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 and J, when k=0, let any player faced with a position for which there is no
 move lose. Then even when k =0, (25) and (26) characterize the safe positions
 for Games H and J respectively. If k =0, a position (x, y) is safe in Game I if
 and only if x=y.
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 RECURRENT SEQUENCES AND PASCAL'S TRIANGLE

 THOMAS M. GREEN, Contra Costa College

 A. Introduction. The Fibonacci sequence can be found by summing the
 terms on successive "diagonals" of Pascal's Triangle [1]. J. Raab [2] generalized
 this procedure to show other sets of parallel diagonals generating different re-

 current sequences. This generalization is essentially the same as Phase One in
 what is to follow. The purpose of this paper is to show that there exist infinitely
 many more recurrent sequences within Pascal's Triangle by summing the terms
 on diagonals of different slopes. Each sequence shall be of the type such that
 each term is the sum of two former terms. There is also a unique relationship be-

 tween just what two terms are involved and the slope of the diagonals being
 considered.

 For this purpose it is convenient to arrange the terms of Pascal's Triangle

 on the point-lattice determined by the nonnegative integral points of a rectangu-
 lar coordinate system. (See Figure 1.)
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 14 MATHEMATICS MAGAZINE [Jan.-Feb.

 With this arrangement the coordinates, (x, y), of the lattice point uniquely
 determine the location and value of a Pascal number (p). The value is seen to be

 A(1) (2n (x + y)!

 since n=x+y and r=y (or x, because of the symmetry involved).

 B. Phase one. Consider the linear equation

 B(1) x + y = n for n = O, 1, 2

 This equation represents the nth row (diagonal) of Pascal's Triangle. If we
 sum the Pascal numbers on each row determined by B(1) for successive values

 of n, we obtain the sequence

 B(1.1) 1, 2, 4, 8, * 2n,

 whose recurrence relation is given by

 B(1.2) Pn = Pn-1 + Pn-1,

 where Po, P1, , Pn, denote the terms of the sequence, and the formula
 for the nth term is given by

 B(1.3) P n (x+y)! In
 x=o,=o x!y! r=o r
 x+y=n

 (Note: the nth term is the term formed by summing all of the Pascal numll-
 bers on the line x+y=n and, if we were counting the terms, this term would
 actually be the (n+l)th term in the sequence.)

 The sum of the first n terms of the sequence is given by

 n-I

 B(1.4) EPt.= Pn - 1.-
 k=o

 Now consider the linear equation

 B(2) 2x + y = n for n=O, 1, 2,

 This equation represents the nth diagonal referred to above used to obtain the
 nth Fibonacci number. By summing the Pascal numbers on each diagonal de-
 termined by B(2) for successive values of n (see the dotted lines, Figure 1),
 we obtain the sequence

 B(2.1) 1, 1, 2, 3, 5, , Fn,

 whose recurrence relation is given by

 B(2.2) Fn = F,- + F,_1.

 The formula for the nth term is given by
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 1968] RECURRENT SEQUENCES AND PASCAL'S TRIANGLE 15

 B(2.3) [n/2],n (x + y)! [n/2] (n -r

 2=O, =O x!y r=O r

 where [ l denotes the greatest integer function and the sum of the first n terms
 of the sequence is given by

 n-1

 B(2.4) , Fk = Fn+1 - 1.
 ko0

 Next consider the linear equation

 B(3) 3x + y = n for n =O, 1, 2*.

 In a way similar to that used above we establish the sequence

 B(3.1) 1, 1, 1, 2, 3, 4, 6, 9,* Gn

 whose recurrence relation is given by

 B(3.2) Gn- Gn3 + Gn_l.

 The formula for the nth term is given by

 B(3.3) _ [n/3],n (x + y)! n/3 (n -2r)

 z=O,v== x!! r=O r

 and the sum of the first n terms of the sequence is given by

 n-1

 B(3.4) , Gk = Gn+- 1.
 k=O

 Now consider the linear equation

 B(j) jx + y=n for n = 0 1, 2,*** andj = 1, 2, 3,*

 This equation, by the procedure referred to above, establishes a sequence whose
 recurrence relation is given by

 B(j.2) Tn = Tnj + Tn_l

 The formula for the nth term is given by

 [n/,n (x + y) [ n/] n - (j- 1)r\
 B(j.3) =TZ

 X=O,Y=O x! y! r=O r

 and the sum of the first n terms of the sequence is given by

 n-1

 B(j.4) E Tk = Tn+(j1)- 1.
 k=O

 For a proof of B(j.2) and B(j.4), see E(a.2) and E(a.4).
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 16 MATHEMATICS MAGAZINE [Jan.-Feb.

 C. Phase two. In Phase One each linear equation had the coefficient pair

 (j, 1), giving rise to infinitely many recurrent sequences. We now consider any

 coefficient pair (j, 2), determining the following equations:

 C(1) x + 2y = n

 C(2) 2x+2y=n

 C(3) 3x + 2y = n for n = 0, 1, 2,*

 C(j) jX+ 2y = n

 Several of these are equivalent to cases already discussed, namely,
 (i) any coefficient pair (a, b) will yield the same sequence and recurrence

 relation as the pair (b, a), because of the symmetry of the Pascal Triangle about

 the line y=x;

 (ii) any coefficient pair (a, b) presupposes the fact that a and b are relatively
 prime, since if they are not, then two possibilities occur. Either the equation will

 be reduced by dividing thru by the greatest common divisor or it will be such
 that the given value of n will not be divisible by the g.c.d. of a and b. If the
 equation is reduced, it will have been treated in an earlier phase, and if the
 equation cannot be reduced, there will be no integral solutions (see [3]), and
 thus no sequence will be determined;

 (iii) even when a and b are relatively prime, there will be cases where

 ax+by=n will not have nonnegative integral solutions. This means that for

 those particular values of n, the recurrent sequence derived from ax+by=n
 will have zero as a value for those nth terms in the sequence, since there will be
 no Pascal numbers to sum. Thus we establish the following useful

 LEMMA. The equation ax+by = n, where a, b, and n are nonnegative integers
 and ab 0 and (a, b) = 1, will not have nonnegative integral solutions when n = ab
 -(ja+kb), where j, k-1, 2, 3,

 Proof. Assume n = ab - (ia +kb) so that ax +by - ab -ja - kb with nonnega-
 tive solution (x, y). Thus a(x+j)+b(y+k)=ab. Let X=x+j and Y-y+k;
 then aX+b Y= ab. It is important to note here that both X and Y, as well as
 both a and b, are greater than or equal to one. We can now transform the above
 equation to b = X+ (b Y)/a or b-X = (b Y)/a. Now b-X is an integer; therefore
 a divides Y since a and b are relatively prime. Suppose Y/a =r so that Y= ar.

 Similarly we can show that a-Y- (aX)/b and hence conclude that b divides
 X. Suppose X/b - s so that X = bs. Then, by substitution, we have abs +abr
 =ab or ab(r+s) ==ab. Therefore r+s = 1. But both r and s are greater than or
 equal to one; therefore we have a contradiction.

 Thus, in view of the above discussion, the first new case in Phase Two is

 C(3):

 C(3) 3x + 2y = n for n = 0, 1, 2,

 By summing the Pascal numbers on each diagonal determined by C(3) for

 successive values of n we find that there is no positive integral solution for n = 1,
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 since, 1 = 3*2 - (3 + 2) as predicted by the lemma; therefore the sequence is

 C(3.1) 1, ,1, 1, 1, 2,2, 3, 4,5, 7, 9, 12, *.* * Hn ...

 whose recurrence relation is given by

 C(3.2) Hn- = Hn3 + Hn-2'

 The formula for the nth term is given by

 [n/3], [n/21 (x + y)!

 C(3.3) Hn = E
 x=O,y=O IY
 3x+2y=n

 A formula for Hn in terms of n and r could also be given; however, it actually
 requires two formulas and, in general, the formula will require b different repre-
 sentations, one for each of the different values in the residue class of n (mod b).
 Phase Three will need three formulas, etc. More will be said about this in the
 discussion of the general phase.

 The formula for the sum of the first n terms of the sequence is given by

 nT-i

 C(3.4) E H= Hn+2 + Hn-Fl - 1.
 k_O

 Now by similar considerations of the next new case,

 C(5) 5x + 2y = n for n = O, 1, 2, **,

 we find that there are no solutions for n=1 and n=3, since 1=5.2-(5+2 2)
 and 3 = 5 2- (5 + 2). Hence, by summing the Pascal numbers on each successive
 diagonal determined by C(5), we obtain the sequence

 C(5.1) 1,0, 1,0,)1J 1, 1, 2, 1,3, 2,4,4,5, 7,7, 11, 11,i * In

 whose recurrence relation is given by

 C(5.2) = - + In-.2.

 The formula for the nth term is given by

 [n/5],[n/2] (x + y)!

 x==O,Y= O *y.
 5x+ 2y=n

 and the sum of the first n terms is given by

 n-1

 C(5.4) E Ik = In+4 + In+3 1.

 Now consider the general case of Phase Two,

 C(j) jx + 2y = n, for n = O, 1, 2, . and j-1, 2, 3, .

 This equation establishes a sequence whose recurrence relation is given by

 C(j.2) T?-= Tn_j + Tn2
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 18 MATHEMATICS MAGAZINE [Jan.-Feb.

 The formula for the nth term is given by

 [n/j],[rn/2] (x + y)!
 C(j.3) =n

 X=O,Y=O Y
 jx+2y=n

 and the sum of the first n terms of the sequence is given by

 n-1

 (j.4) Fa Tk = Tn+ (J_) + Tn+(j-2) - 1.
 k=O

 D. Phase three. Consider the equation

 D(j) jx + 3y = n for n = O,1, 2,* ** and j =1, 2, 3,**

 where the pair (j, 3) complies with the remarks made in section C. By summing
 the Pascal numbers on each diagonal given by D(j) for successive values of n
 we obtain the sequence whose recurrence relation is given by

 D(j.2) Tn= Tn_j + Tn_3

 The formula for the nth term is given by

 [n/jl,[n/3] (x + y)!
 D (j. 3) Tn = E

 ~=o.v=o x
 jx+3y=n

 and the sum of the first n terms is given by

 n-1

 D(j.4) E Tk = Tn+(j-l) + Tn+(j-2) + Tn+(j-3)- 1.
 k=O

 Proof of the formulas of Phase Two and Phase Three will be covered by the
 proofs in the general phase that follows.

 E. Phase b. In general, the equation

 E(a) ax + by = n for n = O, 1, 2,* ** and a, b = 1, 2, 3,** ,

 where the pair (a, b) complies with the remarks made in section C, will, by
 summing the Pascal numbers on each diagonal for successive values of n, yield
 a recurrent sequence whose recurrence relation is given by

 E(a.2) Tn = Tn_a + Tn-

 Proof. The first term in the series representing Tn, as defined by E(a.3)
 below, will be (x +y) !/(x! .y!), where x and y satisfies E(a). In the notation of
 A(1) this will equal

 (x+ Y

 Suppose that this first solution of x and y is the one where x is minimum (and
 hence y is maximum); then the next solution would be (xmin+b, yma;-a) and the
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 next would be (xmin+2b, ymax-2a), etc., until ym,-ra becomes ymin, where r
 is the greatest integer in the quotient n/(ab). (This is a modified form of a stan-

 dard result of numbertheory;see, forexample, [3].) Nowif we let k=Xmin+YmaX,
 we can write the first few terms of Tn as follows

 /k\k +b - a\ k + 2b - 2a\
 (1) Tn = ( ) + b + x + 2b )

 where the x refers to only Xmin.
 Next we look at T,,. The first term of this series will be of the form (')

 where k' and x' are related to k and x above in the following manner. First we
 note that

 (2) ax' + by' = n -a, and x' + y' = k'.

 Now since a, b and n have all been fixed we find that x' =Xmin -1 and y' =ymax
 is a solution, which upon substitution satisfies ax+by=n. Furthermore, since

 y' is the same Ymax as found in the consideration of Tn, it will also be the maxi-
 mum y in the consideration of Tn-a, since n-a is less than n; hence x' is the
 corresponding minimum value. This makes k'=k-1. Therefore, we can write
 the first few terms of Tn as follows:

 (3) (k-) ( + +ba+(-+ 2b a)+

 where, again, x refers to the original Xmin. If Xmin is zero to begin with, then for
 the solution of (2) we choose x'=.Xmin+b-1 and y'=ymax-a and this choice
 modifies (3) only to the extent that the first term is omitted in the series for

 Tn-a.
 Next we consider Tn-b. The first term of this series will be of a form (t")

 where

 (4) ax" + by" - n-b, and x" + y" = k".

 We note here that

 and we find that x" =Xmin and y" =ym- I is the appropriate solution of (4).
 Therefore, k" = k -1 and we can write the first few terms of Tn_b as follows:

 (5) T (( )?(k ) +( + 2b2)

 where again x refers to the original Xmin. Now if we add the two series (3) and (5)
 termwise, we observe the result that we desired, namely, series (1), through the
 use of Pascal's Rule, which determines the very nature of Pascal's Triangle.

 The general nth term of this sequence in terms of Pascal numbers is given by
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 20 MATHEMATICS MAGAZINE [Jan.-Feb.

 [n/a],[n/b] (x + y)!
 E(a.3) Tn=

 z=O,y=O X!*y!
 ax+by=-n

 and the sum of the first n terms of this sequence is given by

 n-1

 E(a.4) Ej Tk Tn+(a-l) + Tn+(a-2) + + Tn+(a-) - I.
 k=O

 Proof (by induction). In the development of the phases above a was always
 greater than or equal to b. The remarks in section C indicate that this is an

 arbitrary choice because of the symmetry involved; however, one or the other

 choices must be made, but not both. We will assume here that a > b. We divide
 the proof into two parts.

 PART 1. We establish the formula for n= 1. E(a.4) becomes

 To = T. + Ta1 + Ta-2 + + TaX+i- 1.

 Now To = 1, since ax + by -0 has only the single solution (0, 0) and (O +) !/ (O! * 0!)
 -1. Also we see that Ta = 1, since the only solution of ax +by=a is (1, 0) and
 (1+0)!/(1! .0!) = 1. In considering the other terms, Ta-1, Ta-2, * * * , Ta-b+1 we
 find that the only solutions to the corresponding equations are, in all cases,
 x=O and y equal to (a-1)/b, (a-2)/b, * * * , (a-b+l)/b respectively. Now
 only one number of this set of values is integral since the set a, a-I, a-2, *

 a-b?+ forms a residue class modulo b and, since a and b are relatively prime,
 the value a is omitted from consideration. All other solutions are nonintegral

 and therefore discarded and T,, for those values equals zero. Let k' be the one
 value that yields the integral solution and let k" be that solution. Then

 Tk (0 + k")! Tk =1-k

 Hence To = Ta + Tk'-1 or I = 1 + 1-1 an identity.
 PART 2. We assume the formula is true for n and show that then it is also

 true for n+1. To both sides of E(a.4) add Tn. Thus

 n

 2 Tk = Tn+(al-) + Tn+(a-2) + * + Tn+(a-b) 1 + Tn-
 kc=O

 But from E(a.4) we have

 n

 Tk = Tn+l+(a-1) + Tn+l+(a-2) + + Tn+l+(a - 1.
 h=O

 We must show that the right members of the above equations are equal. Upon
 equating these two members and simplifying we have Tna.b + Tn = Tn+a. But we
 know from E(a.2) that Tk = Tka+ Tk-. Thus if k =n +a, we have the exact state-
 ment above.
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 AN EXPLICIT EXPRESSION FOR BINARY DIGITAL SUMS

 J. R. TROLLOPE, University of Alberta

 1. Introduction and statement of results. If a(K, r) denotes the sum of the
 digits of K when K iS represented in base r, then it has been established ([I],
 [2], [3]) that

 (1.1) A (n, r) EC(K, r) = - (r-l)n log, n - E(n, r)
 Kfn

 where E(n, r) = 0(n). The purpose of this paper is to present a more detailed
 examination of E(n, r) for the special case in which r is two. An interesting con-
 sequence of the investigation is that E(n, 2) is expressed in terms of a continuous
 nondifferentiable function similar to that given by van der Waerden [4]. The
 function may be defined as follows: Let g(x) be periodic of period one and de-
 fined on [0, 1] by

 (1.2) g (x)- = ll3) 2<X<1

 The function

 (1 .3) f(x) -E - .g(2ix)
 i=o 2

 can be shown to be nondifferentiable. The relation between this function and

 E(n, 2) is demonstrated in the following theorems:

 THEOREM 1. If the integer n is written n=2m(1+x), O< ocx<1, then

 E(n, 2) = 2n'-1{2f(x) + (1 + x) log2 (1 + x) -2x}.

 THEOREM 2. If n is represented as in Theorem 1, then

 E(n, 2) < 2m-1{ 5/3 1og2 (5/3) - 2/3}

 and the constant cannot be reduced.

 Drazin and Griffith [2] and more recently Clements and Lindstrom [5] have
 shown that

 (1.2) E(n, 2) < 2m-1(l + x) 1og2 (4/3)

This content downloaded from 209.129.118.152 on Sat, 05 Oct 2019 19:34:39 UTC
All use subject to https://about.jstor.org/terms


