Tetradic
1-3-5-7 DIAMOND

The harmonic tetrad is crossed with the subharmonic tetrad to generate the Tetradic Diamond.

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3/1</td>
<td>5/1</td>
<td>7/1</td>
</tr>
<tr>
<td>3</td>
<td>1/3</td>
<td>3/3</td>
<td>5/3</td>
</tr>
<tr>
<td>5</td>
<td>1/5</td>
<td>3/5</td>
<td>5/5</td>
</tr>
<tr>
<td>7</td>
<td>1/7</td>
<td>3/7</td>
<td>5/7</td>
</tr>
</tbody>
</table>

The Hexany interlocks with the Diamond. Six Hexanies surround the Diamond, interfacing by 5 tones, each. Likewise, six Diamonds surround the Hexany, interfacing by 5 tones, in each case. Together, they fill Tetradic tone-space.

1-3-5-7 HEXANY

The combinations of 2 out of 4 are 6. These are multiplied to generate the 6 pitches of the Hexany.

A harmonic element may be mapped to the centered-triangle above, issued by Erv Wilson, 1969, or to the tetrahedron, styrofoam lattice.
Stellate Hexany Mandala

A-B-C-D Hexany

Generating Tetrad

Reciprocal

Issued by Erv Wilson 1970
THE 3-5-7-11 MANDALA,
THE HEXANY (HEAVY LINES)

ISSUED BY ERY WILSON
27 JAN 1967
Octave Permutations on 3,5,7,11 Hexany
© E. Wilson Dec 7, 1996

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>ab</th>
<th>ac</th>
<th>ad</th>
<th>bc</th>
<th>bd</th>
<th>cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>3.5</td>
<td>3.7</td>
<td>3.11</td>
<td>5.7</td>
<td>7.11</td>
<td>7.11</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>5</td>
<td>11</td>
<td>3.7</td>
<td>3.5</td>
<td>3.11</td>
<td>7.5</td>
<td>7.11</td>
<td>5.11</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>3.11</td>
<td>3.7</td>
<td>3.5</td>
<td>5.7</td>
<td>7.5</td>
<td>11.7</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>5</td>
<td>7</td>
<td>3.11</td>
<td>3.7</td>
<td>3.5</td>
<td>5.7</td>
<td>7.5</td>
<td>11.7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>5.3</td>
<td>5.7</td>
<td>5.11</td>
<td>7.3</td>
<td>7.11</td>
<td>7.11</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>5.3</td>
<td>5.11</td>
<td>5.7</td>
<td>3.7</td>
<td>3.7</td>
<td>11.7</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>3</td>
<td>11</td>
<td>5.7</td>
<td>5.3</td>
<td>5.11</td>
<td>7.3</td>
<td>7.11</td>
<td>3.11</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>11</td>
<td>3</td>
<td>5.7</td>
<td>5.11</td>
<td>5.3</td>
<td>7.11</td>
<td>7.3</td>
<td>11.3</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>3</td>
<td>7</td>
<td>5.11</td>
<td>5.3</td>
<td>5.7</td>
<td>11.3</td>
<td>11.7</td>
<td>3.11</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>5.11</td>
<td>5.7</td>
<td>5.3</td>
<td>11.7</td>
<td>11.3</td>
<td>7.3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>7.3</td>
<td>7.5</td>
<td>7.11</td>
<td>3.5</td>
<td>3.11</td>
<td>5.11</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>11</td>
<td>5</td>
<td>7.3</td>
<td>7.11</td>
<td>7.5</td>
<td>3.11</td>
<td>3.11</td>
<td>7.11</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>3</td>
<td>11</td>
<td>7.5</td>
<td>7.3</td>
<td>7.11</td>
<td>5.3</td>
<td>5.11</td>
<td>3.11</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>7.5</td>
<td>7.11</td>
<td>7.3</td>
<td>5.11</td>
<td>5.3</td>
<td>11.3</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>3</td>
<td>5</td>
<td>7.11</td>
<td>7.3</td>
<td>7.5</td>
<td>11.3</td>
<td>11.5</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>7.11</td>
<td>7.5</td>
<td>7.3</td>
<td>11.5</td>
<td>11.3</td>
<td>5.3</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>11.3</td>
<td>11.5</td>
<td>11.7</td>
<td>3.5</td>
<td>3.7</td>
<td>5.7</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>11.3</td>
<td>11.7</td>
<td>11.5</td>
<td>3.7</td>
<td>3.5</td>
<td>7.5</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>11.5</td>
<td>11.3</td>
<td>11.7</td>
<td>5.3</td>
<td>5.7</td>
<td>3.7</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>11.5</td>
<td>11.7</td>
<td>11.3</td>
<td>5.7</td>
<td>5.3</td>
<td>7.3</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>11.7</td>
<td>11.3</td>
<td>11.5</td>
<td>7.3</td>
<td>7.5</td>
<td>3.5</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>11.7</td>
<td>11.5</td>
<td>11.3</td>
<td>7.5</td>
<td>7.3</td>
<td>5.3</td>
</tr>
</tbody>
</table>
18, 22, 27, 32 Stellate Hexary
with 24 added to the Stellae
©1994 by E. Wilson
18, 22, 27, 32 Stellate Hexany with 24 added to Stellae
©1994 by Erv Wilson

Hexany

Harmonic
Stellae with 24
(Mirror Line Scales)

Subharmonic
Stellae with 24
(Line Scales)

17-tone Chain of Neutral Thirds
HEXANY NOTES

multiples of 18.5

Bo = 22.7

C1 = 22.7 (top cen) = 22.7

C1 = 22.7 (upper rt) = 22.7

D1 = 22.7 (lower rt) = 22.7

D1 = 22.7 (lower rt) = 22.7

E1 = 22.7 (low left) = 22.7

F1 = 22.7 (upper left) = 22.7

STELLATED NOTES

F#1 = 22.7

G1 = 22.7

G#1 = 22.7

A1 = 22.7

A#1 = 22.7

B1 = 22.7

C2 = 22.7

D2 = 22.7

D#2 = 22.7

STELLATED NOTES ONLY

E2 = 22.7

F2 = 22.7

F#2 = 22.7
This is quite good.
Aggregate of 2 mandalas related by
The primary interval $\frac{C}{A}$

(to check: the product of any pair of opposites is BC^2D.
I.e. $A^2 \times \frac{BC^2D}{A^2} = BC^2D$)
Multiplying Fig III by \(\frac{1}{C} \)
To illustrate symmetry and a relation to the primary tetrad.
(The check on this is the product of any pair of opposites is BD.)
Fig V
DIAMOND

\[\frac{1}{1} = \frac{A}{A}, \frac{B}{B}, \frac{C}{C}, \frac{D}{D} \]

Fig VII
26le Diamond

Aggregate of 2 Diamonds related by the secondary interval \(\frac{AC}{BD} \)
Fig. VIII
Zale Diamond

Multiplying Fig. VIII by BD
To show symmetry and a relation to the Mandalas, Fig. IX
AGGREGATE ROTATIONS OF THE 1-3-5-7 HEXANY

1-3-5-7 DIAMOND

Issued by Ervin W. Jan 29, 1968
INVERSIONS OF HEXANY

HEXANY-DIAMOND MANDALA

1.3.5.7 DIAMOND

1.3.5.7 HEXANY

13
1.5
1.7
3.5
3.7
5.7

SUB-HARMONIC TETRAD

HARMONIC TETRAD

Issued by Ery Wilson 11 May 67
Aggregate Rotations of Euler Genus 1-3-5-7
Opaque corn to Diebold
Blue corn, Wagner
Blue gordo = Canelo

Nothing that exists is untrained
Space
Voilà-Viola
©1997 by Erv Wilson

Setting for 2-out-of-4 (2) a, b, c, d Hexany Array
Example; Stage Setting for 1, 3, 5, 7 Hexany Array
Example:

a non-intersecting pathway thru all 42 notes.

\[\text{E.W.}\]
HEXANY / SUBHARMONIC CROSSET
TETRAD / HEXANY

CROSS-SET
STELLATE HEXANY WHERE EACH TRIAD
IS EXTENDED TO A HEXANY
AND/OR
EACH DYAD IN A HEXANY IS
EXTENDED INTO ANOTHER HEXANY.
The hexary may be surrounded by 12 like hexanies, each intersecting at 2 points

There will be 4 six-hexary rings.
A ring has 24 toxus.
TETRATIC DIAMONDS CENTERED
ON HEXANY POINTS

WILSON BLANK DECODED
BY K. GRADY 6/6/16
TETRADIC DIAMONDS CENTERED ON HEXANY POINTS WITH OMITTED HEXANY
Lattice for Thrusby
© 1976 by Erv Wilson