224 720/392 27/14
35/18 2/t 28/27 7/6 35/24 32 14/9 35/18 2/1 5/4 45/32  225/128 405/224 15/8
15/8  27/14 11 o/8 45732 Bif6 3/2 14/9 8/5 /1 o/8 45/32 81/56 3/2
573 12/7 16/9 2/1 5/4 o/7 4/3 112/81  64/45 16/9 2/1 5/4 o/7 4/3
453 48535  64/45 8/5 2/t 36/35 16/15 448/405 256/225 64/45 8/5 2/1 36/35 16/15
35/27 453 112/81 14/9 35/18 2/1 28/29 784/720 448/405 112/81 14/9 35/18 2/t 2B/2y
5/4 9/7 4/3 32 15/8  27/14 1/1 28/27 16/15 473 3/2 15/8 27/14 1/1
INVERTED-INVERTED INVERTED—PRIME
2/1 36/35 o/7 81/56 3/2 5435 27/14 /1 3635  16/15 6/5 56/45 32/25 8/5
35/18 2/1 5/4 45732 35/24 3/2 15/8 35/18 2/1 28/27 7/6 08/81  56/45 14/9
14/9 8/5 2/1 o/8 7/6 6/5 3/2 15/8 27/14 2/1 o/8 7/6 6/5 3/2
112/81 64/45 16/9 2/1 2827 16/15 4/3 5R 12/7 16/9 /1 2827 16/15 4/3
4/3 48435 12/7 27/14 2/1 36735 9/7 45/28 81/49 12/7 27/14 2/1 36735 9/7
35/27 43 573 15/8 35/18 2/1 5/4 25/16  45/28 5/3 15/8 35/18 2/1 5/4
2827  16/15 4/3 3/2 14/9 8/5 1/1 5/4 9/7 473 3/2 14/9 8/5 1/1

6-37., Stellated bexanies generated by the prime tetrachord 1/1 a b 4/3. The bexany notesarea, b, 3/3, ab, ga/3, and 4b/3, The
8 extra notes are (1/1)2=1/1, 2% b2, 16/9, 3ab/2, gab/3, 4a/3b, and 4b/3a. The second stellated bexany is based on number 1 of
figure 6-29. Instances of each are based on Archytas’s enbarmonic. The first is generated by prime tetrachord 1/1 28/27 16/15
4/3. The bexany notes are 28/27, 16/15, 4/3, 448/405, 112/81, and 64/45. The second is based on (1) of 6-20.

1/1

~

I

1/1

~
-

I

q

FIRST STELLATED TETRACHORDAL HEXANY

b a ab

63 112 126 175 223

b/a

49

449 498 547

B qal3b 4/3 4bfza
1 28/27 16/15 784/720 448/405 256/225 35/27 4/3 48/35 112/81 64/45 1792/1215 224/135 16/9 2/1
561 610 673 877

4al3  4b/3

SECOND STELLATED TETRAGHORDAL HEXANY
483 4bl3 4b’Ra 3Wha 16/y 21
36/35 1206/1225 16/15 192/175 256/225 9/7 4/3 48/35 112/81 64/45 256/175 288/175 16/9 2/1

b?/g? b b%/a »

08 1z 161 223

4738 4/3 4bla

435 498 547

561 610
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6-138. (a) Essential tetrachords of the first stellated
bexany. For the sake of clarity, the factor 1 (1/1)
bas been omitted from 1 -2, 1-b, 1. 4/3, etc. The
- signs are also deleted, The boldfaced notes in each
chord are the starting notes of the prime and
inverted tetrachords, 1/Tab 4/3 and 4/3 4/3a

4/3b 1/1.

PRIME
/1 a4 b 4f3
4/3 44/34b/316/9
b ab b 4bf3
a a2 ab 4af3
¥Yr a4 b 4Ah

INVERTED
43 4732 438 11
ab b 2 3ab/2

4013 4/3 4af3b &

4bl3 abl3e 4/3 b

4abl3 4bl3 4al3  ab

to complex 12 of 6-19 when transposed so as to begin on the tone 4. The
stellated form of this hexany is the first of 6-37, while complex 1 of 6-19
yields the second of 6-37. The eight supplementary tones of the first stel-
lated hexany are 1/1, 42, B2, 16/9, 44/3b, 44b/3, 34b/2, and 4¥/34. These notes
may be deduced by inspection of 6-23, the tetrachordal hexany. The first
four extra notes are the squares of the elements of the generator, 1/1, 42, ¥,
and 16/9 (x%,y?, 22, and w?) from 1/1 4 b and 4/3. The remaining four notes
are the mixed product-quotients needed by the subharmonic faces. These
have the form xy.2/w (3ab/2), xy-w/z (4a/3b), x-zwly (4b/34), and y-z-w/x
(4ab/3). Two stellated hexanies based on Archytas’s enharmonic are shown
in 6-37.

The notes of the second type of stellated hexany of 6-30 are derived
analogously by replacing # in the prime tetrachord with &/z. The tetra-
chord 1/1 28/27 16/15 4/3 in the first type is thus replaced by 1/1 36/35
16/15 4/3.

The essential tetrachords of the first stellated hexany are seen in 6-38,
and those of the second may be found by analogy. The component tetra-
chords of the first stellated hexany derived from Archytas’s enharmonic are
listed in 6-39. Those of the second kind may be derived by replacing the
28/27 of the first tetrachord with 36/35. The other tetrachordal hexanies
of 6-18 also generate stellated hexanies, but their tetrachords are bounded

by intervals other than 4/3.

6-39. Essential tetrachords of the 1/1 28/27 16/15

4/3 stellated hexany.

PRIME INVERTED

1/1 28/27  16/15 4/3 473 o/7 5/4 1/x
4/3 112/81  64/45 16/9 448/405 16/t5  28/27 224/135
16/15 448/405 256/225 64/45 112/81 473 35/27 28/27
28/27 7847729 448/405 112/81 64/45 48735 4/3 r6/15
1/t 28/27  16/15 473 1792/1215  64/45 112/81 448/405
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7 Harmonization of tetrachordal scales

ScALEs BASED ON tetrachords are found in the musics of a large part of the
world. Although much of this music is primarily melodic and heterophonic,
this is due neither to the intrinsic nature of tetrachords nor to the scales
derived from them. Rather, it is a matter of style and tradition. Many, if not
most, tetrachordal scales have harmonic implications even if these im-
plications are contrary to the familiar rules of European tonal harmony.

The melodies of the ancient Greeks were accompanied by more or less
independent voices, but polyphony and harmony in their traditional senses
appear to have been absent. “A feeling for the triad,” however, does appear
in the later Greek musical fragments, but this may be a modern and not
ancient perception (Winnington-Ingram 1936).

The scales of North Indian music are also based on tetrachords (Sachs
1943; Wilson 19864, 1987). In this music, drones emphasizing the tonic
and usually the dominant of the scale are essential elements of per-
formance. Their function may be to fix the tonic so that ambiguous inter-
vals are not exposed (chapter § and Rothenberg 1969, 1978).

Islamic music of the period of the great medieval theorists Al-Farabi,
Safiyu-d-Din, and Avicenna (Ibn Sina) was likewise heterophonic rather
than harmonic (Sachs 1943; D’Erlanger 1930, 1935, 1938). In recent times,
however, some Islamic groups have adopted certain elements of tonal

harmony into their music.

Harmonizing tetrachordal scales

Many tetrachordal scales are nevertheless suitable for harmonic music. The
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7-1. Endogenous harmonization of tetrachordal
scales. The addition of the subtonic g/8 below 1/1 to
the enbarmamic and chromatic genera where it was
called byperbypate is attested both theoretically and
musically (Winnington-Ingram 1936, 25). The
dotted lines indicate the lower octave of the
dominant of the triads on 4/3.

(8/9) 1/1 a ab 4/3 3/2 38/12 3abl2 2/1 (9/4)

7-2. Endogenous barmonization of Archytas’s
enbarmoni.

(8/9) 1/1 28/27 16/15 4/3 3/2 14/9 B/5 2/1

Lydian mode of Ptolemy’s intense diatonic genus is the just intonation of
the major mode. The diatonic Arabo-Persian scale bbidjazi, is more con-
sonant than the r2-tone equal-tempered tuning of the major scale
(Helmbholtz [1877] 1954).

Harry Partch pointed out that many of the other tetrachordal genera
also have harmonic implications which may be exploited in the context of
extended just intonation (Partch [1949] 1974). As an example, he offered
Wilfrid Perrett's harmonization of a version of the enharmonic tetrachord,
Partch added a repeat to Perrett’s progression and transposed it into his
43-tone scale (Partch [1949] 1974; Perrett 1926).

Partch also challenged his readers to limit themselves to the notes of the
scale. 7-1 depicts the triadic resources of a generalized tetrachordal scale in
which both tetrachords are identical. The dark lines delimit triads which
are available in all genera while the light ones indicate chords which may
or may not be consonant in certain genera.

The three sub-intervals of the tetrachord are denoted as 4, b, and 4/34#,
resulting in the tones, 1/1, 4, 4b, and 4/3, duplicated on the 3/2. Because
there is both musical and literary evidence for the customary addition of the
note hyperhypate a 9/8 whole tone below the tonic in the enharmonic and
chromatic genera (Winnington-Ingram 1936, 25), it has been included.
The inversion of this interval has also been added to allow the construction
of a consonant dominant triad in some genera or permutations.

‘The types of these triads depend upon the tuning of the tetrachord. In
Archytas’s enharmonic genus, the triads on 4/3 and 8/¢ will be septimal
minor, 6:7:9. The triad on # (28/27) is the septimal major triad, 14:18:21.
The triad on ab (16/15) is a major triad, 4:5:6, and the alternative triads on
4/3 and 8/9, are minor, 10:12:15. The tonal center appears not to be the
1/1, but rather the 4/3 or mese. These chords are shown in 7-2.

The tonal functions of these triads are determined by the mode or cir-
cular permutation of the scale. The Lydian or C mode of Ptolemy’s intense
diatonic, in its normal form, 16/15 - 9/8 . 10/9, is the familiar major mode
with 4:5:6 triads on 1/1, 4/3, and 3/2. The reverse arrangement of this
tetrachord, 10/9 - 9/8 . 16/15, generates the natural minor mode with
10:12:15 or subharmonic 4:5:6 triads on these degrees. This scale is not
identical to the Hypodorian or A mode of the first scale because that scale
has a 27/20 rather than a 4/3 as its fourth degree. The chordal matrices and
tetrachordal forms of these scales are shown in 7-3.
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=-3. The 4:5:6 triad and its derived tritriadic scale.
The tritriadic or matrix forns is the C or Lydian
mode of the tetrachordal scale. The tonic of the triad
is denoted tor 1/1, the third or mediant, m and the
fifth or dominant, d. The tetrachordal form is the E
or Dorian mode of the tritriadic scale.

SUBDOMINANT 4/3 §/3 2/1 2/d m/d 2/
TONIGC 1/1 5/4 3/2 11 md
DOMINANT 3/2 15/8 9/8  d dm &2

/1 9/8 5/4 4/3 32 §5/3 15/8 2/t

9/8 - 10/9 - 16/15 - 9/8 - 10/9 - 9/8 - 16/15

THE TETRACHORDAL FORM
1/1 168/15 6/5 4/3 32 85 ofs aft
16/15 - 9/8 - 10/9 - 9/8 - 16/15 - 9/8 - 10/9

(16/15 - 9/8 « 10/0)

THE 10:12:1§ TRIAD & ITS DERIVED TRITRIADIC

SCALE
SUBDOMINANT 4/3 8/5 2/1 2/d m/d 2/1
TONIC 1/x 6/5 3/2 1/1 md
DOMINANT 3/2 9/5 o/8 ddmd

/1 9/8 6/5 4/3 3/2 8f ol 2/t
9/8 - 16/15 - 10/9 - 9/8 - 16/15 - 9/8 - 10/9

THE TETRACHORDAL FORM
1/1 10/9 5/4 4/3 32 §/3 15/8 2/t
10/ - 9/8 . 16/15 - 9/8 . 10/9 - 9/8 .« 16/5

(x0/9 - 9/8 . 16/15)

The seven modes or octave species of the reversed tetrachord scale are
the exact inversions of those of the major scale above. The C mode of this
scale is the diatonic scale of John Redfield (1928, 191-197). Redfield as-
signed Hebraic names to these modes and termed the triads with the
comma-enlarged fifth “Doric.”

The mode that is the inversion of the major scale may be harmonized
with three triads built downwards from 2/1, 3/2, and 4/3. An otherwise
obscure composer named Blainville wrote a short symphony in this scale
and was ridiculed by Rousseau for doing so (Perrett 1931; Partch [1949)]
1974). This kind of inverted harmony was called the phonic system by the
nineteenth and early twentieth century theorist von Ottingen (Helmholtz
[1877] 1954; Mandelbaum 1961) in contrast to the traditional tomic
system.

Tritriadic scales

The scales derived from tetrachords with ¢/8 as their second interval may
be called tritriadics because they may be divided into three triads on the
roots 1/1, 4/3, and 3/2. They are harmonizable with analogs of the familiar
11v (1) v 1and 1 1v (vm) m vi (1) v 1 progressions (Chalmers 1979, 1986,
1987, 1988).

In general, however, the vir and 11 chords will be out of tune (Lewin
1982) and probably should be omitted in the progressions unless extra
notes are employed. The composer Erling Wold, however, has made a case
for a more adventurous utilization of available tonal resources (Wold
1988). Partch ({1949] 1974) has done so too in a discussion of a letter from
Fox-Strangways concerning the alleged defects of just intonation and their
effect on modulation.

The three primary triads on 1/1, 4/3, and 3/2 are of the same type, but
the triads on the third {mediant) and sixth (submediant) degrees are of the
conjugate or 3/2’s complement type. For example, the primary triads of
number 1a of 7-4 are major, while the mediant and submediant triads are
minor. In number 1b, the modalities are just the reverse. In addition to the
principle triads of these scales, triads on other degrees may also be usable.
Similarly, in some tunings, seventh or other chords may be useful.

Phonic or descending harmonizations are also possible in certain modes
of tritriadic scales. Lewin, in fact, proposes what might be called both
phonic major and minor harmonizations (Lewin 1982).

I290 HARMONIZATION OF TETRACHORDAL SCALES




7-4. Tritriadic tetrachords. Istands for “improper,”
and SP for “strictly proper” (Rothenberg 1969,
1975, 1978). In just intonation, tritriadic scales are
either strictly proper or improper.

TRIAD MED. CTS TETRACHORD
IA. 4:5:6 5/4 386 16/15.9/8-10/9
IB. I0:12:1§ 6/5 316 10/9.9/8.16/15
24 6719 7/6 267 8/7.9/8.28/27
2B, 141821 9/7 435 28/27.9/8.8/7
34 1822027 11/ 347 12/11.9/8.88/81
22:27:33  27/22 355 88/81.9/8.12/11
26:32:39  16/13 359 13/12.9/8.128/117
32:3948 39/32 342 128/117.9/8.13/12
22:28:33  14/11 418  22/21.9/8. 112/99
§B. 2813342 33/28 284 112/99.9/8.22/21
6a.  10:I13115 13/10 454 40/39-9/8-52/45
68. 26:30:39 15/13 248  52/45-9/8-40/39
7a. 22:26:33  13/11 289 44/39-9/8 - 104/99
78 26133339 33/26 413 104/99-9/844/39
A 141721 17/14 336 56/51-9/8.68/63

$EEE

The generalized triad is denoted as 2:m1:d, after Lewin (1982), where ¢ is
the tonic, 7 the mediant, and 4 the dominant. In principle, any tetrachord
containing the interval 9/8 can be arranged as a tritriadic generator, but the
majority of the resulting triads will be relatively discordant. If the mediant
of a triad is denoted by m, then the tetrachord has the form 4/3m - 9/8 .
8m/g, where 4/3m - 8m/g = 32/27. The conjugate tritriadic scale is generated
by the permutation 8m/9 - 9/8 - 4/3m. The magnitude of » may range from
9/8 to 4/3 and generate a seven tone tritriadic scale, though the Ro-
thenberg propriety (chapter 5) of the scale and the consonance of the triads
will depend of the value of 71,

Triads with perfect fifths (4 = 3/2) whose mediants () are greater than
32/27 and less than 81/64 generate strictly proper scales (chapter §; Ro-
thenberg 1969, 1975, 1978; Chalmers 1975). Strictly proper scales tend to
be perceived as musical gestalts and are used in styles where motivic
transposition is an important structural element. Improper scales, on the
other hand, are usually employed as sets of principal and auxiliary or or-
namental tones.

Only a limited number of acceptably consonant triads exist in just in-
tonation and also generate useful tritriadic scales. The most important of
these have been tabulated in 7-4. As indicated above, triads 1a and 1b
generate the major and natural minor modes, and 2a and 2b generate the

PROPRIETY
sp 88. 34:42:51 21/17 366 68/63.0/8.56/51 SP
SP oA. 16:19:24 19/16 208 64/57-9/8 . 19/18 1
I 98. 38:48:57 24/19 404 19/18.9/8.64/57 1
1 10A. 64:81:06 81/64 408 256/243-9/8.9/8 1
SP I0B. 54:64:81 32/27 204 0/8.9/8-256/243 I
sP I1a. 26:34:39 17/13 464 s2/51.9/8-136/11 ¢
sP IIB. 34:39:51 39/34 238 136/117.9/8.52/51 1
sp 124, 14:16:21 8/7 231 7/6-9/8-64/63 1
1 I2B. 16:21:24 21/16 471 64/63-9/8 - 7/6 1
I I3A. 20:23:30 23/20 242 80/69.9/8-46/45 1
I 13B. 46:60:69 30/23 460 §6/45-9/8.80/69 1
1 I4a. 18:23:27 23/18 424 24/23-9/8.92/81 1
I I4B. 46:54:60 27/23 278 92/81.9/8.24/23 I
1 154, 38:46:57 23/19 331 1B4/171.9/8.76/69 s
sP 158, 46:57:69 §7/46 371 76/69.9/8 - 184/171 sp
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7-5., Mixed tritriadic scales. The triads are 4:5:6
and 6:7:9. (Pecle 1850). Mixed scales may ofien be
decomposed into two tetrachords and a disjunctive
tone it more than one way. Farnsworth’s scale is a
mode of Poole’s. It may be construed as a tonic major
triad, a dominant seventh chord, or a septimal minor
triad (6:7:9) on the supertonic (Farnsworth 1958,
1969).

POOLE’S “DOUBLE DIATONIC” OR
“DICHORDAL SCALE”
SUBDOMINANT 4/3 §/3 2/1 2/d x2/1
TONIC 1/15/4 3/2 1/1md
DOMINANT 3/2 7/4 9/8 dsd?

/1 o/8 /4 4/3 3/2 §5/3 /4 2/t
9/8.10/9 - 16/15 - 9/8 - 10/9 « 21/20 - 8/7

ALTERNATE TETRACHORDAL FORM
/1 10/9 7/6 4/3 3/2 §5/3 16/ 2/1
16/9 - 21/20. 8/7 . 9/8 - 10/9 + 16/15 - 9/8

FARNSWORTH’S SCALE
SUBDOMINANT 21/16 27/162/1  dsd? 2/d
TONIC 1/1 5/4 3/2 /1md
DOMINANT  3/2 15/89/821/16 ddmdlds

1/1 9/8 s5/4 21/16 3/2 27/16 15/B 2/1
9/8 - 10/9 + 21/20- 8/7 - 9/8 - 10/9 - 16/15

TETRACHORDAL FORM

1/1 o/8 /4 4/3 32 /3 /4 /1
9/8 - 10/9 « 16/15 - 9/8 . 10/9 - 21/20 - B/7

corresponding septimal minor and septimal major scales. The septimal
minor or subminor scale sounds rather soft and mysterious, but the sep-
timal major is surprisingly harsh and discordant. Triads ga and gb are vir-
tually equally tempered and sound very much like their r2-tone
counterparts, The scales based on 10a and 10b are the Pythagorean tunings
of the major and minor modes in which the thirds are the brilliant, if
somewhat discordant, 81/64 and 32/27.

Triads with undecimal, tridecimal, and septendecimal thirds (numbers 3a—
8b of 7-4) are less consonant than those discussed above. However, these
triads are stll relatively smooth and may be useful in certain contexts.
Their tetrachords are also interesting melodically as they approximate
certain medieval Islamic and neo-Aristoxenian genera (chapter 4). The
tetrachords generated by the even less harmonious triads 24:31:36,
64:75:96, 34:40:51, 30:38:45, and 24:29:36 and their conjugates will be
found in the Main Catalog.

Scales with mixed triads

Tritriadic scales may also be constructed from triads with different med-
iants, provided that 4 remains 3/z. An example where the tonic and sub-
dominant triads are 4:5:6 and the dominant triad is 6:7:9 is shown in 7-§
(Helmholtz [1877] 1954, 474)- The tetrachordal structure may be de-
scribed as 9/8 - 8m/g - 4/3m (where ms is the mediant of the tonic triad) for
the lower tetrachord and 2x/3 - s/x - 2/s (where x and s are the sixth and
seventh of the scale) for the upper tetrachord. However, as 7-5 indicates,
mixed tritriadics may often be divided into two tetrachords and a dis-
junctive tone is more than one way.

Farnsworth’s scale, also shown in 7-§, is 2 mode of Poole’s Double Di-
atonic (Farnsworth 1969). It may be construed as a major triad on 1/1, 2
dominant seventh chord on 3/2, and a subminor triad (6:7:9) on 9/8.

In chapter s, the limits on the propriety of mixed modes are discussed.

Ellis’s duodenes

Composers may find the intrinsic harmonic resources of tetrachordal
scales rather sparse, even with the addition of one or more historically
motivated supplementary tones, Two simple remedies immediately come
to mind. One is to enlarge the chain of chordal roots of tritriadic scales
to encompass four or more triads. This procedure may tend to hide the
tetrachords beneath a mass of chords, but by way of compensation,
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7-6. Pentatriadic scales. A pentarriadic is an ex-
pansion of a tritriadic by the addition of the sub-
dominant of the subdominant and the dominant of
the dominant. An alternative form. bas a third
dominant in place of the second subdominant and is
a made of the scale above.

more tetrachords are created. The process may be seen in 7-6. The parent
tritriadic scale contains five tetrachords, all of which are permutations of
16/15-9/8-10/9 (112 + 204 + 182 cents). The new pentatriadic scale contains
42 tetrachords of six different genera.

The second solution is to extend both the 4 and zz axes to generate
structures analogous to A. J. Ellis’s duodenes, the twelve note “units of
modulation” in his theory of just intonation in European tonal harmony
(Helmbholtz [1877] 1954). The duodene generated from the 4:5:6 triad and
some analogs generated by other triads are illustrated in 7-7. These scales
likewise consist of large numbers of tetrachords of diverse genera in a

harmonic context.

Perrett’s harmonizations

Wilfrid Perrett, an English theorist, developed some highly imaginative, if
controversial, ideas about Greek music and its early history. In Somze Ques-
tions of Musical Theory, Perrett harmonized a version of the enharmonic tet-
rachord (21/20 - 64/63 - §/4) which he attributed to Tartini, but it is more
likely that Pachymeres has priority. Perrett used familiar tonic, sub-
dominant, and dominant chord progressions by adding tones, effectively
embedding the tetrachord in a larger microchromatic gamut (Perrett 1926,
1928, 1931, 1934). It is this harmonization that Partch quoted in Genesis of

THE 4:§:6 TRIAD AND A DERIVED PENTATRIADIC SCALE

16/9 10/9 4/3 2/ m/d? 2/d
SUBDOMINANT 4/3 5/3 2/1 2/dm/d 2/1
TONIG 1/1 5/4 3/2 1/1md
DOMINANT 3/2 15/8 9/8 ddm d?

9/8 45/32 27/16 &2 md? &3

1/1 10/9 o/8 s5/4 a3 4532 3/2 §/3 29/16 16/9 15/8 /1
10/9-81/80-10/9-16/15-135/128-16/15-10/9-81/80-256/243-135/128-16/15

TETRACHORDS IN SCALE

RATIOS CENTS NUMBER
1. 81/80-256/243 - 5/4 22 + 90 + 306 3
2. 256/243 - 135/128-6/5 9o +92 + 316 3
3. 135/128- 16/15-32/27 92+ 112 +204 8
4. 81/80-10/9 - 32/27 22 +182 + 294 7
5. 16/15-9/8 . 10/9 I12 +204+ 182 18
6. 256/243 - 9/8 - 9/8 00 +204 + 204 3
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7-7. Elis’s duodenes. This table is based on Helm-
holtz [1877] 1954, 457-464. The axes bave been re-
versed from the original inwhich the chain of 3/2’s
was vertical. Note the interlocking prime (major)
and conjugate (minor) triads. The 4:5:6 duodene
comtains 54 tetrachords of diverse genera. 10:12:15
is & conjugate duodene which should be compared
with the one above of which it isnot a “mode.” It con-
tains 48 vetrachords of different genera. 6:7:9 isa
non-tertian duodene. It contains 62 tetrachords of
various genera.

7-8. Perrett’s harmonization of Pachymeres'’s en-
barmonic. The nunthers under the nove ratios repre-
_ sent the harmonic factors or Parwch “Identities” of the
chords. The uppermost voice comtains the tones of the
tetrachord. The ratios of each of the chordal com-
ponents are shown below. Asterisks indicate the roots
of barmonic chords, “Otonalities™ in Partch s no-
menclature. The 28/15 does not occur in the Partch
gamut, but a transposed version is available in
Partch’s system starting on 1/1 = 5/3. The pitches of
the tetrachord then become 5/3 7/4 16/g and 10/9.

a Music (Partch [1949] 1974, 171). Perrett placed the tetrachord in the so-
prano voice and added sufficient extra tones in the lower registers to obtain
the desired chord progression. 7-8 simplifies Partch’s presentation by leav-
ing out the repeated chords under 16/135, 21/20, and 1/1 that follow the one
under 4/3, and by transposing the pitches from §/3 to 1/1.

Pertett also devised harmonizations for a number of other tetrachords
listed by Ptolemy. These harmonizations are shown in 7-¢ where they have
been transposed to 1/1 and tabulated in a standard format.

Perrett also discovered a harmonization of Archytas’s enharmonic, 28/
27 .36/35 - §/4, 2 much more plausible and consonant tuning than the 21/
20 - 64/63 - 5/4 he chose initially (Perrett 1928, 95). He expressed the so-
lution in the 171-tone equal temperament and later translated it into a

TRADITIONAL DUODENE BASED ON THE 45'6 TRIAD

5/3 5/4 15/8 45/31

473 1/1 3/2 o/8

16/15 8/5 6/5 9/5
DUODENE BASED ON THE 10:12:1§ TRIAD

8/5 6/5 9/5 27/20

4/3 1/1 3/2 9/8

10/9 5/ 5/4 15/8

DUODENE BASED ON THE 6:7:9 TRIAD

14/9 7/6 7/4 21/16

43 1/t 3/2 9/8

8/7 12/7 9/7 27/14

1/t 21/20 16/15 4/3

5 7 8 5

4 6 7 4

3 5 6 3

1 1 I I

s=2/1 7=21/20 8=16/15 5=4/3

4=8/ 6=9/5 7=28/15 4=16/15

3=6/5 5=3/2 6=28/ 3=8/5

1=8/ 1=6/5 1=16/15 1=16/15

8/5* 6/5* 16/15* 16/15*
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7-9. Perretr’s other tetrachord harmonizations. The

names for numbers 3 and 4 are Pervert’s; the
tetrachord is actually Archytas’s diatonic and
Prtolemy's tonic diatonic genus rearranged. In

ascending form, the tetrachord of numbers 1 and 6 is

28/27 . 15/14 - 6/5, Prolemy’s soft chromatic.

I. INVERTED FTOLEMY'S SOFT CHROMATIC

1/x 6/5 9/7 4/3
5 5 9 7
4 6 7 1
3 4 5 5
1 1 2 1
2. PTOLEMY’S SOFT CHROMATIC
1/1 28/27 10/9 4/3
6 7 [ 6
5 6 4 5
4 5 3 4
I I I 1
3. PTOLEMY'’S “SOFT DIATONIC,”
REARRANGED
1/1 28/27 2/6 4/3
6 7 7 8
5 6 6 7
4 5 5 6
1 1 I I
4. PTOLEMY’S “SOFT DIATONIG,"
REARRANGED, ALTERNATIVE CHORDS
1/1 28/27 2/6 4/3
6 7 5 8
5 6 4 7
4 5 3 6
I I 1 1

17-limit just intonation (Perrett 1934, 158). This harmonization is shown
as number 7 of 7-9.

I have devised another harmonization, which is noteworthy in that the
movement between the roots of last two chords of the cadence is by a 40/
27 rather than a 3/2. This example is shown in 7-10.

These harmonizations are rather simple, with few nonharmonic tones
or passing chords. More sophisticated techniques including the use of
subharmonic chords would seem appropriate.

More complex treatment is obviously possible in larger microchromatic
scales such as Partch’s 43-tone gamut. With the help of a computer, 4022
occurrences of tetrachords and 1301 heptatonic scales in which both tetra-
chords are identical have been found in this scale. Among these are the in-
stances of the Ptolemaic sequence, Partch’s name for the major mode, and a
number of other tetrachords from Ptolemy’s catalog. Smaller systems such
as Perrett’s 1g9-tone scale have considerable tetrachordal resources; 269
tetrachords and 52 heptatonic tetrachordal scales occur in this gamut.

5. ARCHYTAS'S DIATONIC

1/1 28/27 32/27 4/3
6 14 16 16
5 12 I2 12
4 9 9 8
2 4 6 5

6. INVERTED PTOLEMY'’S SOFT CHROMATICG,
ALTERNATIVE CHORDS

1/1 6/5 o/7 4/3
5 5 9o 20
4 6 70 1§
3 4 63 12
I 1 45 10
7. ARCHYTAS'S ENHARMONIC

/1 28/27 16/15 4/3
8—16 12 28 6
§=—10 10 24 5
3—7 7 7 4
2—4 4 10
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7-10, Another harmonization of Archytas’s en-
barmonic. The root of the chord under 28/27 is go/
27 a syntonic comma lower than 3/2. The septimal
tetrad on 16/15 lacks a major third.

1/1 28/29 16/1% 4/3
5 7 8 5
4 6 7 4
3 5 6 3
I 1 1 I

Many of these tetrachords closely approximate divisions based on higher
harmonics or equal temperaments, such as those found in Aristoxenian
theory. Because they are composed of secondary or multiple number ratios
whose factors are limited to 11, their tones may be harmonized by com-
paratively simple harmonic or subharmonic chords in a tetradic or hexadic
texture,

Wilson’s expansions

Perhaps the most innovative technique for harmonizing tetrachords is
due to Ervin Wilson (personal communication, 1964). Wilson’s technique
is based on sequences of chords of increasing intervallic span linked by a
common tone. Wilson’s have the property that the successive differences
between the chordal factors follow a consistent pattern. This pattern is
termed the unit-proportion (up). It controls both the rate of intervallic ex-
pansion and less directly the degree of consonance. For harmonic chords,
it may be expressed as a string of signed, positive integers, i.e., the unit-
propordon of the major triad 4:5:6:8 is +1 +I +2. Subharmonic unit-
proportions are written with prefixed - signs; the unit-proportion of the
chord 8:6:5:4 is —2 -1 —1. Sequences of chords with identical unit-
proportions make up an expansion which progresses from a dense, rel-
atively discordant chord through chords of decreasing tension to a stable
consonance, usually a triad with the root doubled.

Sequences of such chords may be used in many musical contexts, and
somewhat similar chordal sequences have been explored by Fokker (1966,
1975). Wilson’s expansions are particularly attractive when applied to tet-
rachords and tetrachordal scales.

The application of Wilson’s technique to tetrachordal scales is best seen
by example. Wilson’s original examples were harmonizations of the in-
verted enharmonic genera, 1/1 5/4 9/7 4/3 (Archytas) and 1/1 5/4 13/10
4/3 (Avicenna) approximated in 22- and 3r-tone equal temperament.
These examples have been translated into just intonation and are shown in
7-11. An optional 7:8:9:11 chord has been added to Wilson’s original pro-
gression for the inverted Archytas’s enharmonic.

Although one may limit the harmonization to a single tetrachord, it is
more likely that one will want to harmonize all seven tones of the scale.
Several solutions to this rather difficult problem using both harmonic and
subharmonic chords with varied unit-proportions and different common
tones are given in 7-12. In these examples, either the 4/3 or 3/2 is held
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7-11, Wilson’s expansion technique. The set of
ratios are the chordal tones relative to 1/1. (1) is the
just intonation version of Wilson's first expansion
barmonization with the later addition of an optional
789 11 chovd at the beginning. The original was
quaittized to 2 2-tone equal temperament, (2) is the
Just intonation version of Wilson's second expansion
barmonization. The original was quantizedto 31-
tone equal temperament, In both cases, the added
tones are in lighter type. The aptional chord is in
parentheses.

constant throughout the progression. A passing chord containing intervals
of 13 and 15 is used in number 2 to make the progression smoother. These
intervals are conditioned in part by the unit-proportion of the set and in
part by the intervals of the tetrachord. The major caveat is to limit the
number of chords and extra tones when preservation of the melody of the
tetrachord is important.

Except for octave transposition of some of the chordal tones and ocas-
sional passing chords there has not been much study of harmonic elabora-
don (Wilson, personal communicadon). This is true of the endogenous
and tritriadic approaches as well. The standard techniques, however, would
appear to be applicable here as in traditional practice, but only more ex-
perimentation will tell.

Although the majority of this chapter has been presented from the
viewpoint of just intonation, these scales and their various harmonizations
are equally valid in systems of equal temperament which furnish adequate
approximations to the important melodic and harmonic intervals.

I, INVERTED ARCHYTAS ENHARMONIC, HARMONIC CHORDS ON 3/2, UP = +I +1 42

1/t 5/4 9of71 4/3 3/2 15/8 29/14 2/x
G 8 9 11)
(7/6 4/3 3/2 11/6)
6 7 8 10
9/8 21/16 3/2 15/8
5 6 7 9
15/14 9/7 3/2 27/14
4 5 6 8
1/1 5/4 3/2 2/x

2. INVERTED AVICENNA'S ENHARMONIC, HARMONIC CHORDS ON 3/2, UP = +3 +3 +6

1/t 5/4 13/10 4/3 3/2 15/8 39/20 2/1
18 21 24 30
0/8 21/16 3/2 15/8
14 17 20 26
21/20 51/40 3/2 39/20
12 15 18 24
1/t 5/4 3/2 2/1
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7-12. Trial expansion barmonizations. The successive differences or

unit proportions are positive in barmoni chords, negative in sub-
harmonic. The non-scalar added tones are in lighter type. Passing notes

are in parentheses.

I. DIDYMOS’S CHROMATIC, SUBHARMONIC CHORDS ON 4/3,

UP=—§ =3 —2

1/1 16/15 10/9 4/3

30 25
10/9 4/3
25 20

16/15 4/3

20 I§

/T 4/3

3/2 8/5 5/3 2/x
22 20
5033 5/3
17 I
8o/51 16/9
12 10
5/3 2/1

2. HARMONIC CHORDS, 3/2 COMMON, PASSING NOTES INSERTED,

UP = +I +2 +3

1/1 7/6 5/4 4/3
15 16
5/4 4/3
(12} (13)
(6/5) (13/10)
9 10
9/8 5/4
6 7
/1 7/6

3/2 7/4 15/8 z/1
18 21
3/2 7/4
15 (18)
3/2 (©/5)
12 15
3/2 15/8
9 12
3/2 2/x

3. ARCHYTAS'S ENHARMONIC, SUBHARMONIC CHORDS ON 4/3,

UpP=+4+2-1I-I

1/1 28/27 16/1§ 4/3
Ir 9
12/11 4/3
10 8
16/15 4/3
9 7
28/27 43
8 6
/1 4/3

3/2 14/9 8/5 2/1
8 7
3/2 12/7
7 6
32/21 16/9
6 5
14/9 28/15

5 4
8/5 2/x

4. INVERTED DIDYMOS’S CHROMATIC, HARMONIC CHORDS ON 3/2,
UP = +2 +3 +5

/1 6/5 5/4 4/3 3/2 o/5 15/8 2/1
20 22 25 30
6/5  33/25 3/2 9/5
1§ 17 20 25
o/8 51/40 3/2 15/8
10 ¢ 15 20
1/t 6/5 3/2 2/t

5. ARCHYTAS’S ENHARMONIC, 4/3 COMMON, HARMONIC CHORDS,

UP = +2 +2 42

1/1 28/27 16/15 4/3 3/2 14/9 8/5 2/1
4 16 18 20
7/6  4/3 3/2 573
10 12 14 16
10/9 4/3 14/9 16/9
8 10 12 14
16/15% 4/3 8/5 28/15
7 9 11 13
28/279 4/3 44/27 5227
6 8 10 12
1/1 4/3 5/3 /1

6. INVERTED ARCHYTAS'S ENHARMONIC, SUBHARMONIGC CHORDS ON

3/2,Up=—2-2-2

1/1 5/49/7 4/3 3/2 15/8 27/14 2/1
20 18 16 14
6/s 4/3 32 12/7
16 14 12 I0
15/14 5/4 3/2 15/8
14 12 10 8
27/26 27/22 3/2 27/14
I3 I 0 7
9/8 9/7 3/2 9/5
12 Io 8 6
1/1 6/5 3/2 2/1
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Schlesinger’s harmoniai, Wilson’s
diaphonic cycles, and other similar

constructs

THe HARMONIAI WERE proposed by the English musicologist Kathleen
Schlesinger as a reconstruction and rediscovery of the original forms of the
modal scales of classical Greek music. Schlesinger spent many years
developing her theories by experimenting with facsimiles of ancient auloi
found in archaeological sites in Egypt, Pompeii, and elsewhere. Later, she
extended her studies to include flutes of ancient and modern folk cultures.
As a result of her researches, she questioned the accepted interpretation of
Greek musical notation. The results of these studies were previewed in a
paper on Aristoxenus and Greek musical intervals (Schlesinger 1933) and
were presented at length in her major work, The Greek Aulos (193g). Her
writings are a major challenge to the traditional tetrachord-based doctrines
of the Aristoxenian and Ptolemaic theorists. While there are compelling
reasons to doubt that her scales were ever a part of Greek musical practice,
they form a musical system of great ingenuity and potential utility in their
own right.

This first part of this chapter is devoted to an exposition and analysis of
her work. Various extensions and additions are proposed and near the end
related materials, including Wilson’s diaphonic cycles, are discussed.

The Schlesinger harmoniai

Schlesinger’s harmoniai are 7-tone sections of the subharmonic seties
between members an octave apart. In theory, they are generated by aliquot
divisions of the vibrating air columns of wind instruments. The same
intervals, however, are obtained by the linear division of half strings. As
string lengths are conceptually simpler than air columns, this discussion
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8-x. The diatonic Perfect Immutable System in the
Dorian tonos according to Schlesinger. Each diatonic
bharmonia may be taken as an octave species of this
system. (As elsewbere, at variance from Sehlesinger,
bypatemeson is equated with E rather than F,) Trite

Synemmenon is required for the hypo-modes, in

which it replaces paramese. The diatonic

synemmenon tetrachord consists of the numbers 16

I15134and12.

NOTE M.D.
PROSLAMBANOMENOS 32
HYPATE HYPATON 28
PARHYPATE HYPATON 26
LICHANOQS HYPATON 24
HYPATE MESON 22
PARHYPATE MESON 20
LICHANOS MESON 18
MESE 16
TRITE SYNEMMENON 15
PARAMESE 14
TRITE DIEZEUGMENON I3
PARANETE DIEZEUGMENON 12
NETE DIEZEUGMENON 11
TRITE HYPERBOLAION 10
PARANETE HYPERBOLAION )
NETE HYPERBOLAION 8

8-2. The diatonic harmoniai as octave
species of the Perfect Immutable System in
the Dorian tonos. Other tonoi are defined
by assigning their modal determinants to
bypate meson and proceeding through the
subbarmonic series. The Dorian, however,
is the basis for Schlesinger's theory.

a0 oo e o s m D o R > g
§’

R g ™o

will refer to the former for clarity. The numbers or modal determinants
assigned to each of the notes are to be understood as the denominators of
ratios. The sequence 22 20 18 16 is a shorthand for the notes 22/22 22/20
22/18 22/16 or 1/1 11/10 11/9 11/8 above the tonic note 22.

The octave rather than the tetrachord is the fundamental module of
these scales. Although the scales can be analyzed into tetrachords and dis-
junctive tones, the tetrachords are of different sizes which, in general, do
not equal 4/3. Furthermore, each interval of the scale is different; the series
of duplicated conjunct and disjunct tetrachords of the traditional theorists
(chapter 6) is replaced by modal heptachords which repeat only at the
octave.

The familiar names for the octave species are retained, but each modal
octave is, in effect, another segment of the subharmonic series, bounded by
a different modal determinant and its octave. 8-1 shows the form the Per-
fect Immutable System in the diatonic genus takes in her theory.

The modal determinants have many of the functions of tonics. As such,
they serve to identify and define the harmoniai. Schlesinger also considers
that mese itself has tonic functions, a point which is controversial even in
the standard theory (Winnington-Ingram 1936).

The relations the other octave species have to the central Dorian octave
is shown in 8-2. The seven harmoniai may also be constructed on acommon
tone, proslambanomenos, by assigning their modal determinants to hypate
meson. In this case, there are six additional keys or tonoi which are named
after the homonymous harmoniai. The Dorian and the other modal octaves
are then found at corresponding transpositional levels in each tonos. Con-

PS HH PH LH HM PM LM M TS PM TD PD ND TH PN NH
32 28 26 24 22 z0 18 16 15 14 I3 12 I1I 30 ¢ 8

MIXOLYDIAN 28 26 24 22 20 18 16 14

LYDIAN 26 24 22 20 18 16 i4 13

PHRYGIAN 24 22 20 18 16 14 13 1I2

DORIAN 22 20 18 16 I4 13 I2 II
HYPOLYDIAN 20 18 16 (15)14 I3 12 II IO
HYPOPHRYGIAN 18 16 13 13 I2 II I0 ¢
HYPODORIAN 16 1§ 13 12 11 10 9 8
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B8-3. Schlesinger’s diatonic harmoniai as tonoi,
Elsewhere she gives different forms, most notably
variants of the Lydian, with 277 instread of 26, and
Dorian, with 21 instead of 22 (Schlesinger 1939,
1-35, 142). A trite synemmenon could be defined in
each tonos, but Schlesinger chose not to db so.
Schlesinger conceived of the Hypolydian harmonia in
two formswith 15 alternating with 14 (thid.,
26-27). Her theory demands that the Dorian trite
synemmenon (15) be employed in all the bypo-nzodes,
but she allows the alternation in the Hypolydian
barmonia.

comitantly, there is a seven-fold differentiation of the tuning of the other
notes of the Perfect Immutable System. These tonoi are shown in 8-3.

Anomalies and inconsistencies

The clarity and consistency of Schlesinger’s system, however, is only
apparent. Once one goes beyond the seven diatonic harmoniai, anomalies
of various types soon appear.

Schlesinger explicitly denies harmonia status to the octave species run-
ning from proslambanomenos to mese, calling it the bastard Hypodorian or
Mixophrygian. She rejects it because it resembles the Hypodorian an octave
lower but differs in having 8/7 rather than 16/1 5 as its first interval. Yet this
scale had a name (Hypermixolydian) in the standard theory and was
rejected by Ptolemy precisely because it was merely the Hypodorian
transposed by an octave.

Each of the diatonic harmoniai also had chromatic and enharmonic
forms derived by subdividing the the first interval of each tetrachord and
deleting the former mesopyknon. This process is identified with kata-
pyknosis and is analogous to the derivation of the genera in the standard
theory (see chapters 2 and 4). These forms are listed in 8-4 for the central
octave of the Perfect Immutable System in each homonymous tonos.

It is also here that some of the most serious problems with her theory
occur. Although all of the diatonic harmoniai occur as octave species of the
Dorian, and of each other, the chromatic and enharmonic forms of the
other harmoniai are not modes of the corresponding forms of the Dorian
harmonia. Rather, they are derived by katapyknosis of the homonymous
tonos. The symmetry is broken and the modes are no longer identical in

PS HH PH LH HM PM LM M PM TD PD ND TH PH NH

A B ¢ D E F 6 a b ¢ d & f g a

MIXOLYDIAN 44 40 36 32 28 26 24 22 20 1B 16 14 13 12 II
LYDIAN 40 36 32 28 26 24 22 20 18 16 14 13 1z II IO
PHRYGIAN 36 32 2B 26 24 22 20 18 16 14 13 12 I1 IO 9
DORIAN 32 28 26 24 22 20 18 16 14 13 12 1I 10 9 8
HYPOLYDIAN 28 26 24 22 20 18 16 15§ 13 12 1I 10 ¢ 8 7
HYPOPHRYGIAN 26 24 22 20 I8 16 15 13 12 II 10 9 B 7 13/2
HYPODORIAN 24 22 20 I8 16 15 13 12 11 10 9 B 7 13/2 6
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8-4. Schlesinger’s chromnatic and enbarmonic har-
moniai (Schlesinger 1939, 214). It is clear that these
scales are not simply modes of the Dorian chromatic
and enbarmonic genera, but ave derived from the
bomonymous tonot. The chromatic and enbarmonic
forms are derived by two successive doublings of the
modal determinant followed by note selection ro
obtain the desired melodic contonrs, The upper tetra-
chords of the chromatic and enbarmonic forms of the
Dorian and Hypolydian harmoniai are identical, In
the Hypolydian harmonia 30 (15) may replace 28
(14). The Hypophrygian and Hypodorian bar-
moniai bave a single enbarmonic-chromatic form.

different tonoi. Even the modal determinants of the harmoniai may be
changed in different tonoi.

Other inconsistencies and anomalies may be noted. The chromatic and
enharmonic forms are incompletely separated since the enharmonic and
chromatic forms of some harmoniai share tetrachords. Even these pre-
sumed canonical forms do not agree with the varieties she derives else-
where in The Greek Aulos from her interpretation of the Greek notation.

Because of certain irregularities in the notation, she claims that the
modal determinant of the Lydian harmonia must have been altered at some
period from 26 (13) to 27 and that of the Dorian from 22 to 21. These
changes of modal determinants would not only have disrupted the tonal
relations of the original harmoniai, but would also have affected the tonality
of the rest of the system in all three genera. Since the Dorian harmonia was
the center of the system, this would not have been a trivial change.

The question of modal determinant x5

Another problem is the status of 15 as a modal determinant. Schlesinger
strongly denies the existence of a harmonia whose modal determinant is 1 5.
Yet one of her facsimile instruments plays it easily. She also states that
hypate hypaton could be tuned to 30 in the Hypodorian harmonia where
it generates a perfectly good harmonia of modal determinant 1§ with the
octave at trite synemmenon (8-2).

The inclusion of modal determinant 15 is, on the whole, quite prob-
lematical. It enters originally as the Dorian trite synemmenon (B}), the only
accidental in the Greater Perfect System. Although Schlesinger mentions
what she calls the conjunct Dorian harmonia where 14 substitutes for 14,
and elsewhere allows 15 to freely alternate with 14, she uses trite syn-

HARMONIA CHROMATIC ENHARMONIC

MIXOLYDIAN 28272622201918 14 5655 54 44 4039 3828
LYDIAN 2625242018171613 52 §1 5040 3635 3426
PHRYGIAN 2412322181615 14 12 48 47 463632313024
DORIAN 4442 403228272622 4443 4232282726122
HYPOLYDIAN 4038 36 28 26 25 24 20 4039382826252420
HYPOPHRYGIAN 363534262423 22 18 3635342624232218
HYPODORIAN 3231302422212016 32313024 122212016
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emmenon mainly to construct the diatonic hypo-modes. This is very much
at variance with the usage of this note by the standard theorists whose
Hypodorian, Hypophrygian, and Hypolydian modes employ only the
natural notes of Greater Perfect System.

For these theorists, trite synemmenon and the rest of the synemmenon
tetrachord are part of the Lesser Perfect System and are used to primarily
illustrate the melodic effect of modulations to the key a perfect fourth
lower. Bacchios also employs it to illustrate certain rare intervals such as the
ekbole, spondeiasmos, and eklysis (chapters 6 and 7). The combination of
the Greater and Lesser Perfect Systems to form the Perfect Immutable
System is basically a pedagogical device, not a reflection of musical prac-
tice. Furthermore, the Lesser Perfect System terminates with the syn-
emmenon tetrachord, but to complete Schlesinger’s hypo-harmoniai the
note sequence would have to switch back into the notes of the Greater
Perfect System. Although chromaticism and modulation occur both in
theory and in the surviving fragments (Winnington-Ingram 1936), this use
of synemmenon would seem to be most unusual.

Historical evidence

Much of Schlesinger’s case for the harmoniai is based on fragmentary
quotations from classical Greek writers. This evidence is dubious support
at best.

Theorists such as Aristoxenos complain about the unstable pitch and
indeterminate tuning of the aulos (Schlesinger 1939). Aristoxenos claims
that the intervals of music are determined by the performance skill of the
player on both stringed and blown instruments and not by the instruments
themselves. This polemic may be interpreted either as referring to the
inherent pitch instability of the instrument or to the difficulty of bending
the pitches so as to approximate a scale system for which it is not physically
suited, i.e. the standard tetrachordal theory. Whatever the correct inter-
pretation, the passage does suggest that Schlesinger’s harmoniai played
little or no role in Greek musical practice in the fourth century Bce.

The problem lies with our ignorance of the Greek music and its mode
of performance. It is quite possible for an instrument to be musically
prominent and at the same time difficult to play in acceptable tune. Schle-
singer may well have been right about the natural scales of auloi and still
be entirely wrong about their employment in Greek music of any period.
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The harmoniai in world music

Schlesinger also tries to bolster her argument by appealing to eth-
nomusicology. Her case for the employment of the harmoniai in non-
European folk and art music gives the impression of overpleading, especially
in her analysis of Indonesian tunings. It is true, however, that wind instru-
ments from many cultures often have roughly equidistant, equal sized finger
holes. For example, the scales of many Andean flutes do appear to resemble
sequences of tones from the various harmoniai, although the scales may not
be identical throughout the gamut (Ervin Wilson, personal communica-
tion). The scales on these instruments are usually pentatonic, rather than
heptatonic, Often one or more tones will diverge from the heptatonic pat-
tern, particularly with respect to the vent, which is tuned to bring out the
pentatonic structure, Nevertheless, some of the harmoniai sound very sim-
ilar to the scales heard on recordings of Bolivian and Peruvian music.
Hence, these data may serve as at least a partial vindication of her ideas.

Empirical studies on instruments

In The Greek Aulos, Schlesinger made use of a large body of data obtained
by constructing and playing facsimiles of ancient auloi. She also studied
fipple flutes and other folk wind instruments. These studies deserve critical
attention.

The chief difficulty one has in evaluating this work is its lack of rep-
lication by other investigators. However, there are two published experi-
mental studies which are relevant to her hypotheses.

The first is that of Letter, who made the assumption that two of the
holes on the surviving auloi were 4/3 or 2/1 apart (Letter 1969). From
measurements on these instruments, he determined the probable reed
lengths. His measurements and calculations yielded a number of known
tetrachords, including 12/11 - 11/10 - 10/9,9/8 - 88/81 - 12/11,9/8 - 16/15 -
10/9, 14/13 - 8/7 - 13/12, and some pentachordal sequences, but little con-
vincing evidence for the subharmonic series or the harmoniai.

More recently, Amos built modal flutes with holes spaced at increments
of one-eighth the distance from the fipple to the open end and the studied
the resulting intervals (Amos 1981). This procedure, however, is not really
in accord with Schlesinger’s work. She employed rather complex formulae
involving corrections for the diameter and certain other physical param-
eters to determine the spacing of the holes of modal flutes.
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The pitches of Amos’s flutes were measured by audibly comparing the
flute tone to a calibrated digital oscillator and minimizing beats. Amos’s
results show that the resulting intervals are subject to wide variation from
flute to flute and depend upon humidity, wind pressure, fingering, and
other parameters.

While not strictly comparable to Schlesinger’s results, the results of
these investigators suggest that one should be cautious in extrapolating the
tuning of musical systems from the holes of wind instruments.

Schlesinger herself made the same caveat and stated that the aulos alone
gave birth to the harmoniai. She claimed that the acoustical properties of
the aulos are simpler than those of the flute, and therefore, one can accu-
rately deduce the musical system from the spacing of the finger holes of
auloi. People who have made and played aulos-like instruments are less
certain.

Lou Harrison found the traditional Korean oboe, the piri (and the
homemade miguk piri), to be difficult to play in tune and noted its tendency
to overblow at the twelfth (personal communication). Jim French, who has
spent a number of years researching the aulos from both an archaeological
and an experimental perspective, has discovered that the type of reed and
its processing are far more crucial than Schlesinger implies. His results
with double auloi indicate that the selection of a particular reed can change
the fundamental by a 4/3 (personal communication). Duplicated tetra-
chords are thus quite natural on this kind of instrument. He has also found
that sequences of consecutive intervals from harmoniai such as that on 16
(Hypodorian) are relatively easy to play on these instruments and may be
embodied in historical examples and artistic depictions.

Composition with the harmoniai

The question of whether or not Schlesinger’s harmoniai are relevant to
Greek or world music may be of less importance to the experimental
musician than their possible use in composition. Her most fruitful con-
tribution ultimately may be her suggestion that the harmonia be con-
sidered a “new language of music” (Schlesinger 1939).

Schlesinger tuned her piano to the Dorian harmonia in which C (at 256
Hertz) equals the modal determinant 22. Thus she used only an 11-pitch
gamut. For some unstated reason, she did not give a tuning for the note By,
which would have had the modal determinant 25, though she did include
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8-5. Harmonization of Sthlesinger's barmoniai,
Tetrachordal framework chords. Chords from the
“conjunct” harmoniai in which 1§ replaces 14 are
also shown where applicable,

such prime numbers as 17 and 19 and composites of comparable size such
as 22 and 24. One would think that the Phrygian harmonia on 24 would
make more efficient use of the keyboard, unless there are problems with the
altered tension of the piano strings. This, of course, would not be a lim-
itation with electronic instruments.

Schlesinger was fortunately able to enlist the composer Elsie Hamilton
from South Australia in these efforts, Hamilton composed a number of
works in the Dorian diatonic tuning between 1916 and 1929. In 1933,
Hamilton trained a chamber orchestra in Stuttgart to perform in the har-
moniai. Although several orchestral and dramatic works were composed and
performed during this period, it has been impossible to find further infor-
mation about the composer or discover whether the scores are still extant.

From the excerpts in The Greek Aulos, it would appear that Hamilton
employed a conservative melodic idiom with straightforward rhythms (8-
6). Schlesinger comments that such a simplification was necessary for both
“executant and listener.” The quotations from the score of Agave, brief as
they are, seem quite convincing musically in a realization on a retunable
synthesizer.

Hamilton’s harmonic system is of considerable interest. Although
familiar chords are scarce in this system, virtually any interval larger than
a melodic second is at least a quasi-consonance. Rather than attempt a
translation of tertian harmonic concepts to this tuning, Hamilton instead
chose to use the tetrachordal frameworks of the modes as the basic con-
sonances (8-5 and 8-6a). In the Dorian mode, this chord would be 22 16
14 11 (1/1 11/8 11/7 2/1), with 1§ (22/15) as an alternative tone.

A melodic line may be supported by a succession of such chords taken
from all seven of the modes. Hamilton augmented this somewhat sparse

DISJUNCT CONJUNCT
MIXOLYDIAN 28:22:20:14 28:22:16:14
LYDIAN 26:20:18:13 26:20:14:13, 26:20115:13
PHRYGIAN 24:18:16:12 24:18:13:12
DORIAN 22:16:14:11, 22:16:15:11 22:16:12:11
HYPOLYDIAN 20115113510, 20:14:13:10 20:15:11:10, 20;14:11:10
HYPOPHRYGIAN  18:13:12:9 18:13:10:0
HYPODORIAN 16:12:11:8 16:12:9:8
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8-6. Excerpes from Agave by Elsie Hamilton, with
ratio numbers.

(a) Tetrachordal framework chords (“Sunrise”),

(&) Mixed chorus and tetrachords of resobution
(“Funeral March”).

(o) Combined framework chords (“Sunrise”).

(d) Modal tranposition.
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8-7. Chordal relations between related harmoniai

(Schlesinger 1939, §43—44).

D ML HL L HP

TETRACHORDAL CHORDS

Ir 7 10 13 9
Io 13 g I
8 11 14 10 13
11 14 20 13 18

~J

MIXED CHORDS

7 10 13 g 6
1o 13 g9 12 8

8 111 14 10 13

11 14 20 13 18

INTERVALS OF RESOLUTION

11 7 10 139
14 10 13 9 I2

I2

D

11

o -

11

12
16

ML

10
II

14

10

II

1T
14

vocabulary with chords formed by the union and intersection of chords
from two related harmoniai (8-6b, 8-6¢, and 8-7). In the latter case, the
chords are resolved to their common dyad.

She also discovered that parallel transposition results in changes of
modality which are musically exploitable (8-6d), although the given exam-
ples are stated to have been approximated to the piano intonation.

One would characterize her harmonic techniques as essentially poly-
tonal and polymodal, rather than “diatonic” or “chromatic.”

It is a pity that more examples of Hamilton’s use of the harmoniai are
not extant. From this limited sample, it appears that Schlesinger’s system
succeeds as a “new language of music.”

Schlesinger’s harmoniai have inspired other composers, including
Harry Partch and Cris Forster. Partch devoted a large part of his chapter
on other systems of just intonation to her work, citing it as a justification to
proceed on to ratios of 13 (Partch [1949] 1974). He correctly identified her
harmoniai with his Utonalities, with the addition of the Secondary Ratio,
16/15. Forster has constructed several instruments embodying the ratios
of 13 in a Partch tonality diamond context. He has also composed a con-
siderable body of music for these instruments (Forster 1979).

Extensions to Schlesinger’s system

Although Schlesinger’s system suffers from internal inconsistencies and
omissions, her scales form a fascinating system in their own right, inde-
pendent of their questionable historical status. The most obvious of the
corrections or enhancements is to rationalize her enharmonic and chro-
matic forms so that all three forms of each harmonia are distinct. The next
step is the definition of local tritai synemmenon in each of the tonoi so that
correct hypo-modes and conjunct harmoniai may be constructed. Finally,
new harmoniai based on modal determinants not used by Schlesinger are
proposed. These new modal determinants range from 15 to 33.

Rationalization of the harmoniai

The first and most obvious extension to Schlesinger’s system is to furnish
distinct chromatic and enharmonic forms for her diatonic harmoniai. This
may be done by katapyknosis of the diatonic with the multipliers 2 and 4.
To obtain the corrected chromatic versions, the first interval of each
tetrachord of the diatonic harmoniai is linearly divided into two parts. The
two new intervals are retained while simultaneously deleting the topmost
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note of each tetrachord to create the characteristic interval of the genus.
By this process, the old diatonic first intervals become the pykna of the new
chromatic forms.

The enharmonic is created analogously by katapyknosis with four. The
first two new intervals are retained, leading to pykna which consist of the
chromatic first intervals. This procedure is equivalent to performing
katapyknosis with two on the chromatic genera resulting from the oper-
ations above.

Wilson has suggested performing katapyknosis with 3 to produce 7/~
chromatic forms (personal communication). Ptolemy used the same tech-
nique to generate his shades. This operation produces two forms, a 1 + 1
form in which the two lowest successive intervals are retained anda 1 + 2
form in which the lowest and the sum of the two highest are used. The
pykna ofthe 1 + 1 and 1 + 2 forms are thus different and the 1 + 1 form tends
to melodically approximate the enharmonic. A third form, the 2 + 1,
potentially exists, but would violate Greek melodic canons (chapter 3).

In an analogous manner, katapyknosis by 5 and 6 are possible if the
interval to be divided is large enough. These divisors generate what may
be called pentachromatic, pentenbarmonic, hexackromatic, and hexenbarmonic
genera. The forms of the rationalized harmoniai including the two tri-
chromatic as well as the pentachromatic genera, created from a 2 + 3 divi-
sion of the pyknon, are shown in 8-8.

If one generates all the forms of a harmonia which do not violate
accepted melodic canons by katapyknosis with the numbers 1 through 6,
nineteen genera result. The Hypermixolydian or “bastard Hypodorian”
provides a good example of this process because the first diatonic interval is
the comparatively large septimal tone 8/7 (231 cents). The nineteen kata-
pyknotic genera of her “bastard Hypodorian” are shown in 8-¢.

Local tritai synemmenon

Although all of the diatonic harmoniai can be represented as octave species
of the Dorian harmonia (plus trite synemmenon) by choosing different
notes as modal determinants, in the homonymous tonoi the central octave
is occupied by the notes of the corresponding harmoniai. Since all of the
tonoi are structurally as well as logically equivalent, the argument which
demanded that 15 replace 14 in the hypo-modes of the Dorian requires
that a local trite synemmenon be defined in each tonos. Otherwise, the
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8-8. Rationalized barmoniai, These barmoniai should be compared to Schlesinger’s own as significant differences exist between
these and some of hers in the chromatic and enbarmonic genera. Three new genera are also provided; these are hased on katapykno-
sisby 3 and § instead of 2 and 4. To avoid fractions, somne numbers bave been doubled. In principle, 14 may be substituted for 15 in
the bypo-modes. 14 alternates with 1 § in the Hypolydian. To preserve melodic contour, the chromatic and enbarmonic forms of the
Hypodorian are derived from the “bastard” harmonia. The forms of the lower tetrachords of Schlesinger’s preferred barmonia

wouldbe 32 31 30 24, 48 47 46 36,48 4745 36, and 80 78 75 6o..

Mixolydian
DIATONIC
1413121110987
CHROMATIC
2827 2622201918 14
TRICHROMATIC I
42 414033302928 21
TRICHROMATIC 2
4241 393330202721
ENHARMONIC

56 55 5444 40 39 38 28
PENTACHROMATIC

70 68 65 55 5048 45 35
Lydian
DIATONIC
1312111098713
CHROMATIC
2625242018 171613
TRICHROMATIC I
3938373027 2625 39
TRICHROMATIC 2
3938363027262439
ENHARMONIC
52 51504036 35 34 26
PENTACHROMATIC
65 63 60 5045 43 40 65
Phrygian
DIATONIC
121110987136
CHROMATIC
242322 1816 15 14 12

TRICHROMATIC 1
363534 2724232218
TRICHROMATIC 2
363533 2724232118
ENHARMONIC
4847463632 313024
PENTACHROMATIC
60585545 40383530
Dorian
DIATONIC
111098713611
CHROMATIC
2221201614271311
TRICHROMATIC 1
3332312421414033
TRICHROMATIC 2

33323024211203933
ENHARMONIC

4443423228 552722
PENTACHROMATIC

5553 504035 3465 55
Hypolydian
DIATONIC
10987136115
CHROMATIC
201918 1413 2512 10
TRICHROMATIC I
3029282139 383715
TRICHROMATIC 2
3029272139 383615
ENHARMONIC
4039382826 5125 20
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PENTACHROMATIC
50484535 65633025
Hypophrygian
DIATONIC
18161513 1211109
CHROMATIC
18171613122311¢
TRICHROMATIC I
54 52 5039 36 35 34 27
TRICHROMATIC 2
54 52 4839 3635 33 27
ENHARMONIC
3635 34 262447 23 18
PENTACHROMATIC
90 86 8o 65 60 58 55 45

Hypodorian
DIATONIC
1615131211109 8
CHROMATIC
3230282422 212016
TRICHROMATIC I
484644363332 31 24
TRICHROMATIC 2
484642 363332 3024
ENHARMONIC
6462 60484443 42 32
PENTACHROMATIC

80 76 70 60 55 53 50 40




8-9. The nineteen genera of Schlesinger’s “bastard
Hypodorian” harmonia. Beyond 6x the intervals are
usually too small to be useful melodically. The num-
bers after the genus abbreviations distinguish the
various species. The multiplier refers to the multi-
Plication of the modal determinants in katapyknosis.
The species are defined by the unit-proportions of
their pykna. The 4x, 5x, and 6x divisions define gen-
erawith both enbarmonic and chromatic melodic
properties.

three hypo-modes in each tonos would be merely cyclic permutations of
the original sequence and would therefore lack modal distinction. These
tritai synemmenon are also needed to to form what Schlesinger would
probably term conjunct harmoniai.

The new tritai synemmenon may be supplied by analogy through kat-
apyknosis of the disjunctive tone by 2. These additions, of course, increase
the number of possible scale forms, as the new notes may alternate with the
lesser of their neighbors as 15 alternates with 14 in the Dorian prototype.
This alternation generates fairly wide intervals in the range of augmented
seconds and gives the harmoniai containing them a chromatic or harmonic
minor flavor not present in the corresponding modes of the Dorian

harmonia.

NO.  DIVISION MULTIPLIER  SPECIES
DIATONIC

DI 1614131211109 8 IX I+l
CHROMATIG

cr 16 1514121121108 2X I+

TRICHROMATIC
TI 2423221833 323112 3X I+l
T2 2423 211833323012 3X  I+2
ENHARMONIC/CHROMATIC

EX 32 31 30 2422 43 21 16 4x  I+41
E2 32 31 20 24 22 43 41 16 4x 142
E3 32 31282422 432016 4x  I+3
PENTACHROMATIC/PENTENHARMONIC
PI 4039 383055275320 5X  I+I
P2 4039373055 272620 SY  I+2
P} 4039363055275120 5% 1+3
P4 403935 3055 272520 5k I+4
P§ 403836305553 5120 5X 242
P6  4038353055535020  §X 243
HEXACHROMATIC/HEXENHARMONIC
HI 48 47 46 3633 65 32 24 6x 141
H2 48 4745 3633 6563 24 6x 1+2
H3 4847443633 656224 6x 143
Hy  4847433633656124 6 144
HS  4847423633653024  6x I+5
Ho 48 4643 3633 6461 24 6x 243
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8-x0. Conjunct rationalized harmonias. These barmoniai are formed in analogy to the
conjunct Dorian of Schlesinger. The Hypodorian forms are based on the “bastard”
barmonia. The lower tetrachords of Schlesinger’s preferred forn are 32 10 30 24, 48 47
46 36, 48 47 45 36, and 80 78 75 6o.

Mixolydian
DIATONIG
1413121121987
CHROMATIC
2827262221201614
TRICHROMATIC I
42 414033 32 31 24 21
TRICHROMATIC 2
42 41393332 3024 21
ENHARMONIC

56 55 54 44 43 42 32 28
PENTACHROMATIC

70 68 65 55 53 50 40 35
Lydian
DIATONIC
13121110198 713
CHROMATIC
262524201918 14 13
TRICHROMATIC I
3938373029282139
TRICHROMATIC 2
393836302927 21 39
ENHARMONIC
52 5150 40 39 38 28 26
PENTACHROMATIC
65 63 60 55 5048 45 65
Phrygian
DIATONIC
242220181714136
CHROMATIC
24232218171613 12

TRICHROMATIC I

3635342726253918
TRICHROMATIC 2

3635335426243918
ENHARMONIC
48474636 35342624
PENTACHROMATIC
6058 5545 40 38 65 30
Dorian
DIATONIC
1110981513611
CHROMATIC
22212016151412 11
TRICHROMATIC I
3332312423221833
TRICHROMATIC 2
33323024 23211833
ENHARMONIC
4443 423231302422
PENTACHROMATIC
5553 504035333055
Hypolydian
DIATONIC
20181615 1312 11 10
CHROMATIC
2019 181§ 14 13 I1 10
TRICHROMATIC I
60 58 56 45 43 4133 30
TRICHROMATIC 2

60 585445433933 30
403938 30292822 20
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PENTACHROMATIC
504845 75 65 65 55 50
Hypophrygian
DIATONIC
1816 15132511109
CHROMATIC
181716132512109
TRICHROMATIC I
54 52 50 39 38 37 30 27
TRICHROMATIC 2
5452483938 363027
ENHARMONIC
36 35342651252018
PENTACHROMATIC
90 86 80 65 63 60 50 45

Hypodorian
DIATONIC
1615131223109 8
CHROMATIC
323028 2423221816
TRICHROMATIC I
484644 3635342724
TRICHROMATIC 2
484642 363533 27 24
ENHARMONIC
64 62 60 48 47 46 36 32
PENTACHROMATIC
80 76 70 60 58 55 45 40




New conjunct forms

The new tritai synemmenon combine with the remaining tones to yield
8-x1. Synopsis of the rationalized tonoi. The tonoi conjunct forms for each of the harmoniai. In order to preserve genera-
are transpositions of the Dorian modal sequence so
that the modal determinant of each barmonia falls
on bypate meson. A local trite synemmenon has been
defined in each of these harmoniai. In. the
Hypolydian, 15 alternateswith 14. When mese falls

specific melodic contours, a variation on the usual principle of construction
was employed in the derivation of these scales. The procedure may be
thought of as a type of inverse katapyknosis utilizing the note alternative to
the local trite synemmenon in some cases. These conjunct harmoniai are

on 14, trite synemmenon is 27 (27/22). The listed in 8-10 in their diatonic, various chromatic, and enharmonic forms.
Hypodorian also bas a “bastard” form which runs The tuning of the principal structural notes of the rationalized tonoi is
Jrom proslambanomenos to mese in the Dorian tomos. summarized in 8-11.

The first tetrachordis 1614 13 12,
New modal determinants

As mentioned previously, one of the most noticeable inconsistencies in
NAME P HHHMM TS P ND Schlesinger’s system is the lack of 2 harmonia whose modal determinant is

MIXOLYDIAN 44 40 28 22 21 20 14 15. Similarly in the new conjunct harmoniai, modal determinants of 17, 19,

YD 6 26 T . .
LYDIAN 40 36 26 20 19 18 13 21, 23, and 25 are implied by the local tritai synemmenon of the ration-
PHRYGIAN 36 32 24 18 17 16 12 ) . ) . . . .
DORIAN 32 28 22 16 15 14 11 alized tonoi. Schlesinger herself stipulates the existence of harmoniai on 21
HYPOLYDAN 28 26 20 15/214 13 IO and 27 as later modifications of the Dorian and Lydian harmoniai. She
HYPOPHRYGIAN 26 24 I8 13 252 12 ¢ claimed that these harmoniai were created by shifting their modal deter-
HYPODORIAN 24 22 16 I2 23/2 11 8 minants one degree lower.

Additional harmoniai on modal determinants 29 and 31 may be added
without exceeding the bounds of the Perfect Immutable System. To these
may be added a harmonia on 33, which, though it exceeds the boundaries
of the Dorian tonos, is included in the ranges of the tonoi of 8-12 and 8-

13. The normal or disjunct forms of these new harmoniai are shown in 8-
12 and the conjunct, which use their local tritai synemmenon, in 8-13. A
summary of these new harmoniai is given in 8-14.

8-x2 {next page). New harmoaniai. These harmoniziwere created tofill in the gaps in
Schlesinger’s system, although some, such astonoi-15, -21, and-27, are implied in her text,
Three new genera are also provided; these are based on katapyknosisky 3 and s instead of 2 and 4.
In principle, 14may be substituted for 15 in these barmonia, save for tomas-1 5 wherethe
Mixolydian barmonia would result. Similarly, 21 may replace 22 and 27, 26, exceptwhen doing
sowonld change the modal determinant. In the diatonic genus when the first interval above the
modal determinant is roughly a semitone, chromatic alternationwith the next highest degree
would be melodically acceprable.
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Tonos-1§
DIATONIC
15131211109 815
CHROMATIC
1§14 I3 II 10199 I§
TRICHROMATIC 1

454443 3330292845
TRICHROMATIC 2

45 4442 3330292745
ENHARMONIC
302928222039 1915
PENTACHROMATIC
75 7165 55 5048 45 75

Tonos-17
DIATONIC
17151312 1110917
CHROMATIC
17161512 11211017
TRICHROMATIC I
5149473633 32 31 51
TRICHROMATIC 2
ST 4945 36 33 32 3051
ENHARMONIC

3433322412243 2117
PENTACHROMATIC

8581 75 6055 53 5085

Tonos-19
DIATONIC
191816141312 1119
CHROMATIC
1918171413 2512 19
TRICHROMATIC I
575553 42 39 383757
TRICHROMATIC 2
57555142 39383657
ENHARMONIC
383736:2826512519
PENTACHROMATIC

95 91 85 70 65 63 60 95

Tonos-21
DIATONIC
2119181614 13 12 21
CHROMATIC
21201916 14271321
TRICHROMATIC I
63 61 59 48 42 41 40 63
TRICHROMATIC 2
63615748 42413963
ENHARMONIC
4241403228 5527 21
PENTACHROMATIC
105 101 9§ 80 70 68 65 10§

Tonos-23
DIATONIC
232120181614 13 23
CHROMATIC
232221181615 1423
TRICHROMATIC I
69 67 65 54 48 46 44 69
TRICHROMATIC 2
69 6763 54 48 46 42 69
ENHARMONIC
46 45 44 36 32 31 3023
PENTACHROMATIC
115 111 105 90 80 76 70 115

Tonos-15
DIATONIC
252220181614 1323
CHROMATIC
50471223632 302825
TRICHROMATIC I
7572 69 54 48 46 44 75
TRICHROMATIC 2
7572 66 54 48 46 42 75
ENHARMONIC
5097 47 36 32 31 30 25
PENTACHROMATIC
125 119 110 90 80 76 70 125

Tonos-27
DIATONIC
272421201816 14 27
CHROMATIC
54 51 48 4036 34 32 27
TRICHROMATIC I
81 78 75 60 54 52 50 81
TRICHROMATIC 2
81 78 72 60 54 52 48 81
ENHARMONIC
101 102 40 36 35 34 54
PENTACHROMATIC
135 129 120 100 90 86 8o 135

Tonos-29
DIATONIC
2926242220181629
CHROMATIC
29282722201918 29
TRICHROMATIC I
8785 836660585687
TRICHROMATIC 2
878581 6660585487
ENHARMONIC
58 575644403938 29
PENTACHROMATIC
145 141 135 110 100 96 9O 145
Tonos-3x
DIATONIC
3r282623222018 31
CHROMATIC
31 290272322 212031
TRICHROMATIC I
93 89 85 69 66 64 62 93
TRICHROMATIC 2
93 89 81 69 66 64 60 93
ENHARMONIC
313029232243 21 31
PENTACHROMATIC
155147 135 115 I10 106 100 I5§
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Tonos-33
DIATONIC
33 3027 24 22 2018 33
CHROMATIC
3331292422 212033
TRICHROMATIC I
99 96 93 72 66 64 62 99
TRICHROMATIC 2
99 96 90 72 66 64 60 99
ENHARMONIC
33323124224312133
PENTACHROMATIC
165 159 150 120 110 106 100 165

Tonos-21: Schlesinger claimed that
the Dorian 22 was lowered in the
PISto 21 andthat of the Lydian
from 277 to 26; tonos-2 1 is thus the
Dorian of the PIS. Tonos-25: It has
proven difficult to obtain harmoniai
whose melodic forms are character-
istic of the genera. This tonos
demands chromatic alternatives (17
for 16,48 for 47, 23 for 22, 97 for
98, etz.). Tonos-277: Thiswas con-
Jjectured by Schiesinger to be the Syn-
tonolydian. Note 21 may alternate
with 22. It may be described as the
Lydian of the PIS. Alternative
formsare2724222018 1614 27,
2726252018171627,and54 53
52403635 3427 Tonos-29: In the
diatonic, 2 6 may alternate with 277.
Tonos-31: These harmoniai admit
severalvariantswhere 24 and 23,
29 and 30, 28 and 27 are alter-
natives. In tonos-33, the diatonic bas
avariant 33 29 27 24, thechro-
matic33 63 30 24, thefirst tri-
chromatic 99 95 91 772, the second
trichromatic 99 95 8772, andthe
pentachromatic 165 157 145 120
Iro.




Tonos-15
DIATONIC
1513121121181615
CHROMATIC
151413 1II2120161§
TRICHROMATIC I
45444333 32312445

TRICHROMATIC 2
454442 33 32 3024 45
ENHARMONIC
302928224321 16 15
PENTACHROMATIC

75 71 65 55 53 5040 75

Tonos-r4
DIATONIC
171§ 13122310917
CHROMATIC
171615122311917
TRICHROMATIC I

51494736 35342751
TRICHROMATIC 2

514945 3635 33 27 51
ENHARMONIC

3433322447231817
PENTACHROMATIC

85 81 75 60 58 55 90 85
Tonos-19
DIATONIC

19 1816 14 27 12 11 I9
CHROMATIC

19 18 17 1427 13 11 19

TRICHROMATIC I

57 555342 414033 57
TRICHROMATIC 2

57 555142413933 57
ENHARMONIC

3837362855542219
PENTACHROMATIC

95 91 85 70 68 65 55 95

Tonos-21
DIATONIC
211918161513 1221
CHROMATIC
212019 161§ 1412 21
TRICHROMATIC I
63 61 59 48 46 44 36 63
TRICHROMATIC 2
63 61 57 48 46 42 3663
ENHARMONIC
42 41 40 32 31 30 24 21
PENTACHROMATIC
105 10195 80 76 70 60 105

Tonos-23
DIATONIC
232120181714 1323
CHROMATIC
23222118171613 23
TRICHROMATIC I
69 67 65 54 52 50 39 69
TRICHROMATIC 2
69 67 63 54 52 48 39 69
ENHARMONIC
46 45 44 36 35 34 2623
PENTACHROMATIC
115 I1I 105 90 86 8065 115

Tonos-25
DIATONIC

2522 2018 17 14 13 2§
CHROMATIC

504744 36 34 32 26 2§
TRICHROMATIC I

7572 69 54 52 5039 75
TRICHROMATIC 2

75 72 66 54 52 48 39 75
ENHARMONIC

5097 47 36 35 34 36 25
PENTACHROMATIC
125119 110 90 86 80 65 125

Tonos-27
DIATONIC
2724212019161427
CHROMATIC
54 5148 4038 36 28 27
TRICHROMATIC I
81 78 75 6058 56 42 81
TRICHROMATIC 2
81 78 72 6058 54 42 81
ENHARMONIC
54 105 51 4039 38 28 27
PENTACHROMATIC
135 129 120100 96 9O 70 I3§

Tonos-29
DIATONIC
2026242221181629
CHROMATIC
20282722212016 29
TRICHROMATIC I
87 85 83 6664 62 48 87
TRICHROMATIG 2
87 85 81 66 64 60 48 87
ENHARMONIC
585756444342 3229
PENTACHROMATIC
145 141 I35 110106100 80 145

Tonos-31
DIATONIC
3128262322 201831
CHROMATIC
3120272322 211831
TRICHROMATIC I
93 89 85 6967 65 54 93
TRICHROMATIC 2
93 89 81 696763 54 93
ENHARMONIC
313020234544 3631
PENTACHROMATIC

155147135 I1§II1 105 QO I§5

8-13. New confunct barmoniai, In this context, conjunct means employing the local tonos-

specific trite synemmenon.
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Tonos-33
DIATONIC
3330272423 2018 33
CHROMATIC
33312092423221833
TRICHROMATIC I
999693 72 7068 54 99
TRICHROMATIC 2
99 96 90 72 70 66 54 99
ENHARMONIC
3332312447461833
PENTACHROMATIC

165 159 150 120116 110 GO 165



8-14. Synopsis of the new tonoi. The tonoi are trans-
positions of the Dorian modal sequence so that the
determinant of each harmonia falls an bypate meson.
A local trite synemmenon for each of the harmoniai
has been defined. Certain odd or prime number
modal determinants have been expressed as fractions,
L.e. 21/2, to indicate the higher octave since the modal
determinants represent aliguot parts of vibrating air
columms or strings. Modal determinants 14 (28) and
15 (30) ave alternates. Tonos-31: in the conjunct
Sorm, mese is 23, trite synemmenon is 2.2,

P HH HM M TS P ND
TONOS-1§ 22 20 TI§ II 21/2 10 15/2
TONOS-17 24 22 17 12 23/211 17/2
TONos-19 28 26 19 14 27/213 19/2
TONOs-21 32 28 21 16 15 14 :21/2
ToNoOs-23 36 32 23 18 17 16 232
TONOS-2§ 36 32 25 I8 17 16 25/2
TONOS-27 40 36 27 20 190 18 27/2
TONOS-20 44 40 29 22 2I 20 29/2
TONOS-3T 48 44 31 24 22 22 3112
TONOS-33 48 44 33 24 23 22 332

B-15. Harmonization of the new barmoniai,
Tetrachordal framework chords.

Harmonizing the new harmoniai -

The new harmoniai may be harmonized by methods analogous to those
Elsie Hamilton employed with Schlesinger’s diatonic harmoniai. The tet-
rachordal framework chords of both the disjunct and conjunct forms of the
new harmoniai are shown in 8-15.

The framework chords from the new conjunct forms are particularly
interesting harmonically as they provide a means of incorporating the new
harmoniai with the older system. Because many of the modal determinants
of the new harmonia are prime numbers, their tetrachordal framework
chords do not share many notes with the ones from the older scales. Cer-
tain chords, however, from the new conjunct harmoniai do share notes with
the framework chords of the older forms-and thus allow one to modulate
by common tone progressions. These chords may also be used in pro-
gressions similar to those in 8-6¢ and 8-7.

Moreover, these chords may be used to harmonize the mesopykna of the
chromatic harmoniai and the oxypykna of the enharmonic which seem-
ingly lay outside of Hamilton’s harmonic concerns.

Harmoniai with more than seven tones

Although it is quite feasible to define harmoniai with modal deter-
minants between 33 and 44 (the limit of the Mixolydian tonos), it becomes
increasingly difficult to decide the canonical forms such harmoniai might
take because of the rapidly increasing number of chromatic or alternative
tones available in the octave.

Rather than omit the extra tones in these and the harmoniai with smaller
modal determinants, one may define harmoniai with more than seven tones
and utilize the resulting melodic and harmonic resources.

HARMONIA-I§
HARMONIA-I7
HARMONIA-1Q
HARMONIA-21
HARMONIA-23
HARMONIA-23
HARMONIA~27
HARMONIA-20
HARMONIA-31
HARMONIA-33

DISJUNCT

1§:11:10:15/2
I7:12:11:17/2
IQII4:13:19/2
21:16:14:21/2
23:18:16:23/2
25:18:16:25/2
27:20:18:27/2
20:22:20:29/2

31:24:122:31/2, 31:23:22:31/2

33:24:22:33/2
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CONJUNCT
15:11:8:15/2

17:12:9:17/2

IQ:I4:11:19/2
21:16:12:21/2

23:18:13:23/2

25:18:13:25/2

27:20:14:27/2

20:22:16:29/2
31:23:18:31/2, 31:24:18:31/2
33:24:18:33/2




8-x6. Harmonic forms of the Phrygian barmonia.
For each of the diatonic harmoniai, the harmonic
Jorms are obtained by taking the 2/1 complement of
each ratio or interval.

FIRST VERSION OF THE INVERTED PHRYGIAN

DIATONIC

12 13 14 16 18 20 22 24
CHROMATIC

1214 15 1618 22 23 24
ENHARMONIC

24303132 36 46 47 48

SECOND VERSION OF THE INVERTED PHRYGIAN
CHROMATIC
242526 32 36 38 40 48
ENHARMONIC
48 49 50 64 72 74 76 96

8-17. Harmonic forms of the conjunct Phrygian
karmaonia. For each of the conjunct diatonic har-
moniai, the harmonic forms is obtained by taking the
2/1 complement of eack ratio or interval.

FIRST VERSION OF THE INVERTED CONJUNCT
PHRYGIAN HARMONIAI

DIATONIC
121314 17182022 24

CHROMATIC
1213 16 1718 22 23 24

ENHARMONIC

24 26 34 35 36 46 47 48

SECOND VERSION OF THE INVERTED CONJUNCT
PHRYGIAN HARMONIAI
CHROMATIC

2426272836 38 4048
ENHARMONIC

4852 53 54 72 74 76 96

Another source of new harmoniai has been suggested by Wilson. One
might insert pykna above notes other than the first and fourth degrees of
the basic diatonic modal sequence. Interesting variations may also be dis-
covered by inserting more than two pykna, or any number at any location.
The final result of this procedure is to generate “close-packed” scales with
many more than seven notes.

Harmonic forms of the harmoniai

Schlesinger’s original harmoniai and all of the new scales generated in
analogy with hers are 1- or 2-octave sections of the subharmonic series.
These musical structures may be converted to sections of the harmonic
series by replacing each of their tones with their 2/1 complements or
octave inversions.

The resulting harmonic forms may be used in exactly the same way as
the originals, save that the modalities of the chords (major or minor) and
the melodic contours of the scales are reversed, i.e., the intervals become
smaller rather than larger as one ascends from the lowest tone.

In general, chords from the harmonic series are more consonant
than those from the subharmonic. However, the tones of the harmonic
scales are more likely to be heard as arpeggiated chords than are the
scalar tones of the subharmonic forms.

There is only one form of each of the inverted diatonic harmoniai,
but the chromatic, enharmonic and other katapyknotic forms (8-9)
have two versions. The first forms are the octave complements of the
corresponding subharmonic originals and these forms have their pykna
at the upper end of each tetrachord. The second versions are produced
by dividing the initial intervals of the two tetrachords of the inverted
diatonic forms as in the generation of the chromatic and other kata-
pyknotic forms of 8-9. An example which illustrates these operations
is shown in 8-16. The Phrygian harmonia, of modal determinant 12,
is inverted and then divided to yield the diatonic, chromatic and
enharmonic forms. Both versions of the chromatic and enharmonic
harmoniai are listed, and the other katapyknotic forms may be
obtained by analogy.

Conversely, the second of the new harmonic forms may be inverted
to derive new subharmonic harmoniai whose divided pykna lie at the
top of their tetrachords. These too are listed in 8-16.

Conjunct harmoniai may also be inverted to generate harmonic
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8-18, Wilson's diaphonic cycles. These diaphonic cycles (diacycles) may be constructed on sets of strings vuned alternately a 3/2 and 4/3 apart since the
largest divided interval isthe 3/2. The order of the segments, nodes, and conjunctions may be permuted according to the following scheme: a/b - c/d =
ald-c/b=2/1 andc/d - a/b=c/b - ald = 2/1. Alternative conjunctions are indicated by primed nodes, i.e. ¢, d'. Some diacycles such asnumber 21 bave
two independent sets of nodes and conjunctions. The second is symbolized bye fg b.

a ¢ bd
(3/2-453)
2, Iz 11 10 9 8
a,c d b
(3/2-4/3)
3. 18 17 16 15 14 13 Iz
a c b, d
(3/2-473)
4. 21 20 19 18 17 16 15 1I4
a ¢ d b

(3/2 - 4/3; 1017 - 7/5)
5. 24 23 22 21 20 19 I8 17 16
d

ac
(3/2-4/3)

6. 27 26 25 24 23 22 21 20 19 18
a ¢ b d
(3/2-443)

7. 30uinn 28 21 20
a c d &

(3/2-453; 1077 - 7/5)

8. 33 32ueen 24ueierennens 22
a ¢ d b
(3/2 - 4/3; 16/11 - 11/8)

9. 30 32 v 27 v 24
a,c ¢ d b
(3/2-4/3)

I0. 3Qumens 36 e 27 26
a ¢ d b
(372 - 4/3; 13/9 - 18/13)

IL 42encen 40 wivrneas. 30urerenees 28
a ¢ d b
(3/2 - 4/3; 1077 - 715)

12. 45 44cucmns 40ucriruann. 33 oo 30
a ¢ c d b d

(3/2 - 4/3; 22/15 « 15/11)
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13. 48 44 veerreans 36 i 33 32
ac c d d b
(372 - 4/3; 16/11 - 11/8)

I4. §Tavnnn 48 i 36 34
a ¢ d b
(3/2 - 4/3; 17/12 - 24/17)

I5. §4 cernies §2 cererinns 48 R ] JR— 36
a ¢ ¢ d' b, d
(3/2 - 4/3; 13/9 - 18/13)

16. §7 §6.iinin .2 JE 42 cerrrrens 39 38
a4 ¢ ¢ d d b
(3/2 - 4/3; 19/14 - 28/19; 19/13 - 26/19)

17. 60.crnirens [{ Q- - 40
a c d b
(372 - 4/3; 10/7 - 7/5)

18, 63cceriinnnn 60 oinnr [ JH. 45 cinnarane 42
a ¢ ¢ d b d
(3/2+4/3; 1017  7/5)

19. 66.......... 64 .ovrnne. [\ To I 48 ... 45 44
a ¢’ ¢ d' d b
(372 - 4/3; 22/15 - 15/115 16/11 - 11/8)

20. 69 68....... L7 T [ 3 SR 48 46
a ¢ ¢ d d b
(3/2 - 4/3;23/16+ 32/23; 23/17 + 34/23)

3 R I 7O wereererns 68 64 coveeeren 51 50 49 48
4 &g ¢ ¢ d b f bd
(3/2 - 4/3; 30/7 - 7/5; 24/17 + 17/12)

220 7§ 68 . 5T 50
a ¢ d b
(3/2 - 4/3; 25/17 - 34/25)

230 78 76 i 57 corvesninne 52
a ¢ d b
(3/2 - 4/3; 26/19 < 19/13)

24. 81 8o v iy I [+ To J 56 55 54
a e g d b f b
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8-19. Diacycles om 20/13. These diacycles can be
constructed on strings 13/10 and 20/13 apart.

a ¢ g d f bb

LT O { T 42..40 39
ae g ¢ shod b
(20/13  13/10; 3/2 - 4/3; 10/7 - 7/5)

80..78...76 i crrennninienn 60... §7uviuen 52
a ce g
(20/13 - 13/10; 3/2 - 4/3; 26/19 - 19/13)

100 §9...96... OL.uruemrresersnsnens 72..70 ..... 66 65
a ¢ g ¢ h d f b
(z0/13-13/10;10/7-7/5;3/2-4/3;16/11- 11/8)

8-20. Triaphonic and tetraphonic cycles on 4/3 and
§/4. (1) may be constructed om three strings tuned to
1/1, 4/3,0nd 3/2. (2) requires strings runed to 1/1,
4/3,and 3/2. (3) may be realized on four strings
tunedto 1/1, 6/5, 147/100 and 42/25.

20 19 18 17 16 15

4, ¢ e d b f
(473 - 5/4- 6/5)

28 Pl SR 24 ................... 21
ac ¢ d b f
(4/3:7/6-9/7)

50 49 48 42....40
4 & 6g Lh b4

(5/4-6/5 - 7/6 - 8/7)

forms as shown in 8-17. In this case, the disjunctive tone is at the
bottom with the two tetrachords linked by conjunction above.
These operations may be applied to all of the harmoniai described

"above. Similarly, the other musical structures presented in the

remainder of this chapter may also be inverted.

Other directions: Wilson’s diaphonic cycles

Ervin Wilson has developed a set of scales, the diaphonic cycles, which
combine the repeated modular structure of tetrachordal scales with the
linear division of Schlesinger’s harmoniai (Wilson, personal commu-
nication).

The diaphonic cycles, or less formally diacycles, may be understood most
easily by examining the construction of the two simplest members in 8-18,

In diacycle 1, the interval 3/z, which is bounded by the nodes 2 and b, is
divided linearly to generate the subharmonic sequence 9 8 7 6 or 1/1 9/8
9/7 3/2. Subtended by this 3/2 is the linearly divided 4/3 bounded by the
nodes ¢ and d. This segment forms the sequence 8 7 6 or 1/1 8/7 4/3.
Five-tone scales may be produced by joining these two melodic segments
with a common tone to yield 1/1 9/8 9/7 3/2 12/7 2/1 (8 ~ b on 1/1, then
¢c—d on 3/2)and 1/1 8/7 4/3 3/2 12/7 2/1 (c—d on 1/1, then 2—b on 4/3):

987(6 and 87(6)
®)76 876

The tones in parentheses are common to the two segments.

Diaphonic cycle 2 generates two heptatonic scales which are modes of
Ptolemy’s equable diatonic genus: 1/1 12/r1 6/5 4/3 16/11 8/5 16/9 2/1
and 1/1 12/11 6/5 4/3 3/2 18/11 9/5 2/1. The two forms are respectively
termed the conjunctive and disjunctive or tetrachordal form.

As the linear division becomes finer, scales with increasing numbers of
tones are generated. At number 4, a new phenomenon emerges: the exis-
tence of another set of segments whose conjunction produces complete
scales. The nodes 4,d and ¢,b define a pair of diaphonic cycles whose seg-
ments are 10/7 and 7/5.

These diaphonic cycles can be implemented on instruments such as
guitars by tuning the intervals between the strings to a succession of 3/2’s
and 4/3’s. The fingerboards must be refretted so that the frets occur at
equal aliquot parts of the string length. Wilson constructed several such
guitars in the early 1960s.
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B-2z1. Divisions of the fifth. ( 1) is described as an
“aulos-scale (Phrygian, reconstructed by KS)” in
Schlesinger 1933. (2) is another “aulos-scale (Hypo-
dorian),” identified with another unnamed scale of
Aristoxenos (Meibomius 1652, 72). (3) is an “aulos-
scale Mixolydian),” identified with anotber
unnamed scale of Aristoxenos. (g) is identified with
yet another scale of Aristoxenos. (5) spansan aug-
mented fifth and appears also in ber iterpretation of
the spondeion. (6) is the “singular major” of Safiyu-
d-Din (D’Erlanger 1938, 281). The Islamic genera
are from Ronanet 1922. (8), Isfahan, spans only the
4/3.(9) is labeled “Zirafkend Bouzourk.” Rouantet’s
last genus is identical vo Safiyu-d-Din’s scale of the
Same name.

SCHLESINGER’S DIVISIONS
1. 24/23-23/22 - 11/9 . 9/8
2. 16/15 15/14 . 7/6 - 9/8
3. 28/27.9/8.8/7.9/8
4. 21/20-10/9-9/8 - 8/7
5. 11/10-10/9 - 9/8 - 8/7
ISLAMIC GENERA
6. 14/13-8/7 - 13/12 - 14/13 - 117/112
7. 13/12 - 14/13 - 13/12 - 287/272
8. 13/12 - 14/13 - 15/14 - 16/15
9. 14/13 - 13/12 - 36735 - 9/8 . 10/9

Wilson has also developed a set of simpler scales on the same principles
under the general name of “Helix Song.” They consist of notes selected
from the harmonic series on the tones 1/1 and 4/3. These have been used
as the basis of a composition by David Rosenthal (Rosenthal 1979).

Triacycles and tetracycles

For the sake of completeness, some new diacycles have been con-
structed on the interval pair 20/13 and 13/10. These are listed in 8-19. As
20/13 is slightly larger than 3/2, some new diacycles on 3/2 are generated
incidentally too.

Larger intervals and their octave complements might be used, but the
increased inequality in the sizes of the two segments would probably be
melodically unsatisfactory. This asymmetry may be hidden by defining
three or four segments instead of merely two. A few experimental three-
and four-part structures, which may be called triacycles and tetracycles, are
shown in 8-z0.

Linear division of the fifth

As a final note, it must be mentioned that both Schlesinger (1933) and the
Islamic theorists also recognized scales derived by linear division of the
fifth instead of the fourth or octave (8-21). Not surprisingly, Schlesinger’s
are presented as support for the authenticity of her harmoniai.

It is likely that the Islamic forms had origins that are independent of the
Greek theoretical system. The genus from Safiyu-d-Din (D’Erlanger
1938) may be rationalized as being derived from the permuted tetrachord,
14/13 - 8/7 - 13/12, by dividing the disjunctive tone, 9/8, of the octave scale
into two unequal parts, 14/13 and r17/112. Characteristically, all 24 per-
mutations of the intervals were tabulated.

Rouanet’s scales deviate even more from Greek models, though the
tetrachordal relationship may stll be seen (Rouanet 1922).
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9 The Catalog of tetrachords

THI1S CATALOG ATTEMPTS a complete and definitive compilation of all the
tetrachords described in the literature and those that can be generated by
the straightforward application of the arithmetic and geometric concepts
described in the previous chapters. While the first of these goals can be
achieved in principle, the second illustrates Aristoxenos’s tenet that the
divisions of the tetrachord are potentially infinite in number. It seems
unlikely, however, that any great number of musically useful or theoretically
interesting tetrachords has been omitted. Figures g-1 through 9-6 show that
the two-dimensional tetrachordal space is nearly filled by the tetrachords in
the Catalog. The saturation of perceptual space is especially likely when one
considers the finite resolving power of the ear, the limnits on the accuracy and
stability of analog and acoustic instruments, the quantizing errors of digital
electronics, and our readiness to accept sufficiently close approximations to
ideal tunings.

Nevertheless, processes such as searches through large microchromatic
scales (chapter 7) and propriety calculations (chapter 5) will occasionally turn
up new genera, so perhaps one should not be too complacent. The great
majority of these new tetrachords, however, will resemble those already in
the Catalog or be interchangeable with them for most melodic and harmonic

purposes.

Organization of the Catalog

The tetrachords in the Main Catalog are listed by the size of their largest
interval, which, in lieu of an historically validated term, has been called the
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9-1. Tetrachords in just intonation: smallest vs.
largest intervals. Units in cents. The obligue lines
are the upper and lower limits of the largest interval
Joreach value of the smallest. This graph is limited to
the tetrachords in the main, reduplicated, and mis-
cellaneous lists.
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9-2. Tetrachords in just intonation: first vs. second
intervals, The obligue lines are the upper and lower
limits of the second interval for each value of the first.
This graph is limited to the tetrachords in the main,
reduplicaed, and miscellaneous lists.

characteristic interval (CI). The term apyknon would have been used except
that it has been traditionally employed to denote the sum of the two lower
intervals of the diatonic genera. In diatonic tetrachords, this sum is greater
than one half of the fourth.

Those tetrachords with Cls larger than 425 cents are classed as
hyperenharmonic (after Wilson) and listed first. Next come the enharmonic
with their incomposite Cls approximating major thirds. Chromatic and
diatonic genera follow, the latter beginning when the CI falls below 250
cents.

For each CI, the genera derived from the 1:1, 1:2, and 2:1 divisions of the
pyknon or apyknon are listed first and followed by the other species of
tetrachord with this CI, References to the earliest literature source and a
brief discussion of the genus are given below each group.

In addition to the genera from the literature, the majority of the Main
Catalog comprises tetrachords generated by the processes outlined in
chapters 4 and 5. Both the 1:2 and 2:1 divisions are provided because both
must be examined to select “strong,” mostly superparticular forms in the
Ptolemaic manner (chapter z). If strict superparticularity is less important
than convenience on the monochord or linear order, the 1:2 division is
preferable, but recourse to the 2:1 may be necessary to discover the simplest
form. For example, the threefold division of the 16/1 § pyknon yields the notes
48 47 46 45. Prolemy chose to recombine the first two intervals and reorder
the third to obtain his enharmonic, 46/45-24/23 - 5/4.

In general, only the simplest or mostly superparticular divisions are
tabulated in this section; occasionally a theoretically interesting tetrachord
without any near relatives will be found in the Miscellaneous list. Such
isolated tetrachords are relatively uncommon. There are cases, however, in
which all of the other divisions of a tetrachord’s pyknon or apyknon have
very complex ratios, and so closely resemble other tetrachords already
tabulated that it did not seem fruitful to list them in a group under the CI
in the Main Catalog.

“Miscellaneous” is a very elastic category. It consists of a collection of
genera of diverse origin thatI did not think interesting enough to list in the
Main Catalog.

The order of intervals within each tetrachord is the canonical small,
medium, and large in the case of the historical genera and their analogs.
The new theoretical genera are generally listed in the order resulting from
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9~3. Tetrachords injust intonation: parbypatai vs.
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9~4- Fust and tempered tetrachords: smallest vs.
largest intervals. The oblique lines are the upper and
lower limits of the largest interval for each value of
the smallest. This graph contains all the tetrachords
in the Caralog.

their generating process. It should be remembered, however, that all six
permutations of the non-reduplicated genera and all three of the
reduplicated are equally valid for musical experimentation.

With the exception of the Pythagorean 256/243 - 9/8 - 9/8 and Al-Farabi’s
10/9-10/9-27/25, the genera with reduplicated intervals are given in the list
of Reduplicated tetrachords.

Those tetrachords defined in either in “parts” of the tempered fourth
or which consist solely of tempered intervals are to be found in the Tempered
list. Needless to say, these tetrachords are a diverse lot, covering
Aristoxenos’s divisions, Greek Orthodox liturgical genera (in two systems
— one of 28 parts to the fourth, the other of 30), and those derived from
theoretical considerations. As some of the latter contain rational intervals
as well, a separate list of Semi-tempered tetrachords is included.

No attempt has been made to catalog the very numerous tetrachords and
tetrachord-like structures found in the non-zero modulo 12 equal
temperaments of 4-17.

An index of sources for those tetrachords of historical provenance is

provided.

Uniformity of sampling

In order to show the uniformity with which the set of all possible tetrachords
in just intonation has been sampled in the Catalogs of this chapter, the genera
from the Main, Reduplicated, and Miscellaneous lists have been plotted in
9-1,9-2 and 9-3. In ¢-1, the smallest intervals are plotted against the largest
intervals or CIs. As one may see, the area delineated by the two oblique lines
is more or less uniformly filled. However, diagonal zones corresponding to
genera with roughly equal and 1:2 divisions are evident. The tables are
deliberately deficient in genera with commatic and sub-commatic intervals,
as these are of little use melodically. The few examples in the tables are taken
mostly from Hofmann’s list of superparticular divisions (Vogel 1975) or
generated by theoretical operations such as the means of chapter 4.

9-2 is a plot of the first versus the second intervals of the same tetrachords.
Although the graph has a different shape, the same conclusions may be
drawn.

9-3 is a third representation of the same data. In this case, cumulative
rather than sequential intervals have been plotted. This mode reflects the
Greek classification of tetrachords into primary genera (enharmonic,
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9-5. Fust and vempered tetrachords: first vs. second
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lichanoi. The obligue lines are the upper and lower
limits of lichanos for each value of the parbypate.
This graph contains all the terrachords in the
Catalog.
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chromatic and diatonic) and shades or nuances (chroai) of these genera. The
primary distinction is based on the size of the uppermost interval, usually
the CI except in Archytas’s and Ptolemy’s diatonics (28/27- 8/7 - 9/8 and
16/15 - 9/8 - 10/9). The exact nuance or shade is then defined by the size of
the first interval. The position of parhypate is equivalent to the size of the
first interval and the position of lichanos is an inverse measure of the CI.
This graph also reveals the relative uniformity of coverage and the excess
of genera with 1:1 and 1:2 divisions. '

The tetrachords in the Tempered and Semi-tempered lists were added
to the set graphed in g-1-3, and the entire collection replotted in 9-4-6.
The largest empty spaces in the plots are thus filled. In a few cases, the gaps
could be filled only by creating new genera specifically for this task. These
have been marked in the Tempered tetrachord list.

The Main Catalog

HYPERENHARMONIC TETRACHORDS

Hi1. CHARACTERISTIC INTERVAL 13/10 454 CENTS

80/79 - 79/78 - 13/10 22 +22 + 454
60/49 - 118/117 - 13/10 20 + 15+ 454
120/119 - 116/117 - 13/10 14 +29+ 454
100/99 - 66/65 - 13/10 17+ 26+ 454 WILSON

The 13/10 would appear to be the upper limit for a genus-defining CI simply
because the pyknotic intervals become too small to be melodically useful,
however perceptible they might remain. In general, tetrachords with
intervals less than 20 cents or with overly complex ratios will be relegated
to the Miscellaneous listing at the end of the Catalog proper, unless there
is some compelling reason, such as historical or literary reference, illustration
of theory, or the like, to include them. The pyknon of this hyperenharmonic
genus is the 40/39 (44 cents), which is very close to the Pythagorean double
comma of 324/238, Number 4 is from the unpublished notes of Ervin Wilson.

See also Miscellaneous.

H2. CHARACTERISTIC INTERVAL 3§/27 449 CENTS

72/71 - 71/70 - 35/27 24+ 25 + 449
108/107 - 107/105 * 35/27 16 + 33 + 449
54/53 - 106/105 - 35/27 32+16+449
64/63 - 81/80 - 35/27 27+22+449
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24

This genus divides the 36/35 (49 cents), an interval found in Archytas’s
enharmonic and Avicenna’s chromatic. Number 8 is found in Vogel’s tuning
for the Perfect Immutable System (Vogel 1963, 1067) and Erickson’s (1965)
analysis of Archytas’s system (see chapter 6).

H3. CHARACTERISTIC INTERVAL 22/17 446 CENTS

68/67 - 67/66 - 22/17 26 + 26 + 446
51/50 - 100/99 - 22/17 35+ 17+ 446
102/101 + 101/99 - 22/17 17 +35 + 446
85/84 - 56/55 - 22/17 20 + 31 + 446 WILSON

The pyknon of this hyperenharmonic genus is 34/33 (52 cents), a
quartertone. The intervening genera with pykna between 39/38 and 35/34
have not so far yielded melodically interesting, harmonically useful, nor
mathematically elegant divisions, but see Miscellaneous for examples. This
genus is replete with intervals of 17.

H4. CHARACTERISTIC INTERVAL 128/99 445 CENTS

66/65 - 65/64 - 128/99 26+ 27 + 445
09/98 . 49/48 - 128/99 18 + 36 + 445
99/97 - 97/96 - 128/99 35+ 18 + 445

The pyknon of this genus s 33/32 (53 cents), the octave-reduced thirty-third
harmonic and an approximate quarter-tone.

Hs. CHARACTERISTIC INTERVAL 31/24 443 CENTS

64/63 - 63/62 - 31/24 27 + 28 + 443
96/95 - 95/93 - 31/24 18437 +443
48/47 - 94/93 - 31/24 36+ 19 +443

This hyperenharmonic genus divides the 32/31 (55 cents), an interval used
in Didymos’s enharmonic.

H6. CraracTeErISTIC INTERVAL 40/31 441 CENTS

62/61 + 61/60 - 40/31 28 + 29 + 441
93/92 - 46/45 - 40/31 19 + 38 + g4I
03/91 - 91/90 - 40/31 38 + 19 + 441

The pyknon of this genus is 31/30 (57 cents), an interval which occurs in
Didymos’s enharmonic,

H7. CHARACTERISTIC INTERVAL §8/45 439 CENTS

60/59 - 59/58 - 58/45 20 +30+439
90/89 - 89/87 - 58/45 19 + 39 + 439
45/44 - 88/87 - 58/45 39+ 20+ 439

16§ THE CATALOG OF TETRACHORDS




25

26
27
28
29
30
31
32
33
34

35
36

37

39
40

120/119 - 119/116 - 58/45 14 + 44 + 439
The pyknon of this hyperenharmonic genus is 30/29 (59 cents).

H8. CHARACTERISTIC INTERVAL 9/7 435 CENTS

56/55-55/54-9/7 31+32+435 WILSON
42/41 - 82/81 - 9/7 42 + 21 +435
84/83 - 83/81.9/7 21 + 42 +435
64/63 - 49/48 - 9/7 27+ 36 + 435
70/69 - 46/45 - 9/7 25+ 38 4435
40/39 - 91/90 - 9/7 44+ 19 + 435
112/111 - 37/36 - 9/7 16+ 47 + 435
81/80.2240/2187-9/7 22 + 41 + 43§
9/7 - 119/117 - 52/51 435+ 29+ 34

The pyknon of this prototypical hyperenharmonic genus (Wilson,
unpublished) is Archytas’s diesis, 28/27 (63 cents). Melodically, this genus
bears the same relation to Aristoxenos’s soft chromatic as Aristoxenos’s
enharmonic does to his syntonic (intense) chromatic, Number 26 is Wilson’s
original “hyperenharmonic” tetrachord. Divisions 29 and 31 are interesting
in that their first intervals make, respectively, an 8/7 and a 15/13 with the
subtonics hyperhypate (diatonic lichanos meson) and mese, and
proslambanomenos and diatonic paranete diezeugmenon as well. Tetrachord
number 32 isa good approximation to a hypothetical 1 + 3 + 26 parts, 17+ 50
+ 433 cents—see also number 2 § above. Number 33 occurs in Vogel’s (1963,
1967) PIS tuning. Number 34 is a summation tetrachord from chapter 4.

Hog. CHARACTERISTIC INTERVAL 104/81 433 CENTS

54/53 - 53/52 - 104/81 32+33+433
81/79 - 79/78 - 104/81 43 +22 + 433
81/80 - 40/39 - 104/81 22 + 44 +433

The pyknon of this genus is 27/26 (65 cents). This division is melodically
similar to the 9/7 genus, though not harmonically. Number 37, when
rearranged, generates a 15/13 with the subtonic.

Hio. CHARACTERISTIC INTERVAL §50/39 430 CENTS

52/51 - 51/50 - 50/39 34 +35+430
39/38 - 76/75 - 50/39 45 + 23 + 430
7877777175 - 50/39 22 + 46 + 430

The pyknon is 26/25 (68 cents) and is inspired by Kathleen Schlesingexi’s
(1939, 214) enharmonic Lydian harmonia.
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59

Hir. CHARACTERISTIC INTERVAL 32/25 427 CENTS

50/49 - 49/48 - 32/25 35+ 36 + 427
75/73 - 73/72 - 32/25 46 + 24 + 427
75/74-37/36 - 32/25 23 +47 + 427

This genus divides the 25/24 minor semitone (71 cents). The 32/25 is the
3/2’s complement of 75/64, the s-limit augmented second (5/4 - 5/4 - §/4 -
3/2, reduced to one octave).

ENHARMONIC TETRACHORDS

E1. CHARACTERISTIC INTERVAL 23/18 424 CENTS

48/47 - 47/46 - 23/18 36 + 37 + 424 SCHLESINGER
36/35 . 70/69 - 23/18 49+ 25 + 424 WILSON
72/71 - 71/69 - 23/18 24 + 50 + 424
30/29 - 116/115 - 23/18 50+ I5 + 424 WILSON
60/59 - 118/115 - 23/18 29 + 45 + 424

This genus divides the 24/23 (74 cents) and lies on the boundary between
the enharmonic and hyperenharmonic genera. It is analogous to the ¢9/7
genus but divides the hemiolic chromatic rather than the soft or intense
diesis. Numbers 45 and 47 are from Wilson. Number 44 (Schlesinger 1939,
214) is the lower tetrachord of her enharmonic Phrygian harmonia.

Ez. CHARACTERISTIC INTERVAL 88/69 421 CENTS

46/45 - 45/44 - 88/69 38 +39 + 421
69/67 - 67/66 - 88/69 51 + 26 + 421
69/68 - 34/33 - 88/69 25+ 52 + 421

The pyknon of this enharmonic genus is 23/22 (77 cents).

E3. CHARACTERISTIC INTERVAL §0/41 421 CENTS

320/313 - 313/306 - 51/40 38 + 39 + 421
480/473 - 473/459 - 51/40 25 + 52 + 421
240/233 - 466/459 - 51/40 51 +26+421

The pyknon is 160/153 (77 cents). The 51/40 is the 3/2’s complement of
20/17.

E4. CHARACTERISTIC INTERVAL 14/11 418 CENTS

44/43 - 43742 - 14/11 40 + 41 + 418
33/32 - 64/63 - 14/11 §3+27 + 418
66/65 - 65/63 - 14/11 26 + 54 + 418
88/87 . 29/28 - 14/11 20 + 61 + 418
36/35 - 55/54 - 14/11 49 +32 + 418
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50/49 - 77/75 - 14/11 35+46 + 418

14/11 - 143/140 - 40/39 418 + 37 + 44

This is a new genus whose pyknon is 22/21 (81 cents). The 14/11 is a
supramajor third found in the harmonic series between the fourteenth and
eleventh partials. It occurs in the Partch diamond and other extended
systems of just intonation.

Es5. CraracTeRISTIC INTERVAL 80/63 414 CENTS

42/41 + 41/40 - 80/63 42 + 42 + 414
63/61 - 61/60 - 80/63 56 +28 +414
63/62 - 31/30 - 80/63 27+ 57 +414

The pyknon of this enharmonic genus is 21/20 (84 cents), a common interval
in septima] just intonation.

E6. CHARACTERISTIC INTERVAL 33/26 413 CENTS

208/203 - 203/198 + 33/26 42 + 43 +413
312/307 - 307/297 - 33/26 28 + §7+ 413
312/302 - 302/297 - 33/26 56 +29 + 413
52/51-34/33 - 33/26 34+ 52 +413
26/25 - 100/99 - 33/26 68 + 18 + 413
78/77 « 28/27 . 33/26 22 +63 +413

The characteristic interval of this genus is the 3/2’s complement of 13/11
and derives from the 22:26:33 triad. The pyknon is 104/99 (85 cents).

E7. CHARACTERISTIC INTERVAL 19/1§ 4009 CENTS

40/39 - 39/38 - 19/15 44 +45 + 409 ERATOSTHENES
30/29 - 58/57 - 19/15 59 + 30 + 409
60/59 - 59/57 - 19/15 29 + 60 + 409
28/27.135/133 - 19/15 63 + 26 + 409

The pyknon, 20/19 (89 cents), of this historically important genus is very
close to the Pythagorean limma, 256/243. Number 71 is a good
approximation to Aristoxenos’s enharmonic of 3 + 3 + 24 “parts,” and, in fact,
is both Eratosthenes’s enharmonic tuning and Ptolemy’s misinterpretation
of Aristoxenos’s geometric scheme (Wallis 168z, 170). The next two entries
are 2:1 and 1:2 divisions of the pyknon in analogy with the usual Ptolemaic
and later Islamic practices. Number 73 is a hypothetical Ptolemaic
interpretation of a (pseudo-)Aristoxenian 2 + 4 + 24 parts. An echo of this
genus may appear as the sub-4o division found on the fingerboard of the
Tanbur of Baghdad, a stringed instrument (Helmholtz [1877] 1954, 517).
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76
77
78
79
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82

The last species is an analog of Archytas’s enharmonic and the first makes
a 1§/13 with the subtonic.

E8. CuaRAcTERISTIC INTERVAL 81/64 408 CENTS

512/499 - 499/486 - 81/64 45 + 46 + 408 BOETHIUS
384/371 - 742/729 - 81/64 60 + 31 + 408
768/755 « 755/729 - B1/64 30 + 61 + 408
40/39 - 416/405 - 81/64 44 + 46 + 408
128/125 - 250/243 - 81/64 41 +49 + 408 EULER
64/63 « 28/27 . 81/64 27 + 63 + 408 WILSON
324 /238 . 2967329 . B1/64 47 + 43 + 408
36/35 - 2240/2187 - 81/64 49 + 41 + 408

In these tunings the limma, 256/243 (9o cents), has been divided. Number
75 is the enharmonic of Boethius and is obtained by a simple linear division
of the pyknon. It represents Aristoxenos’s enharmonic quite well, but see
the preceding 19/15 genera for a solution more convenient on the
monochord. In practice, the two (numbers 71 and 75) could not be
distinguished by ear. Numbers 76 and 77 are triple divisions of the pyknon,
for which Wilson’s division is a convenient and harmonious approximation.
Number 78 is an approximation to number 75, as is Euler’s “old enharmonic”
(Euler (1739] 1960, 170). Wilson’s tuning (number 80) should also be
compared to the Serre division of the 16/15 (5/4 genus). When number 8o
is rearranged, the 28/27 will make a 7/6 with the subtonics hyperhypate or
mese. In this form, itis a possible model for a tuning transitional between
Aristoxenos’s and Archytas’s enharmonics. The purely Pythagorean division
(number 81) is obtained by tuning five fifths down for the limma and
twenty-four up for the double comma, Number 82 is found in Vogel’s tuning
(1963, 1967) and resembles Euler’s (number 79).

E9. CHARACTERISTIC INTERVAL 24/19 404 CENTS

38/37-37/36 - 24/19 46 +47 + 404
57/55 - 55/54 - 24/19 62 +32 + 404
57/56 - 28/27 . 24/19 31+ 63 + 404 WILSON
76/75 - 25/24 - 24/19 23+ 71 + 404
40/39 - 117/95 - 24/19 44 + 50 +404

The pyknon is 19/18 (94 cents). The interval of 24/19 derives from the
16:19:24 minor triad, which Shirlaw attributes to Qusley (Shirlaw 1917, 434)
and which generates the corresponding tritriadic scale. It is the 3/2

complement of 19/16.

169 THE CATALOG OF TETRACHORDS



88

90
91

92
93
94
95
96
97

99

100
101

102

Ero. CHaracTERISTIC INTERVAL 34/27 390 CENTS

36/35-35/34 - 34/27 49+ 50+ 399
27/26 - §2/51 + 34/27 65+ 34 +399
54/53 - 53/51 + 34/27 32+ 67 +399
24/23 - 69/68 - 34/27 74 +25+399

This genus divides the 18/17 semitone of 99 cents, used by Vincenzo Galilei
in his lute fretting (Barbour 1953; Lindley 1984). These genera are virtually
equally-tempered and number 88 is an excellent approximation to
Aristoxenos’s enharmonic. It is also the first trichromatic of Schlesinger’s
Phrygian harmonia.

Er1r. CHARACTERISTIC INTERVAL 113/90 304 CENTS

240/233 - 233/226 - 113/90 51+ 53 +394

180/173 + 346/339 - 113/90 69 + 35 + 394

360/353 - 353/339 - 113/90 34+ 70+ 394

30/29 - 116/113 - 113/90 50 +45 + 394
40/39 - 117/113 - 113/90 44 + 60 + 394
60/59 - 118/113 - 113/90 20+ 75 +394

These complex divisions derive from an attempt to interpret in Ptolemaic
terms a hypothetical Aristoxenian genus of 7 + 23 parts. The inspiration came
from Winnington-Ingram’s 1932 article on Aristoxenos in which he
discusses Archytas’s 28/27 - 36/35 - 5/4 enharmonic genus and its absence
from Aristoxenos’s genera, despite the somewhat grudging acceptance of
Archytas’s other divisions. In Aristoxenian terms, Archytas’s enharmonic
would be 4 + 3 + 23 parts, and the first division is 3.5 + 3.5 + 23. Number g5
is the 4 + 3 division and 93 and 94 are 2:1 and 1:2 divisions of the complex
pyknon of ratio 120/113 (104 cents), Numbers 96 and 97 are simplifications,
while number 96 generates an ekbole of 5 dieses (15/13) with the subtonics

hyperhypate and mese.

Exr2. CHARACTERISTIC INTERVAL 64/§1 393 CENTS
34/33 - 33/32 - 64/51 52 + 53 + 393

51/50-25/24 - 64/51 34+ 71 +393

49/48 - 51/49 - 64/51 36 +69 +393

68/65 - 65/64 + 64/51 78 + 27 + 393

68/67 - 67/64 + 64/51 26 +79 + 393

The pyknon of this enharmonic genus is 17/16 (105 cents), the seventeenth

harmonic and a basic interval in septendecimal just intonation.
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104
105
106
107
108
109
110
III
I12
113
114
115
116

E13. CHARACTERISTIC INTERVAL §/4 386 CENTS

32/31-31/30 : 5/4 55+ 57+386 DIDYMOS
46/45 - 24/23 - §/4 38+ 74+ 386 PTOLEMY
48/47 - 47/45 - 5/4 36+ 75+ 386

28/27-36/35 - 5/4 63 + 49 + 386 ARCHYTAS
56/55-22/21 + 5/4 31 + 81 + 386 PTOLEMY?
40/39 -26/25 - 5/4 44 + 68 + 386 AVICENNA
25/24 - 128/125 - 5/4 71 + 41 + 386 SALINAS
21/20 - 64/63 - 5/4 84+27+386 PACHYMERES
256/243 - 81/80 - 5/4 go + 22 + 386 FOX-STRANGWAYS?
76/75 - 20/19 - 5/4 23 + 89 + 386

96/95 - 19/18 « 5/4 18+ 94+ 386 WILSON
136/135 - 18/17 - 5/4 13 + 99 + 386 HOFMANN
256/255 - 17/16 - 5/4 7+ 105 + 386 HOFMANN
68/65 - 5/4 - 52/51 78 + 386 + 34

These tunings are the most consonant of the shades of the enharmonic
genera. Although Plato alludes to the enharmonic, the oldest tuning we
actually have is that of Archytas (390 Bcg). This tuning, number 106, clearly
formed part of a larger musical system which included the subtonic and the
tetrachord synemmenon as well as both the diatonic and chromatic genera
(Winnington-Ingram 1932; Erickson 1965). Didymos’s tuning is the 1:1
division of the 16/15 (112 cents) pyknon and dates from a time when the
enharmonic had fallen out of use. Number 104 is undoubtedly Ptolemy’s
own, but the surviving manuscripts contain an extra page which lists number
107 instead. Wallis believed it to be a later additon, probably correctly.
Numbers 104 and 105 are the 1:2 and 2:1 divisions, given as usual for
illustrative and/or pedagogical purposes. The Avicenna tuning (D’Erlanger
1935, 154) has the 5/4 first in the original, following the usual practice of
the Islamic theorists. In this form, it makes a 15/13 with the subtonic.
Number 109 is Euler’s enharmonic (Euler [1739] 1960, 178); Hawkins,
however, attributes it to Salinas (Hawkins [1776] 1963, 27). Daniélou gives
it in an approximation with 46/45 replacing the correct 128/125 (Daniélon
1943, 175). The Pachymeres enharmonic is attributed by Perrett to Tartini
(Perrett 1926, 26), but Bryennios and Serre also list it.

Number 111 is given as Rag Todi by Fox-Strangways (1916, 121) and as
Gunakali by Daniélou (1959, 134-135). The divisions with extraordinarily
small intervals, numbers 114 and 115, were found by Hofmann in his
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119
120

121
122
123
124
125
126
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129
130

131

computation of the 26 possible superparticular divisions of the 4/3 (Vogel
1975)-

E14. CHaRAcTERISTIC INTERVAL 8102/6561 384 CENTS
437474235 - 4235/4096 - 8192/6561 57 + 57 + 384

6561/6283 - 6283/6144 - 8192/6561 75+ 39 + 384

6561/6422 - 3211/3072 - B192/6561 37+ 77+ 384

324/238. 227/317 . 8192/6561 47 + 68 + 384

The interval 8192/6561 is Helmholtz’s skhismic major third, which is
generated by tuning eight fifths down and five octaves up (Helmholtz [1877]
1954, 432). The pyknon is the apotome, 2187/2048 (114 cents). It has been
linearly divided in the first three tetrachords above, but a purely Pythagorean
division is given as number 120.

E1g. CraracTERISTIC INTERVAL §6/45 379 CENTS

30/29 - 29/28 - 56/45 59+ 60+ 1379 PTOLEMY
45/43 - 43/42 - 56/45 79 + 41+ 379
45/44 - 22/21 - §6/45 39+53+379
25/24 - 36/35 - 56/45 7T+ 49 + 379
80/77-33/32-56/45 66 + 53 +379
60/59 - 59/56 - 56/45 29 +90 + 379
40/39 - 117/112 - §6/45 44 + 76 + 379
26/25 - 375/364 « §6/45 68 + 52 + 379

The pyknon is 15/14 (119 cents). Number 121 is Ptolemy’s interpretation
of Aristoxenos’s soft chromatic, 4 + 4 + 22 parts. Number 125 is a Ptolemaic
interpretation of a hypothetical 4.5 + 3.5 + 22 parts, an approximation to
Archytas’s enharmonic (Winnington-Ingram 1932). Number 124 is a
simplification of the former tuning, and numbers 122 and 123 are the
familiar threefold divisions. Number 128 is a surnmation tetrachord.

Er6. CHARACTERISTIC INTERVAL 41/33 376 CENTS

88/85 - 85/82 - 41/33 60+ 62 +376
42/41 - 22/21 - 41/33 42 +81+376
44/43 - 43/41 - 41/43 39+ 82+ 376

This genus is an attempt to approximate a theoretical genus, 62.5 + 62.5 +
375 cents, which would lie on the border between the chromatic and
enharmonic genera. Number 129 is quite close, and numbers 130 and 131
are 1:2 and 2:1 divisions of the complex 44/41 (122 cents) pyknon.
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135
136
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139
140
141
142
143
144
145
146

147
148
149
150
1§51
152

CHROMATIC TETRACHORDS

Ci1. CHARACTERISTIC INTERVAL 36/29 374 CENTS

29/28 . 28/27 . 36/29
87/85 - 85/81.36/29
87/83 - 83/81 - 36/2¢9

61 + 63 +374
40+83+374
81 +42+374

This genus is also an approximation to 62.5 + 62.5 + 375 cents. The 36/29 is
from the 24:29:36 triad and tritriadic scale. The pyknon is 29/27 (124

cents),

C2. CHARACTERISTIC INTERVAL 26/21 370 CENTS

28/27 . 29/26 . 26/21
21/20 - 40/39 - 26/21
42/41 - 41/39 - 26/21
24/23 - 161/156 - 26/21

63 + 65 + 370 SCHLESINGER
85 +44+370
42 +87+ 370
74 +55+370

This genus divides the pyknon, 14/13 (128 cents) and approximates
Aristoxenos’s soft chromatic. Number 133 is from Schlesinger (1933) and
is a first tetrachord of a modified Mixolydian harmonia.

C3. CHARACTERISTIC INTERVAL 21/17 366 CENTS

136/131+ 131/126 - 21/19
102/97 - 194/189 + 21/17
204/199 - 199/189 - 21/1%
64/63 - 17/16 - 21/17
34/33 - 22/21 - 21/17
40/39-221/210- 21/17
24/23 - 391/378 . 21/17
28/27- 51/49 - 21/17

65+ 67 + 366
847 + 45 + 366
43 + 89 + 366
27 + 105 + 366
52 + 81 + 366
44 + 88 + 366
74 + 59 + 366
63 + 69 + 366

The pyknon is 68/63 (132 cents). Number 139 s a very close approximation
of Aristoxenos's soft chromatic, 4 + 4 + 22 “parts,” as is number 146 also.
Numbers 144 and 146 make intervals of 15/13 and 7/6, respectively, with
their subtonics.

Cg4. CHARACTERISTIC INTERVAL 100/81 365 CENTS

27/26 - 26/25 - 100/81 65 + 68 + 365
81/747-77/75 - 100/81 87 + 46 + 365
81/79 - 79/75 - 100/81 45 + 88 + 365
81/80 - 16/15 + 100/81 22+ 112 + 365
51/50- 18/17 « 100/81 34+ 99 + 365
36/35 - 21/20 - 100/81 49 + 85 + 365

I73 THE CATALOG OF TETRACHORDS




153
154
155

157
158

159
160

168
169

40/39 - 1053/1000 - 100/81 44 + 89 + 365

135/128 - 128/125 - 100/81 92 + 41 + 365 DANIELOU
24/23 - 207/200 - 100/81 74 + 6o + 365

The pyknon is the great limma or large chromatic semitone, 27/25 (133
cents). Daniélou listed his tetrachord in approximate form with 46/45
instead of the correct 128/125. (Daniélou 1943, 175). Number 147isa close
approximation to Aristoxenos’s soft chromatic, but the rest of the divisions

are rather complex,

Cs. CHARACTERISTIC INTERVAL 37/30 363 CENTS

80/77-77/74-37/30 66 + 69 +363 PTOLEMY
z0/19-38/37- 37/30 80 + 46 + 363

40/39-39/37 - 37/30 44 +91 +363

30/29 - 116/111+ 37/30 50 + 76 + 363

6o/59 . 118/111 + 37/30 20 + 106 + 363

This complex chromatic genus divides the 40/37 (135 cents). Number 156
is Ptolemy’s linear interpretation of Aristoxenos’s hemiolic chromatic, 4.5
+ 4.5 + 21 “parts,” with its characteristic neutral third and 3/4-tone pyknon.
This division closely approximates his soft chromatic, indicating that
Ptolemy’s interpretation in terms of the aliquot parts of a real string was
erroneous and that Aristoxenos really did mean something conceptually
similar to equal temperament. However, Ptolemy’s approach and the
resulting tetrachords are often interesting in their own right. For example,
number 157 could be considered as a Ptolemaic version of Aristoxenos’s
1/2 + 1/4+ 1 3/4 tones, 6 + 3 + 21 “parts,” a genus rejected asunmelodic because
the second interval is smaller than the first (Winnington-Ingram 1932). The
remaining genera are experimental.

C6. CHARACTERISTIC INTERVAL 16/13 3§50 CENTS

26/25 « 25/24 - 16/13 68 + 71 + 359
39/37 - 37/36 - 16/13 91 +47 +359
39/38 - 19/18 - 16/13 45 +94 + 1359
65/64 - 16/15 - 16/13 27+ 112 4359
52/51 - 17/16 - 16/13 34 + 10§ + 350
40/39 + 169/160 - 16/13 44 + 95 + 1359
28/27 - 117/112 - 16/13 63 +76 + 359
169/168 - 14/13 - 16/13 I1+128 +359
22/21 - 91/88 - 16/13 81 + 58+ 350

The pyknon of this genus, which lies between the soft and hemiolic
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171
172
173
174
175

chromatics of Aristoxenos, is 13/12 (139 cents). Number 169 is a summation
tetrachord from chapter 4.

C7. CHARACTERISTIC INTERVAL 27/22 355 CENTS

176/169 - 169/162 - 27/22 70+ 73 + 355
132/125 - 250/243 - 27/22 94 + 49 + 355
264/257 - 257/243 - 27/22 47+ 97 + 355
28/27-22/21 - 27/22 63 + 81 + 353
55/54 - 16/15 - 27/22 32+ IT2 + 35§
40/39 - 143/135 - 27/22 44 + 100 + 355

The Wosta of Zalzal, a neutral third of 355 cents, is exploited in this hemiolic
chromatic genus whose pyknon is 88/81 (143 cents), an interval found in
certain Islamic scales (D’Erlanger 1935).

C8. CHARACTERISTIC INTERVAL 11/9 347 CENTS

24/23 - 23/22 - 11/9 74+ 77 + 347 WINNINGTON-INGRAM
18/17-34/33 - 11/9 99 + 52 + 347

36/35-35/33 - 11/9 49 + 102 + 347

45/44 - 16/15 - 11/9 30+ 112+ 347

56/55-15/14 - 11/9 3T +1I9+347

78/77 « 14/13 - 11/9 22 + 128 + 347

20/19 - 57/55 - 11/9 89 + 62 + 347

30/29 - 58/55 - 11/9 59 +92 +347

28/27 - 81/77 - 11/9 63+ 88+ 347

40/39 - 117/110 - 11/9 44 + 107 + 347

This genus is the simplest realization of Aristoxenos’s hemiolic chromatic.
Winnington-Ingram mentions number 176 in his 1932 article on Aristoxenos
but rejects it, despite using 12/11 - 11/9 to construct his spondeion scale in
an earlier paper (Winnington-Ingram 1928). In view of the widespread use
of 3/4-tone and neutral third intervals in extant Islamic music and the use
of 12/11 by Ptolemy in his intense chromatic and equable diatonic genera,
Isee no problems with accepting Aristoxenos’s genus, 4.§ + 4.5 + 21 “parts,”
as recording an actual tuning, traces of which are still to be found in the
Near East. Ptolemy, it should be remembered, claimed that the intense
chromatic, 22/21 - 12/11 - 7/6, was used in popular lyra and kithara tunings
(Wallis 1682, 84, 178, 208) and that his equable diatonic sounded rather
foreign and rustic. Schlesinger identifies it with the first tetrachord of her
chromatic Phrygian harmonia (Schlesinger 1933; Schlesinger 1939, 214).
The pyknon of this chromatic genus is 12/11 (151 cents). Number 176 may
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186
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188

190
191
192
193

194
195
196
197
198
199
200
201
202

203
204
20§
206

be written as § + § + 20 Ptolemaic “parts” (120 115 110 90), rather than the
4.5 + 4.5 + 21 of Aristoxenian theory. A number of other divisions are shown,
including the usual 1:2 and 2:1, as well as the neo-Archytan 28/27 and
40/39 types.

Cg. CHARACTERISTIC INTERVAL 39/32 342 CENTS

25§6/245 - 245/234 - 39/32 76 + 8o + 342

384/373 - 373/351 - 39/32 50 + 105 + 342
192/181 - 362/351 - 39/32 102 + 53 + 342
64/63 - 14/13 - 39/32 27+ 128 + 342

This genus employs the 3/2’s complement of 16/13, the tridecimal neutral
third, found in the 26:32:39 triad. The unusually complex pyknon is
128/117 (156 cents).

C1o. CHARACTERISTIC INTERVAL 28/23 341 CENTS

23/22 - 22/21 - 28/23 76 + 81 + 341 WILSON
69/65 - 65/63 + 28/23 103 + §4 + 341
69/67 - 67/63 - 28/23 SI+ 107+ 341
46/45 - 15/14 - 28/23 38+ 119+ 341

This neutral third genus is from Wilson, The pyknon is 23/21 (157
cents).

Cr1. CHARACTERISTIC INTERVAL 17/14 336 CENTS

112/107 - 107/102 - 17/14 79 + 83 + 336
168/158 . 158/153 - 17/14 106 + 56 + 336
168/163 « 163/1§3 - 17/14 52 + 110+ 336
52/51 - 14/13 - 17/14 34 + 128 + 336
28/27 . 18/17 - 17/14 63 + 99 + 336
35/34 - 16/15 - 17/14 50+ 112 + 336
40739 - 91/85 - 17/14 44+ 118 + 336
17/14 - 5§6/55 - 55/51 336+ 31+ 131
17/14 - 56/53 - 53/51 336 +95+67

This chromatic genus uses Ellis’s supraminor third, 17/14 (Helmholtz [1877]
1954, 455), which occurs in his septendecimal interpretation of the
diminished seventh chord, 1o:12:14:17. The pyknon is §6/51 (162 cents).

C12. CHARACTERISTIC INTERVAL 40/33 333 CENTS

22/21 . 21/20 - 40/33 81+ 85 +333

33/32- 31/30- 40/33 108 + 57 + 333
33/32 - 16/15 - 40/33 §3 + II2+ 333
55/54 - 27/25 - 40/33 32 +133+333
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208

209
210
211

212
213
214
215
216
217

218
219
220
221
222
223
224
225
226
227
228
229
230
231

66/65 - 13/12 - 40/33 26+ 130 + 333

18/17 - 187/180 - 40/33 09 + 66 + 333

The pyknon of this genus is 11/10 (165 cents), an interval which appears in
Ptolemy’s equable diatonic and elsewhere. Number 208 is a summation
tetrachord from chapter 4.

C13. CHARACTERISTIC INTERVAL 29/24 328 CENTS
64/61 - 61/58 . 20/24
16/15 - 30/29 - 29/24
32/31 - 31/29  29/24
The interval 29/24 is found in some of Schlesinger’s harmoniai when she

83 + 87+ 328
112 + 59+ 328 SCHLESINGER
55+ 115+ 328 SCHLESINGER
tries to correlate her theory of linearly divided octaves with Greek notation
(Schlesinger 1939, 527-8). The results agree neither with the commonly
accepted interpretation of the notation, nor with the canonical forms of the
harmoniai given elsewhere in her book. The 29/24 is also part of the 24:29:36
triad and its 3/2’s complement generates the 36/2¢9 genus. The pyknon is
32/29 (170 cents).

Ci14. CHARACTERISTIC INTERVAL 6/5 316 CENTS

20/19 - 19/18 - 6/5 B9 + 94 +316 ERATOSTHENES
28/27 - 15/14 - 6/5 63+ 119+ 316 PTOLEMY
30/29 - 29/27 - 6/5 50+ 123 + 316
16/15 - 25/24 - 6/5 I12 + 71+ 316 DIDYMOS
40/39 - 13/12 - 6/5 44+ 139+ 316 BARBOUR
55/54 - 12/11 - 6/5 32 + I5I + 316 BARBOUR
65/63 - 14/13 - 6/5 54+ 128 + 316
22/21 - 35/33 - 6/5 81 + 102 + 316
21/20 - 200/189 - 6/5 85+ 07+ 316 PERRETT
256/243 - 6/5 - 135/128 90 + 316 + 92 XENAKIS
60/59 - 59/54 - 6/5 29 + 153 + 316
8o/77-77/72 - 6/5 66 + 116 + 316
24/23 - 115/108 . 6/5 74 + 109 + 316
88/81 . 45/44 - 6/5 143 + 39 + 316
46/45 - 6/5 - 25/23 38 + 316 + 144
52/51-85/78 . 6/5 314 + 149 + 316 WILSON
100/99 - 11/10 - 6/5 17+ 165 + 316 HOFMANN

34/33 - 6/5 - 55/51
6/5:35/32-64/63

6/5 - 2240/2187 - 243/224

52 +316+ 131
316 + 155 + 27
316+ 41 + 141
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235
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237
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This genus is the most consonant of the chromatic genera. Number 212 is
the chromatic of Eratosthenes and is identical to Ptolemy’s interpretation
of Aristoxenos’s intense chromatic genus. It is likely, however, that
Aristoxenos’s genus corresponds to one of the 32/27 genera. Number 213
is Ptolemy’s soft chromatic and is the 2:1 division reordered. Number 214
is the 1:2 division and a Ptolemaic interpretation of a 4 + 8 + 18 “parts.”
Didymos’s tuning is probably the most consonant, although it violates the
usual melodic canon of Greek theory that the smallest interval must be at
the bottom of the tetrachord. In reverse order, this tuning is produced by
the seventh of Proclus’s ten means (Heath 1921). Archytas’s enharmonic and
diatonic tunings also violate this rule; the rule may either be later or an ideal
theoretical principle. Numbers 216 and 217 are from Barbour (1951, 23).
Perrett’s tetrachord, like one of the 25/21 genera, is found to occur
unexpectedly in his new scale (Perrett 1926, 79). The Xenakis tetrachord
(number 221) is from the article, “Towards a Metamusic,” which has
appeared in different translations in different places (Xenakis 1971). It also
appears in Archytas’s systemn according to Erickson (1965). The Hofmann
genus is from Vogel (1975). Numbers 230 and 231 are found in Vogel's
tuning (1963, 1967) and chapter 6. The pyknon is the minor tone 10/g (182
cents).

Crs. CHARACTERISTIC INTERVAL 25/21 302 CENTS

56/53 - 53/50 - 25/21 97 +99 + 302

14/13 - 26/25 - 25/21 128 + 68 + 302

28/27 . 27/25 - 25/21 63 + 133 +302

21/20 - 16/15 - 25/21 84+ 112 +302 PERRETT
40/39 - 273/250 - 25/21 44 + 152 + 302

This genus whose pyknon is 28/25 (196 cents) is inspired by number 235,
a tetrachord from Perrett (1926, 80). Number 232 is virtually equally
tempered and number 234 is an excellent approximation to Aristoxenos’s
1/3+2/3+11/2 tones, 4+8 + 18 “parts.”

C16. CHARACTERISTIC INTERVAL 19/16 298 cENTS

128/121- 121/114 - 19/16 97 + 103 +208
96/89 - 178/171 - 19/16 131+ 60 +298
192/185 - 185/171 - 19/16 64 + 136 + 208
20/19 - 19/16 - 16/15 89 +208 +112 KORNERUP
256/243 - 81/76 - 19/16 90 + 110 + 298 BOETHIUS
96/95 - 10/9 - 19/16 18 + 182 +208 WILSON
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245
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27+ 173 + 208

40/39 - 104795 - 19/16 44 +157 + 298

The characteristic ratio for this genus derives from the 16:19:24 minor triad
(see the 24/19 genus). The pyknon is the complex interval 64/57 (201 cents).
Number 241 is from Boethius (1838, 6). The Kornerup tetrachord (1934,
10) also corresponds toa Ptolemaic interpretation of one of Athanasopoulos’s
(1950) Byzantine tunings, 6 + 18 + 6 “parts.” As 19/16 - 20/19 - 16/15, itisone
of the “mean” tetrachords.

64/63 - 21/19 - 19/16

294 CENTS
ARISTIDES QUINT.

C17. CHARACTERISTIC INTERVAL 32/27
18/17 - 17/16 - 32/27 09 + 10§ + 204
27/25 - 25/24 - 32/27 133+ 71 + 204

27/26 - 13/12 + 32/27 65+ 130 + 204 BARBOUR?
28/27 - 243/224 - 32/27 63 + 141 + 294 ARCHYTAS
256/243 + 2187/2048 - 32/27 90 +114 + 204 GAUDENTIUS
81/80 - 10/9 - 32/27 22 + 182 + 294 BARBOUR?
33/32 - 12/11 « 32/27 53+ 151 + 204 BARBOUR?
45/44 + 11/10 - 32/27 39 + 165 + 294 BARBQUR?
21/20 - 15/14 + 32/27 B4+ 119 + 204 PERRETT
135/128 - 16/15 - 32/27 92 + 112 + 204

36/35 - 35/32 - 32/27 49+ I55 + 204 WILSON
49/48 - 54/49 - 32/27 36 + 168 + 204 WILSON

243/230 - 230/216 - 32/27
243/229 - 229/216 - 32/27
20/19 - 171/160 - 32/27
23/22 - 99/92 - 32/27
24/23 - 69/64 - 32/27
40/39 +351/320- 32/27
14/13 - 117/112 - 32/27

95 + 109 + 294
103 +I0T+ 294
Bo + 115 + 294
77+ 127 + 204
74+ 130+ 204

44+ 160 + 294
128 + 76 + 294

PS.~PHILOLAUS?

These chromatic genera are derived from the traditional “Pythagorean”
tuning (perfect fourths, fifths, and octaves), which is actually of
Sumero-Babylonian origin (Duchesne-Guillemin 1963, 1969; Kilmer 1960),
by changing the pitch of the second string, the parhypate or trite. Number
245, the 1:1 division of the 9/8 pyknon (204 cents), is from from the late
classical writer, Aristides Quintilianus (Meibomius 1652, 123). Tunings
numbers 246 and 254 are of obscure origin. They were constructed after
reading a passage in Hawkins ([1776] 1963, 37) which quotes Wallis as
crediting Mersenne with the discovery of the 27/2 5 and 135/128 semitones
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265
266
267
268
269

270
271
272
273
274

and their 9/8 complements. However, the discussion is about diatonic
genera, not chromatic, and it is unclear to me whether Mersenne really did
construct these two chromatic tetrachords. Archytas’s chromatic, number
248, has been identified with Aristoxenos’s 1/3 + 2/3 + 1 1/2 tones by
Winnington-Ingram (1932) and number 247 is a good approximation to
his 1/2 + 1/2 + 1 1/2 tones. Number 249 is the unaltered Pythagoreanversion
from Gaudentius. The Barbour tetrachords derive from his discussion of
different superparticular divisions of the ¢/8 (Barbour 1951, 154-156).
Although tetrachords are mentioned, it is not clear that he ever actually
constructed these divisions. Perrett discovered number 253, like number
235 above, in his scale after it was constructed. Both Chaignet (1874,231)
and McClain (1978, 160) quote (Ps.)-Philolaus as dividing the tone into 27
parts, 13 of which go to the minor semitone, and 14 to the major. Number
257 is the result of this division and number 2 §8 has the parts taken in reverse
order. It would seem that number 245 and number 258 are essentially
equivalent to Aristoxenos’s theoretical intense chromatic and that numbers
254, 257, 259, and probably 253 as well, are equivalent to Gaudentius’s
Pythagorean tuning. The presence of secondary ratios of 5 and 7 in number
253 and number 2 54 suggests that the equivalences would be melodic rather
than harmonic. The last tuning is a summation tetrachord from chapter 4.

C18. CHARACTERISTIC INTERVAL 45/38 293 CENTS

304/287 - 287/270 - 45/38 100 + 106 + 293
456/439 - 439/405 - 45/38 66 + 140 + 293
228/211 . 422/405 - 45/38 134 + 71+ 293
19/18 - 16/15 - 45/38 94+ 112 +293
76/75 - 10/9 + 45/38 23+ 182 + 293
38/35 - 28/27 . 45/38 142 + 63 + 293

This genus uses the 45/38, the 3/2’s complement of 19/15. The pyknen is
152/135 (205 cents). Number 264 is a reasonable approximation to the
intense chromatic and number 269 is similar to Archytas’s chromatic, if
rearranged with the 28/27 first.

Cr9. CHARACTERISTIC INTERVAL 13/11 289 CENTS

88/83 - 83/78 - 13/11 101 + 108 + 289
66/61 - 122/117 - 13/11 136 + 72 + 289
132/127 - 127/117 - 13/11 67 + 142 + 289
14/13 - 22/21 . 13/11 128 + 81 + 289
40/39 - 11/10 - 13/11 44 + 165 + 289

180 CHAPTER O




275
276

277
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284
285
286
287
288

2900
291
292
203
204
295
296

297
208

66/65

27/26 -
28/27 .

-10/9 - 13/11

88/81 - 13/11
99/91 - 13/11

26 + 182 + 289
65+ 143 + 289
63 + 146 + 289

This experimental genus divides a pyknon of 44/39 (209 cents), an interval
also appearing in William Liyman Young’s diatonic lyre tuning (Young 1961).
The 13/11 is a minor third which appears in 13-limit tunings and with its
3/2’s complement, 33/26, generates the 22:26:33 tritriadic scale.

C20. CHARACTERISTIC INTERVAL 33/28 284 CENTS

224/211 - 211/198 - 33/28 104 + 110 + 284

336/323 - 323/297 - 33/28
168/155 - 310/297 - 33/28
§6/55 - 10/9 - 33/28
16/15 -35/32 - 33/28
34/33 - 33/28 - 56/51
The characteristic interval of this genus is the 3/2’s complement of 14/11,
33/28. The pyknon is 112/99 (214 cents).

68 + 145 + 284
139+ 74 + 284
31+ 182 + 284
I12 + 102 + 284
52+284+162

Cz21. CHARACTERISTIC INTERVAL 20/17 281 CENTS

17/16 - 16/15 - 20/17 10§+ 112 + 281

§1/47 - 47/45 - 20/17 142 + 75 + 281
51/49 - 49/45 - 20/17 69 + 147 + 281
34/33 - 11/10+ 20/17 52 + 165 + 281
§1/50.10/9 - 20/17 34 + 182 + 281
40/39 - 221/200 - 20/17 44+ 173 + 281
28/27 - 153/140 - 20/17 63 + 154 + 281

21/20-20/17 - 68/63 Bs + 281+ 132

68/65 - 13/12 - 20/17 78 + 139 + 281
34/31 - 31/30 - 20/17 160 + §7 + 281
68/61 - 61/60 - 20/17 188 + 29 + 281
68/67-67/57-19/17 26 + 280 + 193
68/67 - 67/60 - 20/17 26 + 191 + 281

The pyknon is 17/15 (217 cents). Intervals of 17 are becoming increasingly
common in justly-intoned music. This would appear to be a metaphysical
phenomenon of considerable philosophical interest (Polansky, personal
communication).

Cz22. CHARACTERISTIC INTERVAL 27/23 278 CENTS

184/173 - 173/162 - 27/23 107 + 114+ 278
276/265 + 265/243 - 27/23 70+ 150 +278
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314
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316
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319
320
321
322
323
324
325
326
327

138/127 - 254/243 - 27/2 144 + 77 + 278

28/27 - 23/21 - 27/23 63+ 157+ 278
23/22 - 88/81 - 27/23 77 + 143 + 278
46/45 - 10/9 - 27/23 38+ 182+ 278

This genus exploits the 3/2’s complement of 23/18, which is derived from
the 18:23:27 triad. The pyknon is 92/81 (220 cents).

Cz23. CHARACTERISTIC INTERVAL 75/64 275 CENTS

512/481 - 481/450 - 75/64 108 + 11§ + 275

768/737 - 737/675 - 75/64 71+152 +275

384/353 - 706/675 - 75/64 146 + 78 + 275

16/15 - 75/64 - 16/15 112 4275+ 112 HELMHOLTZ

The pyknon is 2§6/225 (223 cents). The 75/64 is the g-limit augmented
second, which appears, for example, in the harmonic minor scale.
Helmbholtz’s tetrachord is from (Helmholtz [1877] 1954, 263).

C24. CHARACTERISTIC INTERVAL 7/6 267 CENTS

16/15-15/14 -7/6 112 + 119+ 267 AL-FARABI
22/21 - 12/11- 7/6 81+ 151+267 PTOLEMY
24/23 - 23/21. 7/6 74+ 157 + 267

20/19 - 38/35 - 7/6 80 + 142 + 267 PTOLEMY
10/9 - 36/35 . 7/6 182 + 49 + 267 AVICENNA
64/63 - 9/8 . 7/6 27 + 204 + 267 BARBOUR
92/91 - 26/23 - 7/6 19 + 212 +267

256/243 - 243/224 - 7/6 90 + 14X + 267 HIPKINS
40/39 - 39/35 - 7/6 44+ 187 +267

18/17 - 7/6 - 68/63 09 +267 + 132

50/49 - 7/6 - 28/25 35+267+196

14/13 - 7/6 - §2/49 128 + 267 + 103

46/45 + 180/161 - 7/6 38 + 193 +267

28/27 - 54/49 - 7/6 63 + 168 +267

120/113 - 113/105 + 7/6 104 + 127 + 267

60/59 - 118/105 - 7/6 20 + 202 + 267

3029 - 116/105 - 7/6 59+ 172 +267

88/81 - 81/77.7/6 143 + 88 + 267

120/119 - 17/15 - 7/6 14 +217 +267

27/25 - 7/6 - 200/189 133 + 267 + 98

26/25 - 7/6 - 100/91 68 + 267 + 163
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329
330
331
332

333
334
335

7/6 - 1024/945 - 135/128 267+139 + 02

The pyknon of this intense chromatic is the septimal tone, 8/7 (231 cents).
Number 307 is given by Al-Farabi (D'Erlanger 1930, 104) and by Sachs
(1943, 282) in rearranged form as the lower tetrachord of the modern Islamic
mode, Higaz. The Turkish mode, Zirgule, has also been reported to contain
this tetrachord, also with the 7/6 medially (Palmer 1967?). Vincent attributes
this division to the Byzantine theorist, Pachymeres (Vincent 1847). This
tuning is also produced by the harmonic mean operation. Ptolemy’s first
division (number 308) is his intense chromatic (Wallis 1682, 172), and his
second (number 310) is his interpretation of Aristoxenos’s soft diatonic, 6
+ 9 + 15 “parts”, In this instance, Ptolemy is not too far from the canonical
100+ 150 + 250 cents, though Hipkins'’s semi-Pythagorean solution (number
314) is more realistic (Vogel 1963). His tuning is also present in Erickson’s
(1965) interpretation of Archytas’s system. The Avicenna tetrachord,
number 311, (D’Erlanger 1935, 152) sounds, surprisingly, rather diatonic.
Barbour’s (1951, 23-24) tuning (number 312) is particularly attractive when
arranged as g/8 - 64/63 - 7/6. It also generates the 16:21:24 tritriadic and its
conjugate. Vogel (1975, 207) lists it also. Number 328 is found in Vogel’s
tuning (chapter 6 and Vogel 1963, 1967). The remaining divisions are new
tetrachords intended as variations on the soft diatonic-intense chromatic
genus or as approximations of various Byzantine tetrachords as described
by several authors (Xenakis 1971; Savas 1965; Athanasopoulos 1950).

Cz5. CHARACTERISTIC INTERVAL 136/117 261 CENTS

78/73 - 73/68 - 136/117 115+ 123 + 261
117/112 - §6/51 - 136/117 76 + 162 + 261
117/107 + 107/102 - 136/117 155 + 83 + 261
52/51-9/8 - 136/117 34+ 204 + 261

The pyknon of this complex genus is 39/34 (238 cents). Number 332
generates the 26:34:39 tritriadic.

C26. CHARACTERISTIC INTERVAL 36/31 250 CENTS

31/29 - 29/27 - 36/31 115+ 124+ 259
93/8¢ - 89/81 - 36/31 76 + 163 + 259
93/85 - 85/81 + 36/31 156 + 83 + 259

The pyknon is 31/27 (239 cents). The 36/31 is the 3/2’s complement of
31/24, which defines a hyperenharmonic genus.
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Cz27. CHARACTERISTIC INTERVAL 80/69 256 CENTS
336 46/43 - 43/40 - Bo/69g 117 + 125 + 256
337  23/21:21/20.80/69 157 + 85 + 256
338  23/22-11/10-8B0/69 77 + 165 + 256
339 46/45-9/8 - 8o/6yg
The genus derives from number 339 which generates the 20:23:30 and
46:60:69 tritriadics. The pyknon is 23/20 (242 cents). This and the next few

enera are realizations of Aristoxenos’s soft diatonic.
g

38 + 204 + 256

C28. CHARACTERISTIC INTERVAL 22/19 254 CENTS
118 + 126 + 254
159 + 85 + 254
78 + 167 + 254
94+ 151+ 254

340  76/71.71/66 . 22/19
341 57/52-104/99 - 22/19
342 114/109 - 109/99 - 22/19
343  19/18.12/11-22/19
344 34/33-19/17- 22/19 52+ 192 + 254
345  40/39-247/220 - 22/19 44+ 200 + 254
This genus is a good approximation to the soft diatonic. Number 343 is from
a folk scale (Schlesinger 1939, 297). Tetrachord numbers 344 and 345 are
close to 3 + 12 + 15 “parts”, a neo-Aristoxenian genus which mixes
enharmonic and diatonic intervals. The pyknon is 38/33 (244 cents).

SCHLESINGER

C29. CHARACTERISTIC INTERVAL §2/45 250 CENTS

346 15/14-14/13 - 52/45 119 + 128 + 250

347 45/41-41/39 - 52/45 161 + 87 + 250
348 45/43-43/39 - 52/45 78+ 169 + 250
349 24/23-115/104 - 52/45 74+ 174 + 250
350 40/39-9/8-52/45 44 + 204 + 250
351 18/17-85/78.52/45 00 + 149 + 250
352 45/44-44/39- 52/45 39+ 209 + 250
353 65/63-28/25.42/45 54+ 196+ 250
354  §5/52-12/11-52/45 97+ I51+ 250
355 60/59 - 59/45 - 52/45 29 +219 +250
356  20/19-52/45-57/52 89 + 250+ 149
357 27/26:10/9- 52/45 66+ 182 + 250
358 11/10-150/143 - 52/45 165 + 83 + 250

This genus lies on the dividing line between the chromatic and diatonic
genera. The pyknon of 15/13 (248 cents) is virtually identical to the CI which
defines the genus. The first three subgenera are the 1:1, 2:1, and 1:2 divisions
respectively. Number 350 generates the 10:13:15 tritriadic scale.
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DIATONIC TETRACHORDS

Di1. CHARACTERISTIC INTERVAL 15/13

248 CENTS

359 104/97-97/90-15/13 124 + 126+ 248
360  78/71:142/135 - 15/13 163 + 86 + 248
361 156/149 - 149/135 - 15/13 70 + 171 + 248
362 16/15-15/13 - 13/12 112 + 248 + 139 SCHLESINGER
363  26/25-10/9 - 15/13 68 + 182 + 248
364 256/243 - 351/320 - 15/13 90 + 160 + 248
365 20/19-247/225 15/13 89+ 161 + 248
366 11/10-15/13 - 104/99 165 + 248 + 85
367  12/11-15/13 - 143/135 151 +248 + 99
368  46/45-26/23 -15/13 38+ 212+ 248
369 40/39-169/150- 15/13 44 + 206 + 248
370 28/27-39/35-15/13 63 + 187 + 248
371 91/g9o-8/7.15/13 10 + 231 + 248

This genus is the first indubitably diatonic genus. A pyknon, per se, no longer
exists because the §2/45 (2 50 cents) is larger than one-half the perfect fourth,
4/3 (498 cents). The large composite interval in this and succeeding genera
is termed the “apyknon” or non-condensation (Bryennios). Number 36z is
the first tetrachord of Schlesinger’s diatonic Hypodorian harmonia. Many
members of this genus are reasonable approximations to Aristoxenos’s soft
diatonic genus, 100 + 150 + 250 cents. Others with the 15/13 medially are
similar to some Byzantine tunings. Some resemble the theoretical genus 50
+200+250 cents.
D2. CuaracTERISTIC INTERVAL 38/23
372 44/41 - 41/38 - 38/33 123 + 131 + 244
373 11/10-20/19 - 38/33 165 + B9 + 244
374 22/21-21/19-38/33 81 +173 +244
This genus divides the 22/19 (254 cents).

244 CENTS

D3, CHARACTERISTIC INTERVAL 23/20 242 CENTS
123 + 133 + 242
166 + 9O + 242

375  160/149 - 149/138.23/20
376  120/109:218/207 . 23/20
377 240/229.229/207-23/20
378 8/7.70/6¢9 - 23/20

379 40/39-26/23-23/20

380 24/23:.23/20-10/9

Br+175+242
231 + 25 + 242
44 + 212 + 242

74+ 242 + 182 SCHLESINGER
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390
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394
395
396
397
398
399
400
401
402
403
404
405

28/27 - 180/161 - 23/20 63 + 193 + 242

This genus is derived from the 20:23:30 triad. The apyknon is 80/69 (256
cents), Number 380 is from Schlesinger (1932) and is described as a
harmonia of “artificial formula, Phrygian”. Numbers 379 and 381 make
intervals of 15/13 and 7/6 respectively with their subtonics. These intervals
should be contrasted with the incomposite 23/20 in the tetrachord.

D4. CHarAcTERISTIC INTERVAL 31/27 230 CENTS

72/67 - 67/62 - 31/27
108/103 - 103/93 + 31/27
54/49 - 98/93 - 31/27
32/31-9/8 - 31/27

125+ 134+ 239
B2 +177+230
168 + 91 + 239

§5+204+ 239

The apyknon of this genus is 36/27 (259 cents). Number 385 generates the

24:31:36 tritriadic.

Ds. CHARACTERISTIC INTERVAL 39/34

272/253 - 253/234 - 39/34
408/389 - 389/351 - 39/34
204/185 - 370/351 - 39/34
40/39 - 39/34 - 17/1§

238 CENTS
125 + 135 + 238
83 +178+238
169 + 91 + 238
44+ 238+ 217

The apyknon is 136/117 (261 cents). The 39/34 interval is the 3/2’s
complement of 17/13 and derives from the 26:34:39 triad.

D6. CHARACTERISTIC INTERVAL 8/7

14/13 - 13/12 - 8/7
19/18 . 21/19 - 8/7
21/20- 10/9 - 8/7
28/27 - 8/7 . 9/8
49748 - 8/7 - 8/7
35/33 - 11/10 - 8/7
77/72 + 12/11 - 8/7
16/15 . 35/32 - 8/7
35/34 - 17/15 - 8/7
25/24 - 8/7 - 28/25
15/14 - 8/7 - 49/45
40/39 - 91/80 - 8/7
46/45 - 105/92 - 8/7
18/17 - 119/108 - 8/7
17/16 - 8/7 - 56/51
34/33 - 77/68 - 8/7
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231 CENTS

128 + 139 + 231 AVICENNA

04 + 173 + 231 SAFIYU-D-DIN

84+ 182+ 231 PTOLEMY
63 + 231+ 204 ARCHYTAS
36+ 231 + 231 AL-FARABI
102 + 165 + 231 AVICENNA
116 + I§T + 231 AVICENNA
IT2 + 15§ + 23T VOGEL

50+ 217+ 231
71+ 231+ 196
119+ 231 + 147
44+ 223 + 231
38 + 220+ 231
09 + 168 + 231
105 + 231 + 162
§2 4215+ 231



406

407
408
409
410

411
412
413
414
415

256/243 - §67/512 - 8/7 00 + I77 + 231

This genus divides the 7/6 (267 cents). The Avicenna and Al-Farabi
references are from D’Erlanger. Number 390 is also given by Pachymeres
(D’Erlanger 1935, 148 referring to Vincent 1847). When arranged as
13/12 - 14/13 - 8/7, itisgenerated by taking two successive arithmetic means.
Number 394 is especially interesting as there have been reports that it was
used on organs in the Middle Ages (Adler 1968; Sachs 1949), but more recent
work suggests that this opinion was due to a combination of transmission
errors (by copyists) and an incorrect assessment of end correction (Barbour
1950; Munxelhaus 1976). With the 49/48 medially, it is generated by the
twelfth of the Greek means (Heath 1921). The scale is obviously constructed
in analogy with the Pythagorean 256/243 - 9/8 - 9/8. Similar claims pro and
con have been made for number 393 as well. This scale, however, appears
to have been the principal tuning of the diatonic in practice from the time
of Archytas (390 Bce) through that of Ptolemy (ca. 160 ce). Even Aristoxenos
grudgingly mentions it (Winnington-Ingram 1932). Number 397 is from
Vogel (1963) and approximates the soft diatonic. Itis also found in Erickson’s
(1965) version of Archytas’s system. Entry 399 corresponds to 3/8 + 1 1/8
+ I tones of Aristoxenos. The Safiyu-d-Din tuning is one of his “strong”
forms (2:1 division) and has 21/19 replacing the 10/¢ of Ptolemy.
Tetrachords 403, 404, and 405 exploit ratios of 17 and are dedicated to Larry
Polansky.

D7. CHARACTERISTIC INTERVAL 256/22§5 223 CENTS

150/139 - 139/128 . 256/225 132 + 143 + 223

22§/214 - 107/96 - 256/225 87 + 188 + 223

225/203 + 203/192 - 2§6/22§ 78+ 96+ 223

25/24 -9/8 . 256/225 71 + 204 + 223

The apyknon is the augmented second, 75/64 (275 cents). Number 410 is
the generator of the 64:75:96 tritriadic and a good approximation to
Aristoxenos’s 3/8 + 1 1/8 + 1 tone when reordered so that the ¢/8 is

uppermost.
D8. CHARACTERISTIC INTERVAL 25/22 221 CENTS
176/163 - 163/150 - 25/22 133 + 144 + 221

132/119 - 238/225 - 25/22 179 + 97 + 221

264/251 - 251/225 - 2§/22 87+ 189 + 221
16/15-11/10 - 25/22 112 + 16§ + 221

88/81 . 27/25 - 25/22 143 + 133 + 221
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428
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436
437

22/21 - 25/22 - 28/25 81 + 221 + 196

28/27 - 198/175 - 25/22 63 + 214 + 221
26/25 - 44/39 - 25/22 68 + 209 + 221
This is an experimental genus whose apyknon is 88/7 5 (277 cents). Number
416isa fair approximation of Aristoxenos’s 3/8 + 1 1/8 + 1 tones, and number

411 is close to a hypothetical 11/16+ 11/16+1 1/8 tones.

Dg. CHARACTERISTIC INTERVAL 92/81 220 GENTS

27/25 - 2§/23 - 92/81
81/77-77/69 - 92/81
81/73 . 73/69 - 92/81
24/23 - 9/8 - 92/81

27/26 - 26/23 - 92/81

133 + 144 + 220
88 + 190 + 220
180 + 98 + 220
74 + 204 + 220
66 + 212 + 220

This genus divides the 27/23 (278 cents) and is derived from the 18:23:27
triad. Number 422 is the tritriadic generator, and is an approximation to
Aristoxenos’s 3/8 +11/8 +1 tones (4.5+13.5+ 12 “parts”) when reordered.

Dio. CHARACTERISTIC INTERVAL 76/67

67/62 - 62/57 - 76/67
201/181 - 181/171 - 76/67
201/191 - 191/171 - 76/67
256/243 - 76/67 - 5427/4864

218 CENTS
134 + 146 + 218

181 + 98 + 218

88 + 191 + 218

9o + 218 + 190 EULER

This complex genus is expanded from number 427, which is called “old
chromatic” in Euler’s text (Euler [1739] 1960, 177). The tuning is clearly
diatonic, however, and must be in error. It may have been intended to
represent Boethius's 19/16 (76/64) chromatic. The apyknon is 67/57 (280

cents).

Di1:. CHARACTERISTIC INTERVAL 17/15

40/37-37/34 - 17/15
10/9 - 18/17 - 17/15
20/19 - 19/17 - 17/15
15/14 + §6/51 - 17/15
Bo/77 - 77/68 - 17/15
12/11 - §§/51 - 17/15
120/109 - 109/102 - 17/1%
120/113 - 113/102 + 17/15
24/23 - 115/102 « 17/15
160/153 - 9/8 - 17/15

217 CENTS
135+ 146 + 217

182 + 99 + 217 KORNERUP
89 +192+ 1217 PTOLEMY
119 + 162 + 217

66 + 215 + 217

ISI+ 131+ 217

166 + 115 + 217

104 + 177 + 217

74 + 208 + 217

77 + 204 + 217

This genus divides the 20/17 (281 cents). Number 429 is Kornerup’s (1934,
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443
444
445

447
448
449
450

451
452
453
454

10) Lydian. Genus number 430 is Ptolemy’s interpretation of Aristoxenos’s
intense diatonic, 6 + 12 + 12 “parts” (Wallis 1682, 172). Kornerup refers to
it as Dorian. Number 432 is a hypothetical Ptolemaic interpretation of 4.5
+13.5 + 12 “parts”, a mixed chromatic and diatonic genus not in Ptolemy.
Number 437 generates the 34:40:51 triad and tritriadic. The remaining
divisions are experimental neo-Aristoxenian genera with a constant upper

interval of 12 “parts.”

Di12. CHARACTERISTIC INTERVAL 112/99 214 CENTS

66/61 - 61/56 - 112/99
99/94 - 47/42 - 112/99
99/89 - 89/84 - 112/99
10/9 - 297/280 . 112/99
22/21-9/8 - 112/99

136 + 148 + 214
90 + 105 + 214
184 + 100 + 214
182 + 102 + 214
81 + 204+ 214

This very complex genus divides the 33/28 (284 cents). Number 442
generates the 22:28:33 tritriadic and its conjugate.

Di13. CHARACTERISTIC INTERVAL 44/39 200 CENTS

12/11 - 13/12 - 44/39
39/3535/33 - 44/39
39/37- 37/33 - 44/39
44/39 - 9/8 - 104/99

I5T + 130 + 200 YOUNG
187 + 102 + 209

o1 + 198 + 209

209 + 204 + 835

The first division is William Lyman Young’s “exquisite 3/4-tone Hellenic
Iyre” (Young 1961, 5). The apyknon is 13/11 (289 cents). Number 446
generates the 22:26:33 tritriadic scale.

Dr4. CHARACTERISTIC INTERVAL 152/135 205 CENTS

90/83 - 83/76 - 152/135
135/128 : 64/57 - 152/135
135/121 - 121/114 « 152/135§
20/19 - 9/8 - 152/135

140 + I§3 + 205
92 + 201 + 205
190 + 103 + 20§
89 + 204 + 205

This genus derives from the 30:38:45 triad and divides its upper interval,
45/38 (293 cents). Number 450 generates the 30:38:45 tritriadic and its

conjugate.

D1s5. CHARACTERISTIC INTERVAL 9/8 204 CENTS

64/59 - 59/54+ 9/8
48/43 - 86/81 - ¢/8
96/91 - 91/81 - 9/8
2§6/243 - 9/8 - 9/8

141 + 153 + 204 SAFIYU-D-DIN
190 + 104 + 204 SAFIYU-D-DIN
93 + 202 + 204

90 + 204 + 204 PYTHAGORAS?
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472

16/15-9/8 - 10/9 112 +204 + 182 PTOLEMY, DIDYMOS

2187/2048 - 65536/59049 - 9/8 114 + 180 + 204 ANONYMOUS
9/8 « 12/11 - 88/81 204 + IS + 143 AVICENNA
13/12 - 9/8 . 128/117 130 + 204 + 156 AVICENNA
14/13 - 9/8 - 208/189 128 + 204 + 166 AVICENNA
9/8 - 11/10 + 320/297 204 + 165 + 129 AL-FARABI
9/8 - 15/14 - 448/405 204 + 119 + 175

9/8 - 17/16 - §12/459 204 + 10§ + 189

9/8 - 18/17 . 272/243 204 + 99 + 195

9/8 - 19/18 . 64/57 204 + 94 + 201

56/51 - 9/8 . 68/63 162 + 204 + 132

9/8 - 200/189 - 28/25 204 + 98 + 196

184/171 - 9/8 . 76/69 127 + 204 + 167

32/29-9/8.29/27 170 + 204 + 124

121/108 - 9/8 - 128/121 197 + 204 + 97 PARTCH
9/8 . 4096/3645 - 135/128 204 + 202 + 92

9/8 - 7168/6561 - 243/224 204 + 153 + 141

35/32 - 1024/945 - 9/8 204 + 139 + 204

The apyknon of this genus is 32/27 (294 cents). Numbers 451 and 452 are
Safiyu-d-Din’s weak and strong forms of the division, respectively. The
attribution of the tetrachord number 454 to Pythagoras is questionable,
though traditional—the diatonic scale in “Pythagorean” intonation
antedates him by a millennium or so in the Near East (Duchesne-Guillemin
1963, 1969). The earliest reference to this scale in a European language is
in Plato’s Timaeus. Number 45 5 is attributed to both Ptolemy and Didymos
because their historically important definitions differed in the order of the
intervals, Ptolemy’s is the order shown; Didymos placed the 9/8 at the top.
Ptolemy’s order generates the major mode in just intonation. Its retrograde,
10/9-9/8 - 16/15, yields the natural minor and new scale of Redfield (1928).
Number 456is a “Pythagorean” form extracted from the anonymous treatise
in D’Erlanger (1939). In reverse order, it appears in the Turkish scales of
Palmer (1967?). Numbers 457-460 are also from D’Erlanger. Numbers 457
and 458 generate the 18:22:27 and 26:32:39 tritriadics and their conjugates.
These and the tetrachord from Al-Farabi, number 459, resemble modern
Islamic tunings (Sachs 1943, 283). Numbers 464 and 465 generate the
16:19:24 and the 14:17:21 tritriadics. In theory, any tetrachord containing
a 9/8 generates a tritriadic and its conjugate, but in practice the majority
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475
476

477
478
479
480
481
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486

are not very consonant. Examples are numbers 467 and 468 which generate
the 38:46:57 and 24:29:36 tritriadics with mediants of 23/19 and 29/24.
Number 469 is an adventitious tetrachord from Partch (1974, 165).
Numbers 470-472 are from chapter 4. The last two resemble some of the
Islamic tunings of the Middle Ages. The remaining tunings are proposed
approximations to Islamic or syntonic diatonic tetrachords.

D16. CrARACTERISTIC INTERVAL 160/143

165+ 139+ 194
"This tetrachord is from Al-Farabi (D’Erlanger 1930, 112). It did not seem
worthwhile to explore this genus further because the ratios would be complex

I94 CENTS

11/10 - 13/12 - 160/143 AL-FARABI

and often larger than 160/143 itself.

D17. CHARACTERISTIC INTERVAL 10/9 182 CENTS

12/11 - 11/10 - 10/9 151 + 165 + 182 PTOLEMY
10/9 - 10/9 - 27/25 182 + 182 + 133 AL-FARABI
10/9 - 13/12 - 72/65% 182 + 139+ 177 AVICENNA

Theapyknon is 6/5 and the majority of potential divisions have intervals larger
thanthe 10/9. Number 474 is Ptolemy’s homalon or equable diatonic, ascale
which has puzzled theorists, but which seems closely related to extant tunings
in the Near East. Ptolemy described it as sounding rather foreign and rustic.
Could he have heard it or something similar and written it down in the simplest
ratios available? It certainly sounds fine, perhaps a bit like 7-tone equal
temperament with perfect fourths and fifths. The Avicenna and Al-Farabi
references are from D’Erlanger (193 5), and Ptolemy (Wallis 1682).

Reduplicated tetrachords
These genera are arranged by the reduplicated interval in descending order
of size.
11/10+ 11/10 - 400/363 165+165+168 RI
12/11-12/11.121/108 ISI+ISI+197 AVICENNA R2
13/12-13/12 - 192/169 139+139+221 AVICENNA R3
14/13 - 14/13 - 169/147 128+ 128+ 241 AVICENNA R4
15/14-15/14-784/675 IIQ+119+259 AVICENNA Rj
2187/2048-16777216/14348907 - 2187/2048

114+271+114 PALMER R6
17/16-17/16 - 1024/867 105 +105+288 R7
18/17-18/17.289/243 99 +99 + 300 &8
256/243-256/243-19688/16384  go+9o+318 RQ
22/21-147/121 -22/21 Br+337+81 RI1O
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488
489
490
491
492

493
494

495
496

497
498

15/24-25/24-768/625 TI+71+357 RII

28/27-28/27.243/196 63+63+372 RIZ
34/33-34/33-363/289 52+52+395 RI3
36/35:36/25.1225/972 49 +49+ 401 RI4
40/39-40/39 - 507/400 44+44 +410 RIS
46/45-46/45-675/529 38+38+422 RIG

While a number of other small intervals could be used to construct analogous
genera, the ones given here seem the most important and most interesting.
Number 477 is an approximation in just intonation to the equally tempered
division of the 4/3. See number 722 for the semi-tempered version. The
Avicenna genera are from vol. 2, pages 122-123 and page 252 of D’Erlanger.
The Palmer genus is from his booklet on Turkish music (1967?). This genus
isvery close to Helmholtz’s chromatic 16/15 - 75/64 - 16/15. The 18/17 genus
is also nearly equally tempered and is inspired by Vincenzo Galilei’s lute
fretting (Barbour 1951, §7). Number 486 is nearly equal to 1/1 7/3 4/x
4/3, a theoretical genus using intervals of 11 to approximate intervals of .
Numbers 487 and 488 come from Winnington-Ingram’s (193 2) suggestion
that Aristoxenos’s soft and hemiolic chromatics were somewhat factitious
genera resulting from the duplication of small, but known, intervals. The
remaining tetrachords are in the spirit of Avicenna and Al-Farabi.

Miscellaneous tetrachords

The tetrachords in this section are those that were discavered in the course
of various theoretical studies but which were not judged to be of sufficient
interest to enter in the Main Catalog. Many of these genera have unusual
CIs which were not thought worthy of further study. The fourth and fifth
columns give the ratio of the pyknon or apyknon and its value in cents.

176/175 - 175/174 - 29/22 10+10+478 88/87 20 MI
25/19-931/925 - 148/147 475 +11+12 76/75 23 M2
This tetrachord is generated by the second of the summation procedures
of chapter s.

128/127 - 127/126 . 23/16 14+ 14+ 471 64/63 27 M3
21/16 - 656/651 - 124/123 471 +13+14  64/63 27 M4
Another summation tetrachord from chapter 4.

104/103 - 103/102 - 17/13 I7+17+464  §52/51 34 M5
17/13 - 429/425 - 100/99 464+ 16+ 17 52/51 34 M6

Another summation tetrachord from chapter 4.
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506

507
508
509
510
§II

[$¢)
513
514

515
516
517
518
519
520
521
522
523
524
525

98/97-97/96 . 64/49 18+ 18 + 462 49/48 36 M7

92/91:91/90 - 30/23 19+19+460  46/45 38 M8
90/89 - 89/88 - 176/135 10+20+459  45/44 39 M9
88/87.87/86 . 43/33 20+20+458  44/43 40  MIo
86/85 -85/84 - 56/43 204204457  43/42 41 MII
84/83 - 83/82 - 82/63 2X+21+456  g42/41 42 M1z
82/81 - 81/80- 160/123 2X+224455  41/40 43 M13

These genera contain intervals which are probably too small for use in most
music. However, Harry Partch and Juliin Carrillo, among others, have used
intervals in this range,

13/10-250/247 - 76/74 454 + 21 + 23 40/39 44  Ml14
Another summation tetrachord from chapter 4.

78/77-71/76 - 152/117 224234453 39/38 45 M5
76/75 - 76/75 - 74/57 23+234452  38/37 46 Mm16
74/73 -+ 73/72 - 48/31 24+24+4451  37/36 47 M1y
70/69-69/68 - 136/105 25+25+448 35/34 5o MiI8
22/17-357/352 - 64/63 446+24+27  34/33 52 mI9
Another summation tetrachord from chapter 4.

§8/57.57/56 - 112/87 30+31+437  29/28 61 M20
87/80-43/42  112/87 20+41+437  29/28 61 M2r
87/85-85/84-112/87 40+20+437  29/28 61 M22

The preceding are a set of hyperenharmonic genera which divide the dieses
between qo/39 and 28/27. Similar but simpler genera will be found in the
Main Catalog. Small intervals in this range are clearly perceptible, but have
been rejected by most theoreticians, ancient and modern.

68/53 + 53/52 - 52/51 431+33+34  53/s1 67 M23
136/133 + 133/130 + 65/51 34+34 +420 68/65 78 M24
68/67 - 67/65 - 65/51 26+ 52 +420  68/65 78  Mz5
34/33 - 66/65 « 65/51 52+126+ 420 68/65 78  M26
68/67 - 67/54 - 18/17 26+373+99  72/76 12§ M27
25/24 - 32/31 - 31/25 71455 +372  100/93 126 M28
68/55 - 55/54 - 18/17 367+32+499  §55/51 131 M29
68/67 - 67/63 - 21/17 26 + 107 + 366 68/63 132 M30
68/65 - 65/63 - 21/17 78 + 54+ 366  68/63 132 M3I
36/35 - 256/243 - 315/256  49+90+359  1024/945 139  M32
64/63 - 16/15 - 315/256 27+112+359 1024/945 139 M33

Numbers §24 and 525 are from Vogel's PIS tuning of chapter 6.
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528

529
530

531
532

533
534

535
536
537

538
539

540
541
542
543
544
545
546
547

548

64/63-2187/2048 -896/729  27+114+357 243/224 141 M34
36/35-135/128 - 896/729 49+92+357  243/224 I4I M35
This tuning is a close approximation to one produced by the eighth mean
(Heath 1921) of chapter 4. It also occurs in Erickson’s analysis of Archytas’s
system and in Vogel’s tuning (chapter 6 and Vogel 1963, 197).
28/27-2187/1792-256/243 63 +345 +90 7168/6561 153 M36
This tetrachord appears in Erickson’s commentary on Archytas’s system
with trite synemmenon (112/81, B;-) added.

16/15-2240/2187-2187/1792  112+41+345 7168/6561 153 M37

28/27.128/105.135/128 63+343 +02 35/32 141 Mm38
Numbers 528-530 are from Vogel’s PIS tuning of chapter 6.

17/16-32/31-62/51 105+55+338 34/31 160  M39
20/19:57/47-47/45 Bo+334+75 188/171 164 M40

Number §32 is a possible Byzantine chromatic.

360/349-349/327-109/90 54+1I3+332 120/109 166  M41
24/23-115/109-109/90 74 + 94 + 332 120/109 166  M42
Number 534 is a hypothetical Ptolemaic interpretation of § + 6 + 19 “parts”,
after Macran (1902).

240/229-229/218 - 109/900  B1r+85+332 120/109 166 M43
19/18.24/23 -23/19 94+74+330  76/69 167 M44
15/14-36/35 - 98/81 119+49+330  54/49 168 M45
Number 537 accurs in Other Music’s gamelan tuning (Henry S. Rosenthal,
personal communication).

28/27-16/15-135/112 63+112+323  448/405 175 M46
24/23 - 115/96 - 16/15 74+313+112  128/11§ 185 Mm47
A Ptolemaic interpretation of Xenakis's 5+ 19 +6 “parts” (1971).

256/243 - 243/230 - 115/96 90 + 0§ +313 128/115 185 M48

68/67-67/56 - 56/51 26+310+162  224/201 88  M49
68/57-19/18 - 18/17 305+94+99  19/17 193 M50
15/14-266/255 - 68/57 119+ 73+305 19/17 193 M3I
256/243- 243/229- 229/192 9o+ 103 +305 256/192 193 Mj52
32/31-13/12.31/26 §55+139+304 104/93 194 M353

240/227-227/214 - 107/90 96+102+300 120/107 199 M54
360/347-347/321-107/90  64+135+300 120/107 199 M§§
This genus is related to (Ps.)-Philolaus’s division as 6.5 + 6. + 17 “parts”.
See also chapter 4.

7168/6561 - 36/35-1215/1024 153+49+296 4096/3645 202 M§6
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563
564

565
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567
568

569

570
571

16/15-1215/1024-256/243 112+206+00 4096/3635 202
28/27-1024/945 - 1215/1024 63+ 139+296 4096/3635 202
Numbers 548-550 are from Vogel’s PIS tuning of chapter 6.

120/113 - 113/106- §3/45 104+ 111 + 283 60/53 21§
180/173 - 173/159 - §3/45 69+146+283 60/53 21§
00/83 - 166/159 - 53/45 140+ 75+283 60/53 21§
24/23 - 115/106 - 53/45 74+ 141+283 60/53 21§

M57
M58

M59
M60o
M61
M62

Number 554 is a hypothetical Ptolemaic interpretation of § + 9 + 16 “parts.”
The others, numbers §51, §52, and 553 are 1:1, 1:2 and 2:1 divisions of the

pyknon.

34/29- 5§8/57 . 19/17 275+30+193  §58/51 223 MG63
10/9+117/100 - 40/39 182 +272+44 400/351 226 M64
120/113 - 113/97 - 97/90 104+ 264+ 130 388/339 234 M6§
This genus is a Ptolemaic interpretation of Xenakis’s 7+ 16+7 “parts.”
13/12- 55/52 - 64/55 139+97+262  55/48 236 MG66
This genus is generated by the second ratio mean of chapter 4.

68/65 - 65/56+ 56/51 78 +2§8+ 162 224/195 240  M67
12/11-297/256 - 256/243 I§I+2§7+90 1024/801 241 M68
28/27-81/70 - 10/9 63+253+182  280/243 245 MG69

This tetrachord is also found in Erickson’s article on Archytas’s system with
trite synemmenon (112/81, Bj-) added. It also occurs in Vogel’s PIS tuning

of chapter 6.

81/70-2240/2187-9/8 253 +41+204 280/243 245 M70
81/70.256/243 - 35/32 253+90+155 z80/243 245 M71
135/128.7168/6561 -81/70 92+1§53+253  2B0/243 245 M7z
These three tetrachords are from Vogel’s PIS tuning of chapter 6.

60/59- 59/51-17/15 29+252+217 68/59 246 M73
40/37-37/32 - 16/15 135+250+ 112 128/111 247  M74
This is a Ptolemaic interpretation of Athanasopoulos’s g + 15 + 6 “parts.”
16/15 - 280/243 - 243/224 112 +245+ 141 81/70 253 M7§
36/35-9/8-280/243 49 +204+245 81/70 253  M76
8/7-81/80 - 280/243 231+22+245 81/70 253 M77
These three tetrachords are from Vagel’s PIS tuning of chapter 6.

46/45 - 132/115 - 25/22 38+239+221  115/99 250  M78
16/15.12/11 - §5/48 112+ 151+236 64755 262 M79

This is an approximation to the soft diatonic of Aristoxenos, 1/2 + 3/4 +

1 1/4tones, 6 + ¢ + 15 “parts.”
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10/9-63/55-22/21 182 +235+81  220/18¢9 263 MBo
This is another tetrachord from Partch ({1949] 1974, 165), presented as an
approximation to a tetrachord of the “Prolemaic sequence,” or major mode

in g-limit just intonation.

30/26-116/103 - 103/90 50+206+234 120/103 264 M8BI
3607343 - 343/309 - 103/90 84+181+234 120/103 264 MB2
40/39 - 143/125 - 25/22 44+233+221  §00/429 265 M83
68/65-65/57-19/17 78+227+193  76/65 271 M8B4
256/243 - 729/640 - 10/9 go+225+182 2560/2187 273 M8
30/29 - 58/51-17/15 §0+223+217 34729 275  M8B6
23/21-14/13 - 26/23 158 +128 +212  46/39 286 Mm87
23/22-44/39 - 26/23 77+209+212  46/39 286  M88
14/13 -260/231-11/10 128 + 205 + 165  77/65 293 M89

4096/3645 -35/32 - 243/224 202+ 155 +141 1215/1024 296 MQO
From Vogel’s PIS tuning of chapter 6.

38/35-35/32-64/57 142+ 155 +201 19/16 208  Mor
19/1717/16- 64/ 57 103 + 105 +201 19/16 208 M9z
11/10-95/88.64/57 165+135+201 19/16 208  M93
The apyknon of genera numbers 583—585 is 19/16. The 1:2 division is listed
as D15 (9/8), number 464.

240/221 . 221/202 - 101/90 143+ 156 +200 120/1I01 208  Mo4
15/14 - 112/101 + 101/90 119+ 179 +200 120/101 208  Mogg
120/113 - 113/101 « TO1/90 104+ 194 +200 120/10I 208  Mg6
§33/483 - 575/533 - 28/25 I71+ 131 +196 25/21 302 MQ7
A mean tetrachord of the first kind from chapter 4.

19/17-85/76 . 16/15 193+ 104+ 112 304/25§ 304 M98
19/17-1156/1083 - 19/17 193+ 113 +193 68/57 30§ M99
Two tetrachords from Thomas Smith (personal communication, 1989).
68/63 -21/19-19/17 132+173+193 68/57 305 MI0Q
10/9 - 108/97 - 97/90 182 +186+ 130 97/90 368 wMror

Tetrachords in equal temperament

The tetrachords listed in this section of the Catalog are the genera of
Aristoxenos and other writers in this tradition (chapter 3). Included also are
those genera which appear as vertices in the computations of Rothenberg’s
propriety function and other descriptors, and various neo-Aristoxenian
genera. These are all divisions of the tempered fourth (500 cents).
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The “parts” of the fourth used to describe the scales of Aristoxenos are, in
fact, the invention of Cleonides, a later Greek writer, as Aristoxenos spoke
only of fractional tones. The inventon has proved both useful and durable,
for not only the later classical writers, but also the Islamic theorists and the
modern Greek Orthodox church employ the system, though the former have
often doubled the number to avoid fractional parts in the hemiolic chromatic
and a few other genera.

Until recently, the Greek church has used a system of 28 parts to the fourth
(Tiby 1938), yielding a theoretical octave of 68 (28 + 12 + 28) tones rather than
the 72 (30+ 12 + 30= 72) or 144 (60 + 24 + 60 = 144 in the hemiolic chromatic
and rejected genera) of the Aristoxenians. The 68-tone equal temperament
has a fourth of only 494 cents.

Note that a number of the Orthodox liturgical tetrachords are meant to
be permuted in the formation of the different modes (echoi). This operation
may be applied to the historical and neo-Aristoxenian ones as well.

ARISTOXENIAN STYLE TETRACHORDS

2+2+126 33+33+433 CHAPTER 4 T1
2.5 +2.5 + 25 42+42+417 CHAPTER ¢4 T2
2+3+2§ 33+50+417 CHAPTER 4 T3
3+3+24 50+ 50+ 400 ARISTOXENOS T4
2+4+24 33+ 67+ 400 CHAPTER 4 TS
2+5+23 33+ 83 +383 CHAPTER 4 T6
7/3 +14/3 + 23 30+ 78+ 383 CHAPTER 4 T7
4+3+123 67+ 50+ 383 CHAPTER 3 8
3.5 +3.5+23 58+ 584383 CHAPTER 4 T9
2+6+22 33 + 100 + 367 CHAPTER 4 TI10
4+4+22 66 + 66 + 367 ARISTOXENOS TII
B/3+16/3+22 44 +89+ 367 CHAPTER 4 T2
3+5+22 50+ 83 +367 CHAPTER 4 TI3
4-5+3.5+22 75+ 58+ 367 ARISTOXENOS Ti4
24+7+21 33 +117+350 CHAPTER 4 TI§
3+6+21 504 100 + 350 CHAPTER 4 TI6
4.5+ 4.5 +21 75 +75+350 ARISTOXENOS TI7
4+5+21 67+83+350 CHAPTER 4 118
6+3+21 100 + §0 + 350 ARISTOXENOS TIQ
6+20+4 100 + 333 +67 SAVAS T20
10/3+20/3+20  §6+1IT+333 CHAPTER 4 T21
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618
619
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629
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633
634
635
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641
642
643
644
645
646
647
648
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§+5+20
55+55+19
11/3 +22/3+ 19
5+19+6
5+6+10
2+10+18
3+9+18
4+8+18
4.5+7.5+18
6+6+18
s+7+18
6+18+6
13/3+26/3 +17
6.5+6.5+17
2+16+12

14/3 +28/3 +16
5+0+16
B+16+6
7+16+7

2+ 13 +15
3+I12+15
4+I1+15
S+I10+ 15
6+0+15
7+8+15
75+7.5+15
9+15+6
2+14+14
4+14+12
§+11+14
16/3 +32/3 + 14
B+8+14
4.5+13.5+12
§+12+13
4+13+13
17/3+34/3+13
B.5+8.5+13
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83 +83 +334
02 +092+317
61+122+317
83 +317+100
83 + 100+ 317
33 + 167 + 300
50 + 150+ 300
67 +133 +300
75+ 12§+ 300
100 + 100 + 300
83 +117+300
100 + 300 + 100
72 + 144 + 283
108 + 108 + 283
33 +267 + 200
78 +156+267
83 +150 +267
133 +267 + 100
117+267+117
33+2I7+250
50+ 200+ 250
67+183 +250
83 +167+250
100+ I50+250
117+ 133 +250
12§+ 125+ 250
150+ 250+ 100
33+233+233
67+233+200
83 +183 +233
89+178 +233
133+133+233
75 + 225 + 200
83 +200+217
67+217+1217
94 +18g+217
142 + 142 + 217

CHAPTER 4
CHAPTER 4
CHAPTER 4
XENAKIS

MACRAN

CHAPTER 4
CHAPTER 4
ARISTOXENOS
CHAPTER 4
ARISTOXENOS
CHAPTER 4
ATHANASOPOULOS
CHAPTER 4
CHAPTER 4
CHAPTER 4
CHAPTER 4
WINNINGTON-INGRAM
SAVAS

XENAKIS; CHAP. 4
CHAPTER 4
CHAPTER 4
CHAPTER 4
CHAPTER 4
ARISTOXENOS
CHAPTER 4
CHAPTER 4
ATHANASOPOULOS
CHAPTER 4
ARISTOXENOS
WINNINGTON-INGRAM
CHAPTER 4
CHAPTER 4
ARISTOXENOS
CHAPTER 4
CHAPTER 4
CHAPTER 4
CHAPTER 4

T22
T23
T24
T25
T26
T27
T28
T29
T30
T31
T32
T33
T34
T35
136
T37
T38
T39
T40
T41
T42
T43
T44
45
T46
T47
T48
T49
TS50
TSI
T§2
T53
T54
TS55
156
T57
T58
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6+12+12 100 + 200 + 200 ARISTOXENOS T59
Savas, Xenakis and Athanasopoulos all give permutations of this tetrachord
in their lists of Orthodox church forms.

1241147 200+ 183+ 117 XENAKIS T60
Xenakis (1971) permits several permutations of this approximation to
Ptolemy’s intense diatonic.

10+8+12 167 + 133 + 200 SAVAS T6I
The form 8 + 12 + 10 is Savas’s “Barys diatonic” (Savas 1965).

12+9+9 200 + 150+ 150 AL-FARABI; CH. 4 T62
8+I1+11 133 + 183 +183 CHAPTER 4 T63
This tuning is close to 27/25 - 10/9 - 10/9.

0.5+0.5+11I 158 + 158 + 183 CHAPTER 4 T64
I0+ 10+ 10 166 + 167 + 167 AL-FARABI T6S
Tiby’s Greek Orthodox tetrachords of 28 parts to the fourth of 494 cents.
12413 +3 2124220+ 53 TIBY T66
I2 4+ 5+ II 212 +88+194 TIBY T67
12+9+7 212+ 150+ 124 TIBY T68
O+I2+7 150+ 212 + 124 TIBY T69

See Tiby (1938) for numbers 650-662.

TEMPERED TETRACHORDS IN CENTS

22.7+22.7+454.5 CHAPTER § T70
37.5+37.5 +425 CHAPTER § T71
62.5 +62.5 +375 CHAPTER § T72

Tetrachord numbers 663~ 665 are categorical limits in the classification
scheme of 5-~9.

95+ 115 +290 T73
This tetrachord was designed to fill a small gap in tetrachordal space. See
9-4, 9-5,and 9-6.

89+289+122 : CHAPTER § T74
87.5+287.5+125 CHAPTER § T75
83.3+283.3+133.3 CHAPTER § T76
75+275+ 150 CHAPTER § T77
100+275 + 12§ CHAPTER § T78
55+170+275 T79
This tetrachord was designed to fill a small gap in tetrachordal space.

66.7 + 266.7 + 166.7 CHAPTER § T80
233.3+ 16.7+ 250 CHAPTER § T81
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693

694

225+ 25+250 CHAPTER § 182

66.7+183.3 + 250 CHAPTER § 83
75 +175+250 CHAPTER § T84
125+ 125+ 250 CHAPTER § 185
10§+ 145+ 250 T86

T87

110+ 140+ 250
Tetrachord numbers 679 and 680 fill possible gaps in tetrachordal space.

87.5+237.5 + 175 CHAPTER § : 88
233.3 + 166.7 + 100 CHAPTER § 189
212.5+62.5 + 225 CHAPTER § TGO
225+ 7§ +200 CHAPTER § T91I
22§+ 175+ 100 CHAPTER § T92
87.5+ 187.5+ 225 CHAPTER § T93
212.5+162.5+ 12§ CHAPTER § T94
100+ 187.5 +212.5 CHAPTER § TOS
212.5+ 137.5+150 CHAPTER § 196
200+ 125+ 17§ CHAPTER § T97
145+ 165+ 190 198

This tetrachord was designed to fill a small gap in tetrachordal space.

Semi-tempered tetrachords

The tetrachords in this section contain both just and tempered intervals. Two
of these genera are literal interpretations of late Classical tuning theory. A
number are based on the assumption that Aristoxenos intended to divide the
perfect fourth (4/3), a rather doubtful hypothesis. The remainder are mean
tetrachords from chapter 4 with medial 9/8. Formally, these latter tetrachords
are generators of tritriadic scales, In all cases they span a pure 4/3.

16/(9V3) - 16/(9V3) - 81/64 45 +45 + 408 51
Number 692 is Barbera’s (1978) literal interpretation of Nicomachos’s
enharmonicas 1/2 semitone + 1/2 semitone + ditone, where the 1/2 semitone
is the square root of 256/243, also written as 16 - V3 / 27.

1.26376 - 1.0§321 - 1.00260 405+88+4 s2
This mean tetrachord of the second kind is generated by mean g.
(@/3)110 . (/30110 (4/3 )80 50+ 50+398 s3

This tetrachord is a literal interpretation of Aristoxenos’s enharmonic under
Barbera’s (1978) assumption that Aristoxenos’s meant the perfect fourth
4/3.In Cleonides’s cipher, itis 3 + 3 + 24 parts.
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695

696

697

698

699

700

701

702

703
7°4
705
706

707

(4/3)2/15 . (4_/3)2/15 . (4/3)11/15 66 + 66 + 365 sS4
This tetrachord is a semi-tempered interpretation of Aristoxenos’s soft

chromatic. In Cleonides’s cipher, it is 4 + 4 + 22 parts.

(4/3)3720 . (4/3)7/60 . (4/3)11/15 75 + 58 + 365 s§
This tetrachord is a semi-tempered interpretation of a genus rejected by
Aristoxenos. It somewhat resembles Archytas’s enharmonic. In Cleonides’s
cipher, itis 4.5 + 3.5 + 22 parts.

(/37720 (4/3720 . (4/3)710 75+75+349 s6
This tetrachord isa semi-tempered interpretation of Aristoxenos’s hemiolic
chromatic. In Cleonides’s cipher, itis 4.5 + 4.5 + 21 parts.

@/3)"7 - (@/3)110. (4/3)"10 100 + 50 + 349 57
This tetrachord is a semi-tempered interpretation of a genus rejected by
Aristoxenos. In Cleonides’s cipher, itis 6 + 3 + 21 parts.

1.21677 - 1.03862 - 1.05505 340+ 66 + 93 58
This mean tetrachord of the first kind is generated by mean g.
@3- @/ (437" 100 + 100 + 299 59

This tetrachord is a semi-tempered interpretation of Aristoxenos’s intense
chromatic. In Cleonides’s cipher, it is 6 + 6 + 18 parts.

@3- (@/3)V1 - (af3) 66 + 133 +299 s10
This tetrachord is a semi-tempered interpretation of a genus rejected by
Aristoxenos. It closely resembles Archytas’s chromatic In Cleonides’s cipher,
itis 4 + 8 + 18 parts.

3V2/q- 3V2/q - 32/27 102 + 102 + 204 5I1
This tetrachord is implied by writers such as Thrasyllus who did not give
numbers for the chromatic, but stated only that it contained a 32/27 and a
1:1 pyknon (Barbera 1978). The semitones are the square root of 9/8.

1.18046 - 1.06685 - 1.05873 287+ 112+ 99 s12
This mean tetrachord of the second kind is generated by mean 5.

1.05956 - 1.06763 - 1.17876 100+ 113 + 285 s13
This mean tetrachord of the first kind is generated by mean 13.

1.17867 - 1,06763 - 1.05956 285+ 113 + 100 S14
This mean tetrachord of the secand kind is generated by mean 14.

1.17851 + 1.06771 - 1.05963 284 + 113 + 100 S15
This mean tetrachord of the second kind is generated by mean 17.

1.17851 1.06771 - 1.05963 282+ 114+ 101 516

This mean tetrachord of the second kind is generated by mean 6.
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708

799

710

712

713

714

715

716

717

718

719

720

@/3)"7 - (47310 (4/3)2 100 + 149 +250 s17
This tetrachord is a semi-tempered interpretation of Aristoxenos’s soft

diatonic. In Cleonides’s cipher, itis 6 + 9 + 15 parts.

1.07457 - 1.07457 - 1.154701 125+ 125 +249 s18
This mean tetrachord of the first kind is generated by mean 2. The

corresponding tetrachord of the second kind has the same intervals in reverse

order.

@375 @3- /3P 66 +232 +199 s19
This tetrachord is a semi-tempered interpretation of Aristoxenos’s diatonic

with soft chromatic diesis. In Cleonides’s cipher, itis 4 + 14 + 12 parts.

1.13847 - 1.12§0 - 1.0410 22§+ 204+ 70 520
This mean tetrachord of the third kind is produced by mean g.
@370 (43770 (a/3) 75 +224 +199 s21

This tetrachord is a semi-tempered interpretation of Aristoxenos’s diatonic
with hemiolic chromatic diesis. In Cleonides’s cipher, itis 4.5 +13.5 + 12
parts.

1.133711.1250+ 1.04540 2I7+204+77 s22
This mean tetrachord of the third kind is produced by mean 14. In reverse

order, itis generated by mean 13.

1.I3315-1.1250 1.0459§ 216+ 204 +78 823
This mean tetrachord of the third kind is produced by the root mean square
mean 17.

1.09185 - 1.07803 - 1.13278 I52 +I30+21I6 524
This mean tetrachord of the first kind is produced by mean 6.

1.09291 - 1.078328 - 1.13137 154+ 131+214 82§
This mean tetrachord of the first kind is produced by mean 17.

1.0930I + 1.07837 - 1.13122 154+ I31+213 526

This mean tetrachord of the first kind is produced by mean 14. In reverse
order is the tetrachord of the second kind generated by mean 13.

1.09429 - 1.07874 - 1.12950 I56+ I31+211 s27
This mean tetrachord of the first kind is produced by mean 5.

1.12950+ 1.1250 - 1.04930 211+ 204 +83 528
This mean tetrachord of the third kind is produced by mean 6.
1.08866 - 1.1250 - 1.08866 147 + 204 + 147 529

This mean tetrachord of the third kind is produced by the second or
geometric mean.
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721

722

723

@)V @3) (a3 100+ 199 + 199 530
This tetrachord is a semi-tempered interpretation of Aristoxenos’s intense

diatonic. In Cleonides’s cipher, itis 6 + 12 + 12 parts.

@3- @/3) - (/)1 166 + 166 + 166 s31
Number 722 is the equally tempered division of the 4/3 into three parts. It
is the semi-tempered form of Ptolemy’s equable diatonic and of the Islamic
neo-Aristoxenian approximation 10 + 10 + 10.

@/3)* - (a/3P10- (4/3)/10 200+ 149 + 149 532
Number 723 is the semi-tempered version of the Islamic neo-Aristoxenian

genus 12 + § + ¢ parts.

Source index

The sources of the tetrachords listed below are the discoverers, when known,
or the earliest reference known at the time of writing. Further scholarship
may change some of these attributions. Because the Islamic writers invariably
incorporated Ptolemy’s tables into their compilations, they are credited with
only their own tetrachords. The same criterion was applied to other historical
works.

Permutations are not attributed separately except in notable cases such as
that of Didymus’s and Ptolemy’s mutual use of forms of 16/15 - 9/8 - 10/9.
Doubtful attributions are marked with a question mark.

For more information, including literature citations, one should refer to
the entries in the Main Catalog. Uncredited tetrachords are those of the
author.

AL-FARABL: 307, 394,460, 473, 475, 655, 658

ANONYMOUS TREATISE: 456 (FROM D’ERLANGER)

ARCHYTAS: 106, 248, 393

ARISTIDES QUINTILIANUS: 24§

ARISTOXENOS: 597, 604, 607, 610, 612, 622,624, 638,643, 647, 652
ATHANASOPOULOS: 626, 641

AVICENNA: 108, 311,390, 395, 396, 457,458, 459, 476, 478, 479, 480, 481
BARBERA: 602, 604

BARBOUR: 216, 217, 2477, 2507, 2517,252?, 312

BOETHIUS: 75, 241

DANIELOU: 154

DIDYMOS: 103,215,455

ERATOSTHENES: 71,212
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