

MUSICAL ACOUSTICS

based on

THE PURE THIRD-SYSTEM

by

THORVALD KORNERUP.

Text-book for the use at Universities, Polytectical Academies, Colleges of Music, and for private Students.

Translated by Phyllis Augusta Petersen.

Wilhelm Hansen, Musik-Forlag. Copenhagen & Leipzig.

Norsk Musikforlag. Christiania & Bergen.

A/B. Nordiska Musikförlaget, Göteborg, Stockholm & Malmö.

Copyright 1922 by Thoryald Kornerup, Copenhagen.

Printing-Office: "Athene", Copenhagen V. 1922.

ML 3809 K713

> UNIVERSITY OF TORONTO LIBRARY

> > Price 2/6.

MUSICAL ACOUSTICS

based on

THE PURE THIRD-SYSTEM

by

THORVALD KORNERUP.

Text-book for the use at Universities, Polytectical Academies, Colleges of Music, * and for private Students.

Translated by Phyllis Augusta Petersen.

Wilhelm Hansen, Musik-Forlag. Copenhagen & Leipzig.

Norsk Musikforlag. Christiania & Bergen. A/B. Nordiska Musikförlaget, Göteborg, Stockholm & Malmö.

Copyright 1922 by Thoryald Kornerup, Copenhagen.

Printing-Office: "Athene", Copenhagen V. 1922. ML ML 3809 KAI3

Universities, Entraction, Instantes, Colleges of Maxie,

Gintellorg, Morkham, J. Matana.

MUSICAL ACOUSTICS

Dedicated The Memory of

The Englishman Walter Odington (about 1300 a. C.),

The Spaniard Bartholomeo Ramis (about 1440—91),

The Italian and the baselines about 1 and the distribution of the

La - 126 anil 240°

81 - A' - "i"

5

The Frenchman Jean Philippe Rameau (1683—1764),

to Medern Acoustics. I contented my-

bagen 1882, No. 11, page 289-302, and

order to vork it out in detail. After having worked at it for three years I am now able

Law 1. "The 10 principal intervals are constructed by dividing of the differences, between the vibration number of the

.Tonica (c) and the corresponding numbers

of the Octave, the Fourth's and the minor

in the following manner (see article VI)

The principal result is

following "5 fundamental

these": I want an all and the to brack

Thirds with 2, 3, 4 or 5",

The German Hermann L. F. v. Helmholtz (1821—94),

> who might be described as the 5 most meritorious pioneers of the Musical Acoustics.

> > ···· (== 120°

081 - 'o- 's

Dedicated The Memory of

PREFACE.

Walter Odinaton (about 1300 a. C.).

WHEN 40 years ago - as 18 year old student - while studying the theory of Harmony I discovered the fact that the interval "c-d" in C, D, F and A major is not ⁹/₈, but ¹⁰/₉, I little realized that by making said discovery I had literally found the key to Modern Acoustics. I contented myself, then, by reporting my discovery to "Tidsskrift for Physik og Chemi" ("Magazine for Physics and Chemistry") Copenhagen 1882, No. 11, page 289-302, and did not follow up my victory. It was not till many years after - in April 1918that I once more took up the subject in order to work it out in detail. After having worked at it for three years I am now able to give my results to the public in the shape of the present treatise.

The principal result is indicated by the following "5 fundamental Laws of Acoustics":

Law 1. "The 10 principal intervals are constructed by dividing of the differences between the vibration number of the .Tonica (c) and the corresponding numbers of the Octave, the Fourths and the minor Thirds with 2, 3, 4 or 5",

in the following manner (see article VI) in the tonal circle:

By dividing of	by	we obtain from c the normal tones:
c <u>−</u> c ′ = 360° 9d <u>⊤</u> 1n∑_odqэ±0(i)	2 3 4 5	g = 180°. f, a = 120 and 240°. e = 90°. eb, ab, bb = 72, 216 and 288.
$c - f = 120^{\circ}$ $g - c' = 180^{\circ}$	3 [64]	$d = 40^{\circ}.$ a = 180 + 60 = 240°.
$c-f = 120^{\circ}$ $g-c' = 180^{\circ}$	4/3	$e = 90^{\circ}$. $b = 180 + 135 = 315^{\circ}$.
$c - eb = 1.72^{\circ}$	nr 3 41	$db = 24^{\circ}$.
$g-bp = 108^{\circ}$		$av = 100 + 30 = 210^{\circ}$
Other divisions of	by	$a_{\rm p} = 100 + 30 = 210^{\circ}$. we obtain:
$g - b p = 108^{\circ}$ Other divisions of $c - e = 90^{\circ}$ $g - b = 135^{\circ}$	by	we obtain: the Comma-tone $d + = 45^{\circ}$. a + = 180 $+ 67^{1}/_{2} = 247^{1}/_{2}^{\circ}$.
$g - b p = 108^{\circ}$ Other divisions of $c - e = 90^{\circ}$ $g - b = 135^{\circ}$ $c - f = 120^{\circ}$ $g - c' = 180^{\circ}$	by 2 22 	we obtain: the Comma-tone d+=45°. a+=180 + 67 ¹ / ₂ = 247 ¹ / ₂ °. the Comma-t. $eb \div = 66^{2}/_{3}°.$ - b $b \div = 180$ + 100 = 280°.

see following table:

Law 2. "Among these 10 normal tones we recognise c, g, e and b as the overtones No. 1, 3, 5 and 15, — c, f, a^{\flat} and d^{\flat} as the imaginable undertones No. 1, 3, 5 and 15, respectively the C and D^{\flat} major Triads — or the e and f minor Triads".

The C string is divided by 3, 5 and 15, or multiplied by 3, 5 and 15. C is called both over- and under-tone No. 1.

Law 3. "In scales composed by principal tones all the Thirds and Fifths are pure within the octave, — that is to say: we can construct all scales on c by 2 chords of the Seventh from c and c' towards the centre".

The Greek Lydian C major:

The Greek Doric c minor

9

$$\frac{c - eb - g - bb}{db - f - ab - c'}$$

Law 4. "In the same double scale the intervals in the 2 tetrachords (Fourths) pair off fifth-proportionally $(\frac{3}{2})$ ".

db and ab	$24 + 12 = 36^{\circ}$
d + a h	$40 + 20 = 60^{\circ}$
e (m) b	$90 + 45 = 135^{\circ}$
other examples	albeid vil hotibo) n
d+ and a+	$45 + 21^{1/2} = 66^{1/2^0}$
eb÷ and bb÷	$66^2/s + 33^1/s = 100^\circ$
7/6 and 1/4	$60 + 30 = 90^{\circ}$
DPBY manage	Commission and an and the

Law 5. "All the normal and Commatones pair off as complementary intervals".

 $\begin{array}{c} db = {}^{16}\!/_{16} \text{ and } b = {}^{15}\!/_8 = {}^{16}\!/_{16} \cdot 2 \\ d = {}^{10}\!/_0 \text{ and } bb = {}^{9}\!/_6 = {}^{9}\!/_{10} \cdot 2 \\ e = {}^{5}\!/_4 \text{ and } ab = {}^{8}\!/_6 = {}^{4}\!/_6 \cdot 2. \end{array}$

Example:

Low tetrachord in Lydian C major	Ptolemæic tetrachord = high tetrachord in Doric c minor
c d e f 1 $\frac{10}{9} \frac{5}{4} \frac{4}{8}$	g ab bb c' ³ /2 ⁸ /s ⁶ /s 2
bne (1991) and	siologice etc. on

to the divingtory of the divin

The laws 1 and 4 are illustrated in following figure "the tonal circle":

This treatise appeared for the first time in the Danish periodical: "Music", Copenhagen (edited by Godtfred Skjerne), 1920-21. Various additions have been made for the present edition.

Copenhagen, January 1922.

tages pair off -as complementary inter

Thorvald Kornerup.

Translations in German and French have been carried summarily out and will be published later on.

Law 3. "In scales composed by prin

we can construct all scales on c by 2 chords

the imaginable underlones No. 1. 3. 5 and

Article 1. Limitations and Terminology of Musical Acoustics.

"M usical Acoustics" are dealing with the problem of the Structure of the System of Tones itself, thus forming the connecting link between Physics and Physiologics etc. on one side¹) and the Science of Harmony on the other side. The present treatise does — with some single exception — only avail itself of 4 specifications of intervals, namely

1) as ordinary fraction: the Fifth: ³/₂, the Fourth: ⁴/₈, the major Second: ¹⁰/₉, a.s.f., and

2) as millioctaves, or the thousandths of an octave: the Fifth: 585, the Fourth: 415, the major Second: 152, a.s.f. The difference is easily proved in that a Fifth and a Fourth when added together make: 1) The product: $\frac{3}{2} \times \frac{4}{i} = 2$, namely the octave: c-g and g-c; or 2) the amount 585 + 415 = 1000, also the octave. Millioctaves are calculated out by means of logarithms, being congruent with "The Mantissae of Logarithms on basis II", namely as follows:

"The normal-tone c^{\sharp} is 25: 24", i.e. the interval "c— c^{\sharp} " is 25: 24; the difference between the logarithm of these figures is (5 decimal places needed): 1,39794 \div 1,38021 = 0,01773; to be divided by logarithm of 2 (the octave) = 0,30103. In case anyone desire to carry out said division by means of logarithms the calculation will look like the following: 0,24871 \div 2 \div (0,47861 \div 1) = 0,77010 \div 2, which answers to the ciffre 0,059 — or: 59 thousandths of the octave. In the same manner the normaltone db 16: 15 or 93m, which means: 34m larger than c[#].

"Tone-Logarithms" were made use of in the year 1729 by the Swiss mathematician-L. Euler (1707-83), and later M. W. Drobisch (1802-96); they ought to be known by everyone with interest in musical matters as the "minor tabel" of Music. They are indicated in the present treatise by the letter "m".

imagination only, som abatract speculi

(The Englishman A. J. Ellis (1814-90) has made use of 1200 parts, "1200 cents", instead of 1000 parts; f.i: c^{\$} 58,89 m. × 1,2 = 70,67 cents, about 71 cents. — I prefer decidedly 1000 parts, the millioctaves).

3) The ordinary fraction can be replaced by "degrees of arc", untill 360° , as difference between the vibration numbers in about $1^{5}/_{18}$ second, f. i. (see art. VI):

	c	d	e	• f	g	a	b	c
-)19:30	0	40	90	120	180	240	315	360 °
or:	360	400	450	480	540	600	675	720
	c	dþ	eþ	100	-	ab	bb	с
	0	. 24	72	-	-	216	288	360 •
or:	360	384	432	-	-	576	648	720

then the normal $c^{32} = 1$ fign, just as view versa his "flat" so that his $c^* = 805$ ns, is

By tripartition No. 1 of the circle we obtain the low tetrachord $c-f 120^{\circ}$, and by tripartition No. 2 of the low tetrachord we obtain the Second $c-d 40^{\circ}$.

4) The millioctaves can in the temperament of 19 degrees be replaced by $t = 52^{63}/_{100}$ millioctaves, f.i. (see art. X):

c d e f g a b c 0 3 6 8 11 14 17 19t.

By the word "tone" is in the present treatise invariably understood the interval between c and "the note". The notes will be named in the following like customary in England and Holland where "b" is used for the large (major) Seventh from c, the note below c, on the key-board, which in Scandinavia and Germany is called "h", and in the Latin countries "si"²).

The only correct and sensible system would of course be that nations, all of them, agreed to accept the letters: "a, b (not "h"), c, d, e, f, g" — and: "cis" for c[#], "ces" for c^b, etc. This would simplify matters very much and prevent many misunderstandings.

Ritog-anithhe sub-bond

By "complementary tones", complementintervals (inversion-intervals), is meant: two intervals which joined together form an octave; the one of these is constructed by inversion of the other, f.i. "g" and "f" that means: the intervals "c—g" and "c—f."; or "d" and "bb"; "e" and "ab"; "b" and "db"; they are arranged symmetrically in twos in **annexure I**: "The Aggroupment of the Tones in tonal Zones" with c as centre; here follows another illustration:

f## 625 : 432 and gbb 864 : 625, or: f## 533 + gbb 467 m = 1000m.

The adjective "complementary" is borrowed from physics and mathematics seeing that the two colours: "red and bluishgreen" together produce white, and therefore are named complementary colours, just like 2 angles together forming 90°, i.e. a right angle, are called complementary angles.

or 9 × 1000 ÷ 15 × 584.ac = 226 m.

The INTERVALS. PART I.

AUTICLE 1

Article II: The one-sided Pythagorean System: "The Perfect Fifth", forester all based on abstract speculation.

oblain the law tetrachord (-1-120", and

1 1) The milliottayes can in the tempera ament of 10 degrees he regulated by 1 - 52 " no

2 4 B X 1 2 6 2

The first to consider the possibility of expressing in figures the mutual relation of tones in the musical system was without doubt the Greek Philosopher Pythagoras (born about 580 b. C. on the island of Samos³). His system is called "The Perfect Fifth" because he creates tones by adding the Fifth to itself as many times as desired. By tracing the tones thus constructed back through so many octaves that at last the starting-point (octave) is reached the construction of his tones may be described as follows:

1)	7nth tone after c is $c =$
	$\binom{3}{2}^{7}: 2^{4} = \frac{3^{7}}{27/4} = \frac{3^{7}}{211} = \frac{2187}{224}$ or 95 m.
or	$7 \times 585 \div 4 \times 1000 = 95 \text{ m}.$
2)	14th tone often a is att -
	$(^{8}/_{2})^{14}: 2^{8} = \frac{3^{14}}{2^{14}+^{8}} = \frac{3^{14}}{2^{12}} = \frac{4782969}{4194304}$ or 189 m
or	$14 \times 584, 584, 584, 584 \div 8 \times 1000 = 189$ ml.
3)	19th tone after c is b
	$(^{8}/_{9})^{19}:2^{11}=\frac{3^{19}}{2^{19}+11}=\frac{3^{19}}{2^{29}}=\frac{1162261467}{1073741824} \text{ or } 114 \text{ m}$
or	$19 \times 584_{5^{96}} \div 11 \times 1000 = 114 \text{ m}.$
4)	8th tone counting back from c is $fb = \frac{2^{8+5}}{2^{13}} \frac{2^{13}}{8192}$
	$(^{*}/_{3})^{*} \times 2^{\circ} = \frac{1}{3^{\circ}} = \frac{1}{3^{\circ}} = \frac{1}{3^{\circ}} = \frac{1}{6561}$ or 320 m,
or	$5 \times 1000 \div 8 \times 585 = 320$ m.
5)	15th tone counting back from c is $fbb = 1$
	$(^{3}/_{3})^{16} \times 2^{9} = \frac{2^{16}+9}{3^{16}} = \frac{2^{24}}{3^{16}} = \frac{16777216}{14348907} \text{ or } 226 \text{ m},$
or	$9 \times 1000 \div 15 \times 584, se = 226$ m.

All unbiassed readers will be able to grasp, by "spontaneous intuition", that a tonical system which has tones (intervals) indicated by a fraction as "c-b##", where enumerator and denominator consist of 10ciphered figures, or of 8ciphered figures as in the case of "c-fbb", must be wrong; nor is it difficult to point to the exact spot where his mistake comes in. Pythagoras' "Fifth-system" was based on imagination only, - on abstract speculation. — He believes it possible to construct a musical system solely on The Fifths, -just as he believed that "The planets by their rotation are creating tones — same tones being harmoniously connected with each other" "The Harmony of the Spheres has tempted many Greek astronomers to speculations which are quite in the clouds" 4). But as to that we may say with truth that the whole "Pythagorean Fifth-system" of tones is likewise poised in mid-air — held up solely by the wings of imaginaton! -

make: 1) The product: 'a \times 'a = 2. manuely the octave; c-g and g-c; or

the original Millionaves are calculated out in means of logarithms, heing, concritent with "The Muntissae of Logheithman on

The present-day Science, however, is not content by building on imagination - it demands experience as basis; - experience from nature itself, in this present instance from natural tones, differential tones etc. of which subject more will be said in article V. of the present treatise. I shall only permit myself, thus far, to mention three traits all three equally characteristic of the "Pythagorean Fifth-system" as compared with the "Pure Third-system";

1) Pythagoras' c-c[#], 95m, is 36m larger than the normal c#=59m; his "doublesharp", c-c##, 189m i.e. 71m larger than the normal $c^{\#} = 118 \text{ m}$, just as vice versa his "flat", so that his cb = 905m, is

16

36m smaller than the normal $c^{b} = 941m$; his $c^{bb} = 811m$ i.e. 71m smaller than the normal $c^{bb} = 882m$ (see **annexure II**), the result hereof being, amongst other things, that his $c^{*} = 95m$ becomes 20 m larger than his $d^{b} = 75m$, while the normal $c^{*} =$ 59m is 34m smaller than the normal $d^{b} =$ 93m. Thus his whole system must become lopsided in proportion to the "Third-system" — as the "Leaning Tower of Pisa" when compared to the plumpline!

Consequently the interval " $c^{b}-c^{\sharp}$ " of the "Pythagorean Fifth-system" must be 1189 ÷ 811 = 378 m, thus becoming 2 × 71 = 142m larger than the corresponding interval in the "Third system", which is: 1118 ÷ 882 = 236. Or, to take another instance: As the Pythagorean b is 925m that means: 18m (called "a comma" = 17,92m = 21,51 cents) larger than the normal one = 907m this must needs result in the Pythagorean $b^{bb} = 114$ being 18 + 71= 89m higher than the normal $b^{\sharp\sharp} = 25m$, in other words: a very discordant tone.

Fig. col. 63 shows the distances in a small whole tone, c-d.

2) Pythagoras being, however, endowed with mathematical talent sufficient to enable him to carry through his errors withthe necessary consistency the result is that we find his scales being relatively symmetric f.i. his scale on c, our C major, the primitive major:

an nean trais			proportion	distar	System .
c .d+ e+ f	1:1 9:8 81:64 4:3	0 m 170 —···· 340 —···· 415 —····	9:8 9:8 256:243	$= 170 \text{ m} \dots \\= 170 - \dots \\= 75 - \dots$	low tetrachord
a <u>ncirni -</u> mertete	n a) to e	to the one	9:8	= 170	disjunctive interval
g a+ b+ c	3:2 27:16 243:128 2:1	585 — 755 — 925 — 1000 —	9:8 9:8 256:243	$ = 170 - \dots $ = 170 = 75	high tetrachord

3) Also his two tetrachords in the scale, viz: "c d+e+f" and "g a+b+c" are exactly congruent, namely 170+170+75= 415 m with an interspace called "Diazeuxis" or "disjunctive interval", large 170 m, "f g", same interval being common for both systems in question as "f" and "g" are common for both, see the preface.

But this relative symmetry and congruity is really of no more value than the "established regularity in astronomics" so called by Pythagorean followers; "who endeavoured to trace the connecting link between the relative distances of the various erratic stars — i.e. the planetary conditions of magnitude on one side —, and on the other side the length of the chords producing tones in musical succession". .⁴). The Pythagorean Fifths "d+-a+" and "e+-b+" pair off "pure", but oblique in proportion to c, placed a comma to right; these 4 tones must be diminished with a comma, indicated in degrees of are, see the preface:

d+ 45	d+ e+ 45 95 ⁵ /s		b+ 323 ⁷ /16	
d	e	a	b	
40	90	240	315°	

When notwithstanding all its palpable errors the Pythagorean Fifth-system was able to hold on as long as it did this may be accounted for by the following two facts:

Tracker of

a) In the days of antiquity and during mediæval times the notes of C Major was used almost exclusively, thereby making the errors of the "Pythagorean Fifth-system" less evident.

b) The human ear possesses a truly
surprising faculty for adapting itself to discordant tones believing them to be pure and in tune — one proof amongst many of the unending adaptability of mankind⁵). But at the present day the demand for pure tones has grown much more insistent — hence the disinclination to submit to the discordant tones of the old "Pythagorean Fifth-system"!

Article III. Opposition to "The Pythagorean Fifth-system": The Founders of "The Third-System".

"We see through what wildernesses (Pythagoreas' abstract theories) the human thought has had to work its way out before the real true science of astronomy could see daylight; though it is at the same time a fact that already the Greeks of the classic era proved that they were endowed with power of mind sufficient to emancipate themselves from theories old and defunct, thus working their way towards a true understanding of the phenomenons of the Firmament". Exactly the same words might be made use of in regard to the manner in which the Greeks found their way out of the wilderness known as the "Pythagorean Perfect Fifth". I should like to specially mention the names of the following 5 Greek philosophers and mathematicians, - all belonging to "The School of Harmonists" ⁶):

1) Archytas of Taranto, politician and mathematician (about 430 - 365 b. C.). There is every evidence to make it seem that he would have been the one to introduce the major Third = $\frac{5}{4}$ or 322 m (about the year 408 b. C.).

2) Aristoxenos of Taranto, philosopher and mathematician (pupil of Aristoteles). He originated the plan of the equal temperament of 12 degrees (about 350 b. C.); no practical use, however, being made of his system till a few thousand years later on in history, 3) Erastothenes of Cyrene, an Alexandrian (about 275–195 b. C.), introduced the "minor Third" = $^{6}/_{5}$ or 263 m (about the year 200 b. C.).

4) Chalcenteros Didymos (pupil of Aristarchos from Samotrace), Alexandrian; grammarian (born about 63 b. C.); was called "The Indefatigable"; introduced the "major Second" = $\frac{10}{9}$ or 152 m.

5) Claudius Ptolemæus (maior) from Alexandria; invented (year 140 a. C. or thereabout) the tetrachord now used in the melodic minor mode descendant (as "high tetrachord") wherewhith he had **reached the goal** of being able to place the tetrachord with only normal intervals:

83 -			0
1110	1 9 1	000	01'
1113	Lal		01.

ne pe in the	1st degree	2nd degree	3rd degree
e=5:4 or 322 m f=4:3 - 415 - 415 - 415 - 585 - 415 - 585 - 415 - 585 - 415 - 585 - 415 - 585 - 415 - 585 -	93 m 170 — 152 —	77 m 18	59 m

The distances are thus in reverse succession to the ones of C major, or to what we in the following shall call the primitive minor, "the Doric minor mode", the **pendent of C major**; the Doric scale of the Greeks; the Phrygian ecclesiastical mode of mediæval days, "c minor with 4b". From this point and on there came a period of stagnation which lasted for a very long time.

That there is a step forward in evolution from Pythagoras to Ptolemæus is evident when one considers their methods which are so different that they are almost contrasting; — Pythagoras constructed his tones as mentioned above by adding the Fifth to itself, while Ptolemæus starts from the simple fractions: $e = \frac{5}{4}$, $a = \frac{5}{8}$. But this is forgotten and lying dormant for a period of about 1200 years.

As the discovery made by the astronomer Aristarchos of Samos (3rd century b. C.) that the sun is the centre of the planetary system — was left to be forgotten for many long years until its revival by Kopernicus about year 1500, so the original pure system of "The School of Harmonists" was forgotten for a very long time until it gradually revived. Amongst the men to whom the honour of this revival of system is due we ought not to forget to mention the English Benedictine monk Walter Odington (ob. after 1330 a. C.) whose connection with this matter was not known till a much later period. He is attempting to revive the Third-system once more (about the years 1275—1300 — according to papers found in 1864 at Christ College, Cambridge).

The same attempt is made later on, 1480, by the Spanish theorist Bartholomeo Ramis de Pareja (about 1440, ob. 1491), and 1529 the Italian Ludovico Fogliani (ob. about 1539); then 1558 by the musical-theorist of the High-Renaissance **Gio**- sepho Zarlino of Venice (1517—1590), and 1722 by the French musical theorist Jean Philippe Rameau (1683—1764). During these periods, step by step, the Thirds are getting recognised as co-equals with the Fifths as consonances, — and the major and minor scales recognised as being of equal rank.

In the year 1853 the German composer Moritz Hauptmann (1792–1868) brings out the "Aggroupment System", based on both the Fifth and the Third. **The Pythagorean tones** are now arranged in Fifth-succession in a maze of squares, in one horizontal plan-line and places e (the Third) immediately opposite of c; after various oscillations in terminology⁷):

Listere Contain 1	da nar	12 cents according to	Milli- octaves	Haupt- mann	Helm- holtz 1	Oettingen	Helm- holtz II	Eitz	Korn	erup
10 23		Ellis:	m:	1853.	1863.	1866.	1870.	1891.	1882	1920
∆ 2. (T	Over- `hird	773	644	G#	<u>G</u> #	g#	g#	g‡ ^{÷2}	g#	g#
1. T	Over- { hird {	386 182	322 152	e d	e d	$\frac{\overline{e}}{d}$	e d	$e^{\div 1}$ $d^{\div 1}$	e d	e- d
Pyti re to	hago- ban nes	204 0 996	170 0 830	D C Bb	D C Bb	d c bb	d c bb	d c bb	d c bb	d+ c bb÷
1.	Under-/ Fhird	1018 814	848 678	bb ab	bb ab	$\frac{bb}{ab}$	bb ab	$\begin{vmatrix} bb^{+1} \\ ab^{+1} \end{vmatrix}$	bb ab	bb ab
2. ∀	Under- Fhird	427	356	F۶	Fb	fþ	fþ	fb+2	fþ	fþ

- the tones are now generally described thus that the Pythagorean tones are looked upon as the normal tones (which is an error) while the tones in the other rows according to Eitz are described by letters to which in each case is added $\div 1$, $\div 2$, a.s.f. - or: +1, +2, a.s.f. as power sign, which is here explained:

1 50 irori).	f ^{♯÷2} 474	c‡ ^{÷2} 59	g ^{‡÷2} 644	$d^{\# \div 2}$ 229	a ^{‡÷2} 814	b ^{‡÷2} 399	2. Over Third.
ic pud th	$d^{\pm 1}$ 152	a ^{÷1} 737	e ^{÷1} 322	b ^{÷1} 907	f ^{#÷1} 492	c‡ ^{÷1} 77	1. Over-Third.
(8) (8)	bb 830	f 415		g 585	d 170	a 755	Pythagorean tones.
ari 1712 1712	g ^{b+1} 508	db ⁺¹ 93	ab ⁺¹ 678	e ^{b+1} 263	b ⁺ 848	f ⁺¹ 433	1. Under-Third.
10	ebb ⁺² 186	bbb ⁺² 771	fb ^{+2•} 356	c ^{b⁺²} 941	$g_{526}^{\flat+2}$	d♭ ⁺² 111	2. Under-Third.
020	2. Under Fifth.	1. Under Fifth.	Vertical centra line.	1. Over- Fifth.	2. Over- Fifth.	3. Over-	12 cents Milli eccording octave to Tto Billing Octave 2500 actave 1001 actave

Enclosed in the italicized lines is the C major scale (see the figures) as seen by Mr. Hauptmann i.e. with d as $\frac{\theta}{s}$; as will be seen: an oblique figure in its proportion to c.

This system was somewhat improved upon by the Japanese Shohé Tánaka (in 1890); he turned the system plan itself 30°, thereby causing c to be placed below the line between the a and e squares thus:

However, — as regards its proportion to C major the figure still remains oblique to C; this is the natural sequence of the fact that Tánaka — and after him the Ger man singing-master Karl Eitz (born 1848) and also the Swiss physiologist Alfred Jonquière (1862—99) all keep to d = 170in C major⁸). The alteration effected by author in the Tánaka Aggroupment is a follows:

1) I insert my perpendicular tonal zones as described in annexure I. so as to make it clear at once that $d = \frac{10}{9}$ or 152 m, and not: $d = \frac{9}{8}$ or 170 m belongs to C major, seeing that this is the only way of causing all the tones of C major to be symmetrically placed in proportion to c, as will be seen from the figure below:

The same holds good in regard to the primitive minor, the "Doric c minor" (double melodic minor mode descendant) the descriptive figure of which will look as follows:

nsel lean

1980dini

taffa :

2) I reject the Pythagorean intervals as starting-point and shall call:

The Middle Zone in annexure I: the normal intervals; this again being flanked by (compare art. VII):

a) The zone to the right: commaintervals with +, i.e. intervals which are one comma = 18 m higher than the normal intervals, f.i. d+=170 m, f+=433 m, ab+=696 m, a. s. f.

b) The zone to the left: commaintervals with \div , intervals which are one comma lower than the normal intervals, f.i. $b^{\flat} \div = 830$ m, the complement interval to d+; g $\div = 567$; e $\div = 304$ m, a.s.f.

Be it noted that annexure I. is cut off c+ and c÷, seeing that we shall rarely have any occasion to use comma-intervals outside these; f. i. rarely for: e+,g+, b+, or: d÷, f÷, a÷, o.s.f.

The signature + and \div are to be put immediately after the letters, seeing that in this present instance we have nothing to do with powers in arithmetic, but with: +and \div 18 m, f.i. d+=152+18=170 m, $b^{b} \div = 848 \div 18 = 830$ m, d+ stands thus for "d + 18 m".

The above represents the Basis of Modern musical Acoustics (the correctness of which statement the following articles are endeavouring to prove). The opposition to the Pythagorean Fifth-system has now brought its struggle to a final close; — "per errores ad veritatem", "Truth is reached through errors".

Article IV. The Natural Tones as Fundamental to "The pure Third-system".

assistance of which we shall require in this particular case namely the following:

The mistake hitherto committed with regard to the use made of the "harmonic over- and under-tones" is that an insufficient number has been made use of in all attempts of building up new systems or improving upon old existing ones. If we just set or mind on a larger number of these over- and undertones we shall at once find it much easier to obtain a general view of their special nature and function — i.e. the structure of the whole Musical system, as given to us by the hands of nature itself — not by Pythagoras' abstract imaginations.

The C sounding from the C string of a cello is called "Natural tone No. 1"; the flageolet-tone which is obtained by dividing the C string in two parts of equal longitude, both vibrating, is called "Natural tone No. 2" (or "Over-tone No. 2"); the flageolet tone called forth by dividing the same string into three equal parts is called "Over-tone No. 3", a. s. f. And vice versa: In doubling the length of the C string we shall obtain as a result "Under-tone No. 2", if tripled: "Under-tone No. 3". a. s. f.

C' is thus both Over- and Under-tone No. 1. This way of numerating is made use of, for practical reasons.

Now if we were to construct more overtones of which only some very few are audible we shall at once discover that these tones may be used for composing **various series of triads**, — as well in the major- as in the minor-mode; as, f.i. the following where the figure proceeding each letter indicates the number of over- and under-tones in question:

Series	Over- and under- tones No.	Over-tones giving major mode	Under-tones giving minor mode
1	2, 4, 8, 16 5, 10, 20 3, 6, 12, 24	C · ∀ g	∆ c ab f
2	5, 10, 20	E	ab
	25, 50, 100	g≭	fb
	15, 30, 60	b	db
3{	3, 6, 12	G	f
	15, 30, 60	b	db
	9, 18, 36	d+	bb÷

and vice versa:

Series	Over- and Under- tones No.	Over-tones giving minor mode	Under-tones giving major mode
1	5, 10, 20	е	A ab
	3, 6, 12	g	∫ f
	15, 30, 60	∀ b	Db
2	15, 30, 60	b	dþ
	18, 36, 72	d+	bþ÷
	45, 90, 180	f\$+	G þ÷

We have thus in the above constructed the following triads

- from the over-tones:
- C, E and G major as well as e and b minor,

from the under-tones:

f, d^b and "b^b÷" minor, and D^b and "G^b÷" major,

and we may go on like this indeterminately.

Of course we can also thus construct chords of the Seventh, the Ninth and the Eleventh: "c, e, g, d+, $f^{\sharp}+$ " a.s.f., see

survey over the whole plan is obtained by inserting — in annexure No. 1 — the number of the over- and under-tones respectively (C is looked upon as being both over- and under-tone No. 1), thus:

We discover from the above illustration that by dividing the string by the 3 first prime numbers: 2, 3 or 5 — or by multiplying these figures amongst themselves, as f.i. 4, 6, 8, 9, 10, 12, 15, a. s. f — orvice versa; by multiplying the length of the string by these figures or multiple we obtain over- and under-tones respectively which are able to go on constructing triads or Seventh chords indeterminately by multiplying all the figures by 2, 4, 8, a. s. f. We further discover that in annexure No. 1 are to be found various axes the assistance of which we shall require in this particular case, namely the following:

1) The horizontal axis, the Fifth-succession, containing the Pythagorean tones,

2) The 60° axis — i.e. major Thirds, $fb-ab-c-e-g^{\sharp}$, a.s. f.

3) The 30° axis: $d^{\flat}-c-b$ a.s.f. being a combination of the two previous axes —: Sevenths.

pl

As there are three primary colours i.e. red, green and "bluish-purple" (indigo) in accordance with the solar spectrum (red, green and "purple" in accordance with the dim spectre from artificial sources of light) from which all colours are constructed —, as "mixed" colours,

- The Trichromatic Colour System -

so there are **Three**.**Primitive** Intervals from which all other normal intervals are constructed as "mixed tones", corresponding to the three figures (the first prime numbers of the numerical series:

- 1 = 2 = Prime or Octave,
 - 3 = Fifth (major + minor Third),
 - 5 = Major Third (Fifth \div minor Third).

If therefore we consider Third, Fifth and Octave to be the three primitive-intervals we have thereby stated and explained the fundamental **structure** of the pure system, — even as it will be seen that the difference between the major and minor triads. consists only in the major and minor Thirds following each other in varying succession.

In adding a Third to the triad we obtain a prolongation of the same, viz: the Chord of the Seventh (also called the subsemitone chord), of which there will be 8 different kinds (see article V) which we make use of for the construction of the scales.

Colour-blind people are able to perceive but one or two primary colours; — the "interval deafness" of the Pythagoreans rendered them able to hear only two primitive intervals: the Octave and the Fifth — as tone producing; by division or multiplication of the C string of a cello only by 3 or multiples only of 3, f.i. 3, 9, 27, 81, 243, 729, a.s.f., we have only Pythagorean tones, the exclusive (false) Fifth-succession.

All over- and under-tones produced by multiplication or division by figures other than 2, 3 and 5, or multiple of these, i. e. from all prime numbers other than 2, 3 and 5 (or multiple of all prime numbers other than 2, 3 and 5) f. i. 7, 14, 21, 28, 35..... 11, 22, 33, 44, 55, a. s. f. we call extra tones, because they are outside the frame of the pure Third. But of course even these tones can produce the triads —, f. i. the 7nth over-tone which together with the 21st and 35th over-tone form a genuine triad with the following capacities in milli octaves:

Prime.	Т	hird.		Fiftl	1.	all heat
7nth	dust a	35th		21s	t	het
807	in lini	1129	105,1	1392	nı	
ire intervals	322	14.8	263	Tel	-	585 m.

But this, of course, is only a tautology.

The German musical theorist J. P. Kirnberger (1721-83) has named the 7nth over-tone "i" (the letter after "h" in the alphabet)⁹), which nomenclature is much to be preferred to "the natural Seventh" considering that the extra-tone "i" has nothing to do with the Sevenths of the "Third-system"; millioctaves:

a l		Te	mperament	t of	hreente
"	bb:	12 degrees:	31 degrees:	19 degrees:	pure:
807	also	bb	bb	bb.	bb
	pyth.	833	839	842	848 m.

"i" is thus 41 m lower than the normal interval b^{\flat}; it is lying outside the "Thirdsystem" between a^{\ddagger} 796 and a^{\ddagger}+=814 m; we might accordingly with some reason be permitted to call "i" "the augmented natural Sixth" a^{\ddagger}; but never on any account the Seventh!

The number of extra-tones is, however, fairly large owing to the great many prime numbers existing in the numerical list:

the forware of the flower of in chiry stals, west, etc. cerr fre considered	just like ree liven utshe en tumbers a	daumi tanti in territi offici offici	Normal- tones and comma- tones	Extra- tones
of the first 10	over-tones	are	9.	- 1
- next 10	-	-	5	5
10	-	-	4	6
10	-		3	7
10		-	3	7
a. s. 1	E,			

When the French musical theorist Jean Philippe Rameau (1683–1764) constructed the minor triad, "l'accord parfait mineur", of the 3 tones which has c as common over-tone¹⁰), this was an unnecessary detour seeing that "f—ab—c" as stated above, are to be found direct as 3rd, 5th and 1st under-tone corresponding to 5th, 3rd and 15th over-tone "e–g—b".

And when somebody holds that minor triads may be constructed only from undertones then this is an error for—as stated above—the difference between over- and under-tones is not dualism between the major and minor modes but between the tones of the Fifth- and the Fourth-circles — in other words: between \ddagger and \flat .

I trust that in the foregoing I have been able to make clear my solution of the problem of "Over- and Under-tones" according to the common law of nature. In the flora and fauna the figures 1, 2, 3 and 5 are ruling according to the law of precedence that 1, 2 and 3 (as well as multiple of these figures with each other) are ruling on a lower stage of development; f.i. in the flowers of monocotyledonous plants and with zoophytes; while 5 (and multiple as 10, 15, a.s.f.) indicate a higher phase of development, - in the flowers of bicotyledonous plants and with echimoderms (starfish, crinoideans, arctiniae), while other prime numbers indicate teratologies. The flower of the horse-chestnut is thus a dicotyledon in which one petal and 3 stamen are missing, hence the numbers 4 and 7; but the seats of the missing parts can be pointed out by means of the symmetrical line in the diagram of the flower. Likewise in the world of tones: The tone "i", $-i.e. \frac{1}{7}$ of the string, is outside the Normal, just like the flower of the horse-chestnut tree. Even in chrvstals, sonorous figures, acoustic curves, etc. certain proportionate numbers are considered the Normal¹¹).

-

of the first to over the

If the Hindus in the days of antiquity would have made use of 22 tones in the octave, which tones could be constructed by dividing the half C string in 22 equal parts, (according to Hugo Riemann), the result hereof would have been many small and a few large intervals, -- "c-f" pure, the other false, -- in 4 groups being about equal to 4 temperaments (see art. VIII) with respectively 12, 19, 24 and 31 tones in the octave, as follows:

Millioct.	Nar the Thi	ne in rd system	Tones in- stead of the black digitals	Tempe- rament of
about	ethild -	about	ic remining	
about	C	about	law angle	Withe,
33	ovitio	dbb	> be the	Ooknyre 1
67	dqra 1	ct	Rietelby	31
102	rugan	db	4.4 121	degrees.
138	1 1001	c##+	11246731 20	lussa
175	d+			
212	THUR IN	d#. ebb	1	STATISTICS)
250	Mulhas	eb÷	3	manonor
290		d##+		and the
330	е	add by a	alternicality	24
372	Inthese	e#,fb+	1	degrees.
415	f	Indefine Ter	(Indata)	bian?)
459	n 17 m	f#÷,gbb	thrist to	s differed
505	aiturat	gb÷	3	nuke us
553		133+	11 3	aufles,
602	g+		Set House	Licida
652	rolou	ge ritte oh i	2 10	har had
700.	flySL :	g22, ap+	dentuces	19
109	a+	04.L	them an	degrees.
875	ban :	att	2	milive ji
936	b+	Pass - XU	Paborg 2	101.00
1000	c'		0.	12 degr.
	1 10	VI-0.9	Partition)	0

All over and understance moduled, its includibulication of division by lightly other than 2.3 and 5 of multiple of theor. 1 y from all prime monthers office than 2.3 and 5 for includible of all prime notables others than 2, 3 and 67 f. 1, 7, 14, 21, 28, 28 ft 28 dt 31 ft 56 of sectors.

PART II. The SCALES.

V BUOITAX

Article V. Construction of Scales with "C" as Tonica (Keynote).

then have each a number ad libitum but

to the Names Providence of the State of the State of

led: we are showing below some of these

The ordinary way of constructing scales is: to "start" adlibitive with C major and "fill out intervals" adlibitive in same — as "it seems to fit in best"¹²). This is wrong. In opposition to this we shall, in the present treatise, not take C major as our starting point; because so far we know nothing about that particular point. All we know is that triads and the extension of same, i.e. the chords of the Seventh, is given to us straight from the hands of nature with the natural tones, with both minor and major Thirds in varying succession. We will then begin with finding out how many triads and Seventh chords we shall be able to construct with the aid of a dash and a point as indicating the major- and minor Thirds; we discover almost at once that we can construct thus 4 triads and 8 chords of the Seventh, as seen below, with indication of the sum of millioctaves, in order to state the consecutive order, f. i.: 322+644=966 m; and 322+644+966=1932 m:

The churd & from C

--- B from C

The chords of the seconds (0 h R mid-

and from the oclave C descending, as also

dominant G or on the lower-dominant F

resakow'') ad minor')N	Triads	1013	unid	Telegraphie & lette	c sign er	Sum of Sum corresp. m to:		transposed to:		
augmented	c	.e	g#	5 1 1	M	966	b# 11	fþ	ab	c'
major	c	c	g		N	907	b	f	a	c'
minor	c	eb	g		A	848	bb	f	ab	c'
diminished	c	`eb	gb		I	789	bbb	f‡	a	c'
roof: Differen	ce hetu	Ma	nd I		• •	177	-3 > 50	2,0103	filocia	in al o

The major- and minor triads are pendants of each other -- | --.

Chords of the Se	ven	ith	11	H	Tel sign	egrap 1. & le	hic tter	Sum of m	Sum corresp. to:	tran <	ispo:]	sed	to:	Suggested name:
tempered Octave trisects harm. minor mode, a III major mode, C I, G IV. major mode, F V	с с с с	e e e e	gi gi g gi g g g g	b# b b bb		9	- 0 G . K D	1932 1873 1814 1755	a::::+ a:::+ a::+ a::+ a:+	dbb db db d	fb f f f#	ab a ab a	c' c' c'	twice augmented augmented. large major. small major.
harm. minor mode, c I major, Bþ II. Aþ III, Eþ VI maj., Dþ VII, harm. bþ II harm. minor mode, dþVII	c c c c	eb eb eb eb	g g gb gb	b bb bb bbb	• •	- -	W R U S	1755 1696 1637 1578	a+ ab+ abb+ abbb+	db d d d#	fb f f f#	ab a ab a	c' c' c'	large minor. small minor. } diminished. twice diminished
Proof: Difference betw	0	and	S	0	a	11		354	$=6 \times 59$				~	(E .bis

34

The chords of the Seventh: O, K, R and S are symmetrical, while G and W are Pendants of each other, likewise D and U.

With this material many kinds of scales may be constructed, "Modes of Scales" or **modi** (from the Latin) namely: by adding triads to the Tonica (keynote) C ascending, and from the octave C' descending, as also by inserling triads with the Third on the dominant G or on the lower-dominant F; or — what comes to the same:

Law 3: "By adding chords of the Seventh (= 3 Thirds) from C ascending and from C' descending", -i.e. Constructing the Scales by chords of the Seventh from the terminal points c and c' towards the Centre. What kind of scales we obtain in this way depends upon the chords of the Seventh we are choosing, f.i. will the primitive C major be formed like this (see the preface):

Į	The c	hord	K R	from C: from C':	c	d	e	f	g	a	b C	,
	or in	milli	oct	aves:	0	15	322	415	85 7	9 37	07	00

If we exchange the chords K and R the primitive c minor will be formed like this:

The chord R from c: K from c':	c eb g bb $db f ab c'$
or in millioctaves:	0 263 585 848 93 415 678 1000

Be it noted that both the above scales obtain congruent tetrachords — just because the chords K and R are symmetrical.

The last of these two scales is congruent with the Doric e scale of the ancient Greeks, with the Phrygian ecclessiastical mode of Mediæval times, c minor with 4b, which by us is indicated with a "small" c with an asterisk: "c* minor". This scale forms the pendant of C major and may be called: "Double reversed major".

These two modes we call "The 2 primitive modes"; they border the practical system of scales on both sides — (see art. 3). But of course many other kinds of major and minor modes may be constructed; we are showing below some of these which have either been made practical use of at some, time or other, or which might be used in practical life, at any time; we shall choose 5 scales of the major mode and 6 minor modes and let them have each a number ad libitum but fixing the consecutive order of series by the sum of millioctaves:

"C" as Tonica (Keynote).

_	-				
aples	Cho	rd of	e	16	The ordinary way
No.	Sev	enth	or	rq	The island of anti-
bit	J. C.	cing	al	on	Application
erla d li	m	m	ent	DR.	in of encetc.
a S	froi	fro	Ori		wrong, in opposition
TUES			11.1 30	-	Contraction of the second second
1	D	к	Hypo-	F	"ultra major" 18), obso-
		11	lydian		letc.
2	·R	K	Ly-	C	the primitive major,
mit	mo	1.11	dian		"double major".
3	U	K	Orien-	C	harmonic major, "major
	1-4		tal		and harmonic", Rim-
phie	manh	+			ski-Korssakow ¹⁴).
, 4	R	D	Ionic	G	"major and minor", Nor-
-	-				wegian "Langeleik",
	-	- 1	22.	a.,	uncertain ¹⁵).
5	K	K•			the symmetric major,
			2	-	"double harmonic
	ian i	1			major".
	D	***			1 11
6	R	W		••	melodic minor ascen-
	1-1		1 Date	16	dant, "minor and ma-
7	TT	w			bormonic minor "minor
-	U	W	olas bi		and harmonic" F F
					E. Bichter $(1808 - 79)$.
8	R	R	Phry-	d	the central mode, the
	and a		gian	un	symmetric minor,
		-			double minor".
9	U	R	Æo-	a	melodic minor descen-
	-	d	lian	3	dant, "minor and anti-
	in	d	2 0	0	major", Rimski-Kors-
14.0	-	rd	4	15	sakow and Schoen-
		4	-	-	berg ¹⁴).
10	K	R	Doric	e	the primitive minor,
-		rd I	S	5	"double reversed ma-
-	1.12	and a	-	5	jor, "double anti-
11	K	TI	Miro	h	major . "ultro minor" obso
11	V	0	ludian	D	lete

In case the tones are given in 2 chords Greek scales these chords will look thus of the Seventh starting from c for the 7 (in succession of major and minor Thirds):

Serial No.	Greek scales	Chor the Se des- cen- ding	d of eventh as- cen- ding	d <	escendi J	ng	from c	ъсу	Number of # or b		
1 2 4	Hypolydian major Lydian — Ionic —	D R R	K K D	d d d	f# (f) f	a a a	c c c	e e (e)	g g g	b (b) (b))	1# 0 1b
8 9 10 11	Phrygian minor, the central mode Æolian minor Doric — Mixolydian —	R U K K	R R R U	d (d) (dþ) dþ	f f f f	(a) (ab) ab ab	C C C C	(eb) eb eb eb	g g (g) gþ	bb bb bb bb	2b 3b 4b 5b

The missing tones in the 5 pentatonic scales are placed in brackets. All 7 scales are here given in **Third**-succession with c as centre.

No. 2, 5, 8 and 10 are double modes, the 4 natural modes, namely:

No. 2, Lydian, the primitive major, - 10, Doric, - minor, - 5, - symmetric major, - 8, Phrygian, - minor. No. 2, 8 and 10 are perfect modes (see art. 10).

No. 1 and 11 are "ultra" modes, as "ultra red" and "ultra violet" among the colours.

Indicated with tones from c the 11 modes described on the preceding page will look as follows:

other Tonicae Greenotes) than a

From the above 5 kinds of teleachords

Serial No.	Lo	w te	trach	ord	Diazeuxis, disjunctive interval	Hig	gh te	trach	ord	Number of \$ or \$	Sum of m without c'	Sum corresponds to
G	c	d	e	f#	1/2	g	а	b	c'	1#	3177	c###
2	с	d	e	f	1	g	a	b	c'	0	3118	C##
3	с	d	e	f	1	g	ab	b	c'	16	3059	C#
4	c	d	e	f	1	g	a	bþ	c'	1	3059	C#
5	c	dþ	e	f	1	g	aþ	b	c'	2	3000	c
No. of the		25				1-18-					anti-major	10. 4
6	C	d	eb	f	1	g	a	b	c'	intial	3059	C‡
7	c	d	eb	f	1	g	ab	b	c'	2	3000	с
8	c	d-	eb	f	1	g	a	bb	c'	2	3000	c
9	c	d	eþ	f	1	g	ab	bb	c'	3	2941	cþ
. 10	с	dþ	eb	f	1	g	ab	bb	c'	Jro4	2882	cbb
11	c	dþ	eb	f	1/2	gb	ab	bþ	C'	5	2823	cbbb
		- UN		10	Proof: I	Differ	ence	bet	w 1 :	and 11.	354	$= 6 \times 59$

38

As will be seen there are in these 11 modes stated the following 5 kinds of tetrachords, with c as starting point in order to assist comparison, — also statement as to the sum total of millioctaves:

n zydaraw 24 Can z	Tetrachord						Name	Sum of milli octaves	Sum corre- sponds to:	
symmetric	c		d	_	e		f#	Tritonus	948	b#÷
>	c	_	d	-	e	f		major	889	b÷
(c	db	-		e	f		"harmonic"	830	bb÷
symmetric {	c	-	d	eþ	-	f		minor	830	bb÷
<	c	dþ	TO LO	eb		f		anti-major	771	bbb÷

Proof: Difference betw. Tritonus and anti-major:

 $177 = 3 \times 59$

The arrowheads indicate that the majorand the Doric anti-major-tetrachords are "pendants" to each other.

 $\underbrace{\overline{152} + \overline{170} + 93}_{\text{Major with d} = 10/9} = \underbrace{93 + \overline{170} + \overline{152}}_{\text{Ptolemæic tetrachord.}} = 585 \text{ m}$

From the above 5 kinds of tetrachords the 11 modes are constructed thus:

Serial	Number	Tetra	chord
No.	offorb	low	high
1	1\$	Tritonus	major
2	0	major	din the state of t
3	16	aluodtin .	"harmonic"
4	1	-	minor
5	2	"harmonic"	"harmonic"
6	1	minor	major
7	2	1039	"harmonic"
8	2		minor
9	3	0006	anti-minor
10	4	anti-major	
11	5	in the	Tritonus
		Clinic	S TON B

Of these 11 modes 4 are "double" i.e. the two tetrachords are congruent (because the K- and R-chords are symmetric); they may accordingly be used for the construction of other scales of the **same** mode on other Tonicae (keynotes) than c, through that a) the high tetrachord is made a low tetrachord in the following scale, the Fifth-circle c, g, d, a etc.

17

b) or that the low tetrachord is made high tetrachord in the following scale, the Fourth-circle, c, f, bb, eb etc.

These are the rules which cannot be applied when d+ is included in C major, as it causes the tetrachords to become uneven: $\frac{9}{8}$, $\frac{10}{9}$, $\frac{16}{15}$, and $\frac{10}{9}$, $\frac{9}{8}$, $\frac{16}{15}$.

The 4 "double modes" are lying symmetrically in the following coordinatesystem, with the chords of the Seventh downwards (descending) as ordinate axis (perpendicular) and the same chords upwards (ascending) as abscissa axis (horizontal).

In case these 4 modes are inserted in annexure I. in such a way that the centre of the squares indicate the tone we obtain the following 4 geometrical figures, symmetrical in proportion to c: -

blervals) and e a CRAME IN 0 1/ 0 No. 2. No. 10. at e No 5 ab Nº 8 Vertifie botween AL MARK we should have eb. 6-6

With these figures we are able to construct "reflections" and "pendants" (in two different ways) with No.s 5 & 8, but only reflection (in one way) with No.s 2 & 10; however this is of no immediate interest to us at this point. In the present treatise the description "pendant" is used only in the case of "Pendant-Figures of The Telegraphic Signs", f.i. "D" --- contra "U" -- -, not "K" contra "R".

As will be seen from the above illustration it is not f minor but the Doric c minor which forms the pendant of C major 16).

I have in the above made use of the ancient Greek names as there seems to me no reason for using the wrong names employed in The Ecclesiastical Modes, - f. i. by Glarean (1488-1563) I thus entirely agree with Helmholtz when he says: --

"But I shall not use Glarean's names without expressly mentioning that they refer toan ecclesiastical mode. It would be really better to forget them altogether"¹⁷).

in case we might desire to use f.d. He-Article VI. The 10 Principal Intervals.

Restine entents > Mindr tones.

The 11 modes mentioned in article V. have that in common that they altogether make use of only 10 normals intervals which we call "The 10 Principal Intervals", which pair off as complementary intervals — Law 5-, namely in millioctaves, in "1200 just cents" with 2 decimales, according to Ellis' "Sensations of Tone", 1912, p. 329, and in degrees of arc:

	degrees	1200	milli	compl	lement	milli	1200	degrees
b	of arc	cents	octaves	to	nes	octaves	cents	of arc
	480°	498,04	415,04	f	g	584,96	701,96	540°
	450	386,31	321,98	e	ab	678,07	813,69	576
	432	315,64	263,08	eb	a	736,97	884,86	600
	400	182,40	152,00	d	bb	848,00	1017,60	648
	384	111,73	93,11	db	b	906,89	1088,27	675 ∇
	360	0	0	c	c'	1000	1200	720

They correspond to the 10 principal colours in the colour circle which is often put up in a regular pentagon by the natural philosophers in such manner that the complementary colours are lying exactly opposite each other¹⁸). Here we must not forget to take into consideration, however, that while the complementary colours follow each other in the same numerical order in the solar spectrum, the complementary tones (intervals) on the other hand are grouped symmetrically round a tone lying midway between f[#] and g^b, on 500 m, i.e. for inslance arranged ad libitum, say according to the influence of tones and colours on the nervous system: -

Restful	coloui	rs =	Ma	jor	tones.
---------	--------	------	----	-----	--------

g bluish- purple	d blue	a bluish- green	e green	b yellow- ish-green
yellow	orange	red	purple	violet
f	bþ	eb	ab	dþ

Restless colours = Minor tones.

In case we might desire to use f. i. the Dane, Prof. Barmwater's colour-circle for the placing of the 10 principal intervals these are best indicated in Fifth-succession; as f. i. arranged together as below: --

The lines b—f and db—g indicate only a diminished Fifth.

From the centre c (corresponding to the white colour in the colour-circle) 3 dotted lines have been made from c to e^{\flat} , e and g, the tones of the major- and minor-triad whitout c, corresponding to the 3 primary colours.

If the 10 principal tones (intervals) are arranged along a circle in 4 tetrachords (2 major and 2 minor), each about 33+37+20=90 degrees of arc, we obtain the following figure where the tones pair off as complementary:

The fact of there being 4 principal intervals with \flat and none with \ddagger is the simple sequence of c being chosen as starting point; had **d** (the centre between a and g), been chosen instead the result would have been that we should have had — beside the 6 other tones on the white digitals of the piano — also $c\ddagger$, $e\flat$, $f\ddagger$ and $b\flat$, f. i. in double harmonic D major:

D 152	eþ÷ 245	f# 474	g÷ 567	a 737	bþ÷ 830	- c#	d 9 115	52	
9	3 22	29	93)3	229	93		-
19	41	5	17	70		415	-	1000	m

If the 10 principal tones (intervals) are arranged along a circle in millioctaves (thousandths parts of the circle) we obtain the following figure in which an \times indicates the tone on 500 m:

The drawn lines combine the complementary normal intervals, — and the dotted lines running **parallel** with the drawn ones are combining the complementary comma-intervals: d^{\flat} + with b÷, a.s.f. (compare art. VII).

In the physical textbooks we often see the fractions of the intervals being replaced through multiplication by **common denominators** by whole numbers which of course are wrong when d is calculated equal to ⁹/₈ in C major or c minor; in correcting the mistake to ¹⁰/₉ we shall obtain the following 4 common denominators for the 4 double modes: —

reportition of major which fact that the	er by h' the filt the	111 Be il noted the life circle we obtain "P-n-o", analogie w	from c	common denomi- nator	Ordre of prece- dence	and a state
ite colaties. E is construc-	No. 2. - 5.	Lydian major mode Double harm. major mode	0b 2	72 *20	2 4	- Herein
perfect har	- 8, - 10.	Phrygian minor mode, the central mode Doric minor mode	2 4	90 30	3	And the second

therefore with the following figures of merit for the 7 tones (degrees) together with the octave, when for the sake of getting a comprehensive view we subtract the common denominator from all the 8 figures so that c stands for 0:—

No.	and is and	2	3	4	5	6	7	8
2	c 0	d 8	e 18	f 24	g 36	a 48	b 63	c' 72
5	c 0	db 8	e 30	f 40	g 60	ab 72	b 105	c' 120
8	c 0	d 10	eb 18	f 30	g 45	a 60	bb 72	c' 90
10	c 0	db 2	eb 6	f 10	g 15	ab 18	bb 24	c' 30

From a numerical point of view the ideal would be: The principal Scale of the Classic Greeks, the Doric Minor Mode, as it gives us the lowest figures for stating the differences of the vibration numbers, while the harmonic major and minor mode as well as the melodic minor mode ascendant has as common denominator $360 = 12 \times 30$, as far as possible removed from the true ideal.

It will be seen that the division in the extremely cleverly invented phonoscope¹⁹), constructed in 1885 by the Danish natural philosopher J. C. Forchhammer, born

1861, must be entirely rearranged if we desire to impart to the deaf and dumb the true apprehension of tones.

The mutual proportion between the scales becomes still more evident if we choose the common denominator which is the same for all 4 scales i.e.: $2^8 \times 3^2 \times 5^1 = 8 \cdot 9 \cdot 5 = 360$, the exact number of degrees in a circle, thereby making it possible to state the difference between the vibration numbers ,by **degrees of arc**, with c = 0, $c' = 360^{\circ}$. We shall then obtain the following figure in which \times stands for the tone midway between f and g about 149° :—

The drawn lines combine? the 10 principal intervals which pair off as complementary (inversion-intervals).

I. Concerning the principal intervals it will easily be seen — by inserting them together with their degrees of arc, in the above circle — that **the order of precedence** of the intervals in the case of the vibration-numbers' difference (degrees of arc) must be as follows, Law 1 in the preface: —

- 1) Consonances of the 1st degree: c forms the Octave g dimidiates the Octave gular
 - e quarters the Octave sides.
- 2) Consonances of the 2nd degree: a and f trisects the Octave.
- 3) Consonances of the 3rd degree: ab, eb and bb quinqueparts the Octave.

4) Dissonances i.e. the name of the 3 other principal intervals: d, db and b, which give us still smaller parts of the Octave.

(We shall see below, in article IX, the reason why the intervals are stated in the above order of precedence, -I mean: **e** before **a**; b^b before d, - in accordance with the "spiral" of the consonances.)

II. The Fifth "g" dimitiates the Octave (the circle) and the Fifth $e^{b}-b^{b}$ and further the major Third f-a; the lines " $e^{b}-b^{b}$ " and "f-a" are accordingly parallel, right-angled on the line "c-g". The Fourth "f" dimidiates the Sixth

The Fourth "f" dimidiates the Sixth c-a and the Fifth $d^{b}-a^{b}$; the lines "c-a" and " $d^{b}-a^{b}$ " are also parallel, right-angled on a line from f to centre.

III. Be it noted that by **tri**partition of the circle we obtain the major triad "F-a-c", analogic with the fact that the colours which tripart the colour circle in three even parts are harmonic colours.

Further: the C major triad is constructed by division of the circle by 2 and 4: c=0, e=90 and $g=180^{\circ}$, the perfect harmony, Rameau's "l'accord parfait" from 1722; and:

the c minor triad is constructed by division of the circle by 2 and 5: c=0, eb=72 and $g=180^{\circ}$, "l'accord parfait mineur".

IV. The tones "f" and "g" border the 2 tetrachords on both sides; within these the principal tones are constructed in the following manner (see the preface):

d ^b and e ^b in divid 24 ⁰ 36 ⁰	ing by 5
d and a 40° 60°	-03
e ^b and b ^b	- 5/3
e and b 90° 135°	lise.4/s.edil

Law 4 in the preface: these tones pair off "fifth-proportionally": 24+12=36.... $90+45=135^{\circ}$, likewise the 2 tetrachords themselves: $120+60=180^{\circ}$, see following table:

Name	from	Divi	Division of the 2 tetrachords:									
major	c g	d a	}1/8	e b	}=/4	f c'	low high					
harmonic	c g	db ab	} 1/5	e b	}*/4	f c'	low high					
minor	c g	d a	} 1/8	eþ bþ	\$ 3/5	f c'	low high					
anti-major	c g	dþ aþ	} 1/5	eþ bþ	} 3/5	f c'	low high					

From a geometrical point of view the ideal would be: The central mode, the Phrygian minor mode; degrees of arc 72, 48, 60, 60, 48, 72 are symmetric, and the lines "f—a" and "e^b—b^b" are parallel, as the R-Chord "c–e^b–g=b^b" - ---, forms a symmetrical square with degrees of arc 72, 108, 108 and 72^o.

While the major mode contains the octagon face b-c', beside 2 hexagon-faces, 2 quadrangle-faces and 3 triangle dito, the Doric minor mode contains 3 pentagon-faces; (all the -faces thus mentioned are regular polygons inscribed in the circle. The missing 9 corners in these 5 polygons are partly the comma-interval $d+=45^{\circ}$, partly 8 extra-intervals, amongst them "i"=270° nearest to a\$, the one which has caused ever so many theorists to lose their hearts, compare the mathematic definitions: "harmonic points", "harmonic mean-proportionals" and "harmonic series").

The result: By tripartition (No. 1) of the circle we obtain the Fourth c-f, the low tetrachord, and by the tripartion (No. 2) of this Fourth we obtain the small major Second, $c-d = \frac{10}{9} = 40$ degrees of arc, $\frac{1}{9}$ of the circle, my discovery in the year 1882³⁹).

he she following 3 dimension

Article VII. Scales on Other Tonicae (keynotes) than c, c[#] or c^b; Origin of the comma-intervals. The pentatonic scales.

If we were to add triads or chords of the Seventh to the 10 principal intervals ascending (on the right, in annexure 1), or descending (on the left in annexure 1), we will in so doing have crossed the frontier to the middle-zone and would find ourselves on "foreign territory". And it is easy to discern, when studying annexure 1, that all comma-intervals formed "beyond the frontier" are grouped in 2 lateral zones (compare art. III) as below:

a) The chords of the Seventh on the **right** in annexure 1 from d, f, a and c (the tones in the R-chord in C major) produce normal-intervals only; while chords of the Seventh from e produce the commainterval d+; from g both d+ and f # +; and from b both d+, f # + and a+. The scales on these 3 tones e, g and b (the tones of the K-chord in C major) will thus get, respectively, 1, 2 or 3 commaintervals with +, just as the dominant chord of the Seventh in C major (on g) will be g, b, d+ and f+, namely possessing 2 tones which are not congruent with the tones of the scale in C major.

b) Reversed: The chords of the Seventh on the left in annexure 1 from b, g, e and c (K-chord) produce normal intervals only; whereas chords of the Seventh from a produce the comma-intervals $bb \div$, from f both $bb \div$ and $g \div$; and from d both $bb \div$, $g \div$ and $eb \div$; scales in these 3 tones a, f and d (R-chord) will thus get, respectively, 1, 2 or 3 comma-intervals with \div .

These proportionate conditions have caused an immense amount of unnecessary brain-racking to numerous theorists²⁰).

The same result may be obtained by constructing scales — a) in the Fifth-circle by using the high tetrachord in C major as low tetrachord in the G major, the following, a. s. f. — or reversed: b) by constructing scales in the Fourth-circle by using the low tetrachord in C major as high tetrachord in the F major, the following, a. s. f. This state-ment is clearly demonstrated in annexure 1.

Number of comma- intervals	nog off stav shart file of st			the Fourth circle	1 1 1 1 A	the Fifth- circle					Number of comma- intervals		
2 3 1	» d+ d+	g÷ f+ »	bb÷ a+ »	F major Bb — Eb —	1þ 2- 3-	1# 2- 3-	G major D — A —	d+ e÷ ״	f‡+ g÷ ♥	» b÷ b÷	2 3 1	Name Name Name	
1 3 2	» eb÷ db+	» gb÷ f+	bb÷ bb÷	Ab — Db — Gb —	4 - 5- 6-	4 - 5 - 6 -	E — B — F# —	d#+ d#+ »	» f#+ g#÷	» a♯+ b÷	1 3 2	and a second	
the dense	the S from	5. of 1 51	Chord of the second	Cb —	7 -	7 -	C# —	N* (11)			0	TO DATE OF THE	

By constructing 14 major scales with lowing scales with up to 3 comma-interup to $7 \ddagger or 7 \ddagger we$ shall obtain the fol-vals each:

The phenomenon: — The origin of the comma-intervals — may also be explained graphically in the following 2 figures:

Of 3 ascendant Fifths on g, a and b only the middle one will come out pure if we are going to use the tones of C major or the deviations of same, seeing that:

g 585 + 585 = 1170 or 170 d+a 737 + 585 = 1322 or 322 e pure b 907 + 585 = 1492 or $492 f \ddagger +$

And of 3 descendant Fifths from d, e and f only the middle one will come out pure if we are using the tones of C. major or the deviations of same, seeing that:

> f $1415 \div 585 = 830 \text{ bb} \div$ e $1322 \div 585 = 737 \text{ a pure}$ d $1152 \div 585 = 567 \text{ g} \div$

It will thus be deemed practical to tune violins to the pitch of A-string seeing that both the Fifth ascendant to e and descendant from a to d are pure, so that only the Fifth descendant from d to g are false to the tones of the e-string, namely one comma too low. (If we had made use of the d, a, e and **b** strings all 3 intermediate Fifths would have come out pure which may be seen by a glance at annexure 1 which has all these 4 tones arranged beside each other above "f-c-g" stated in milli octaves: d $152 + 3 \times 585 = 152 + 1755 = 1907$ or 907 = pure h

The phenomenon: — The origin of the comma-intervals — may also be explained by the following 2 diagrams:

second read = " and the second to

ARTICLE VII

and and Breed and I have	No man		C C C I MA		1. 100	The American	2023 234,23	an an	1 10 11131	надания
Greek scales	an 1 jue Secor th f	Low tet	rachord —D	te) Tej Jul In	onyax enu -or y eni t gaiyro	ligh tet	rachor	n on of the tones b ities.	Number of comma- intervals	Group
Lydian major	C	bre l	e	f	g	a	b .	C	ous 0 suc	symmetr
Phrygian minor a bad	d	e÷	fing	g÷	a	b÷	c	d	3÷	I.
Doric minor and mor	e	oof g	g	a	b	c	d+	e	1+	2 I an all
Hypo-lydian major	F	g÷	a	b÷	e	d	e	F	2÷	j-0
Ionic major	G	a	b	c	d+	e	f+	G	2+	Section .
Æolian minor	a	b÷	c	d	e	f	g	a	1÷	} II.
Mixo-lydian minor	b	c	d+	e	t+	g	a+	b	3+	
Harmonic minor	u Coa	d	eþ	f	g	aþ	b	c	0	III.
Total:	0.0	3÷	ri t tii	2÷	2+	1÷	3+	0	12	Potent in

Diagram No. I. The Greek scales and f. i. the harmonic c minor.

The comma-intervals group themselves quite symmetrically, with + to the right of c, and \div to the left of c.

Diagram No. II. Lydian scales and f. i. harmonic C major.

din "d" or "d+" in C major give 3 cornat

	Low tetrachord			High tetrachord				Number of comma- intervals biorec and			
ath fur the	0	0	C	d	e	f	g	a	b	С	Fourth d-0-g-
it becomes	12.bn	descei	D	e÷	ſ#	g÷	a	b÷	c#	D	-a3+
ajor	4	etil 1 Dissio	Е	f#	g#	a	n b	c#	d#+	ĖCS	- Seventh dt1-c'-
B R and	-1	1	F	g÷	.ba.d	bþ÷	c f	The	e	F	2÷
dian second	1.000	101	G	a	b	с	d+	e to	f#+	G	ap2+nos adT
Ly	3	_	A	b÷	c#	d	e	f#	g#	A	Fourths are found
	5	-	В	c#	d#+	e	f#+	g# d	a#+	В	3+0
harm.:	Landers Territory	1	С	d	e	f	g	ab	b	С	0
and the first	19 year	Total	0	3÷	1+	2÷	2+	÷12	3+	0	1 12 882
	-		1					176		170	170

492

1.113 min

53

Sum: 433

1=

The number of comma-intervals is quite independent of the number of \sharp or \flat ; it depends entirely on the Tonica (keynote) in consequence of the fact of the major seconds on the tones of C major having 2 different quantities, f. i. the following in symmetrical succession:

10/9 = 152 m	⁰/s ≕ 170 m	Group.
$\frac{c-d}{e-f\sharp}$	d – e +1	•}, X
	f — g	centre
ga	a ² - b d	Y Y
b — c♯	0 +6	24 14
4	3	7

The groups X and Y are symmetric and congruent.

The consequence 1: The 6 intervals mas false. on "d" or "d+" in C major give 3 normal and 3 comma-intervals, namely:

	10	wit	th d-	+ == ⁹ /s	but	with c	$l = \frac{10}{9}$
		emma	10 20	1.1	1	and the first	
the	Second	d+-	-e=	152=d	d-e	=170=	=d+
-	Third	d+ -	- f=	245=eb÷	d_f=	=263=	eb pure
	Fourth	d+ -	- g=	415=f	d-g:	=433=	f+
	Fifth	d+-	- a=	567=g÷	d-a:	=585=	g pure
-	Sixth	d+ -	- b==	737=a	d-b	=755=	=a+
-	Seventh	d+=	=c'=	830=bb÷	d_c'	=848=	bb pure
		1.5	Err	ors.	170	Thrut	h.

The consequence 2: In all scales 2 Fourths are Comma-Fourths, f. i.:

namely: "the pure Third d—f and the falss comma-Second f—g" give "the false comma-Fourth f+",

and: "the pure Third g—b and the same false Second f-g" give "the false comma-Fourth f#+". That is the work of Nature, see annexure 1, in which d and f are placed outmos tto the left; (the pure Fourths from d and f to the left are g÷ and b^b÷).

The 2 comma-Fourths are complementary intervals with 2 comma-Fifths g-d $\binom{10}{9}$ and $b-f^{\sharp}$ ($\frac{25}{18}$), when g and b in annexure 1 are placed outmost to the right; (the pure Fifths from g and b are d+ $=\frac{9}{8}$ and $f^{\sharp}+=\frac{45}{82}$).

The consequence 3: The Second in

rightly constructed

D major is $152 + 152 = 304 = e \div$ -- D+ - - 170+152=322=e

wrongly constructed D+major - 170+170 = 340 = e+.

But e+ is 2 commas higher as e+, 2 commas false.

By using chords of the Seventh for the construction of the **5 pentatonic scales**, ascendant as well as descendant, it becomes obvious at once that these scales are but **fragments** of the classic Greek scales on C, G, d, a and e, as the K-, D-, R- and U-chords are imperfect. Helmholtz' serial succession²¹) ought to be arranged accordingly.

	Helmhoitz'	without	played black tals piano.	C	onstru	iction C	of scal of K, E	les by), R a	chord nd U:	ls of S	eventl	cales are	Му
wrong No.	Statement	2 intervals	to be on the digion of the	descer	nding f	from T	Conica	l'onica	ascen	ding fi	rom T	onica >	No.
4	Chinese, Scotch major mode	Fourth and Seventh	gb	R÷ Third	d	(f)	a	С	e	g	(b)	K÷Sev.	1
1	Chinese	Third and Seventh	dþ	R complete	a	C	θ	G	(b)	d+	(f+)	D÷ Third and Sev.	2
-3	Chinese, Gaelic, Irish	Third and Sixth	aþ	R÷ Fifth	e÷	g÷	(b÷)	d _.	(f)	a	C	R÷ Third	3
2	Scotch minor mode	Second and Seventh	eb	U÷Prime and Fifth	(b÷)	d	(f)	a	c	0	g	R complete	4
5	?	Second and Fifth	рр	K÷ Prime	(f) [`]	a	• C	e	g	(b)	d+	R÷ Fifth.	5

The 5 pentatonic scales are thus fragments of the following scales, indicated in Fifth-succession, seeing that we find between the tones of Fifth of 585 m (g) or 567 m (g÷); but only 526 (g^b) between b÷ and f, or between $\frac{1}{2}$ b and f+, and only 508 (g^b÷) between b and f.

My No.	585 H			- 080 	000	900	- 196	Number of commas	Result : Fragment \of	without;	Rest of commas
1	С	g	d	a	e	(b)	(f)	0	Lydian major	maj.4 and maj.7	0
2	G	d+	a	e	(b)	(f+)	c	2+	Ionic — .	maj.3 — min.7	1+
3	d	a	e÷	(b÷)	(f)	с	g÷	3÷	Phrygian min.	min.3 — maj.6	2÷
4	a	е	(b÷)	(f))	c	g	d	1÷	Æolian —	maj.2 — min.6	0
5	c	(b)	(f)	с	g	d+	a	1+	Doric —	min.2 — maj.5	1+

The tones $b \div$; b, f and f+, between each of which are only 526 m or 508 m, will thus be found missing in the pentatonic scales, and the scales on F and b must consequently secede.

My No.	My Name	I II III IV V VI VII I	Shittine <u>a</u> shit <u>a</u> shit <u>a</u> shit <u>borse</u> Sc
1 Hot - Ho Sond So	Lydian	$\begin{array}{cccc} c & d & e & - & g & a & - & c \\ 152 & 170 & 263 & 152 & 263 \end{array} $ 1796	Conserved of
elgarao Ar	Ionic Q e	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	204
nia 3 8.	Phrygian, central mode, symmetric:	$\begin{array}{c c} c & d & - & f \\ \underline{152} & 263 & 170 & \underline{263} & 152 \\ \hline low \ tetrachord & high \ tetrachord & c \\ \end{array} \begin{array}{c} 2000 \\ the \\ centre. \end{array}$	e contraction de
dirated m (g) and of	Æolian	c - eb f g - bb c 2111 263 152 170 263 152	204
5	Doric	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

1) The differences in millioctaves between the tones in the 5 pentatonic scales are:

No. 1 and 5 are pendants. No. 2 and 4 have congruent tetrachords. No. 3 is symmetric. All large distances are 263 = a minor Third.

2) The differences in degrees of arc (= differences of vibration numbers) are, indicated in fractions:

		-
Name	I II III IV V VI VII I	
Lydian	c d e g a - c	
Cinen .	as Ionic	
Ionic	$g_{1/0} = \frac{1}{2/0} = c_{1/0} d + e_{1/0} = \frac{1}{1/0} g_{1/0} = $	- Annual -
Phrygian, central mode:	$\underbrace{d}_{\frac{1}{0}} e \div \frac{1}{2} g \div \frac{1}{6} \underbrace{a}_{\frac{3}{10}} c d \underbrace{d}_{\frac{1}{5}} e$	and the second s
2 v/no. 02	as tonic as reonan.	
Æolian	a $\frac{1}{1/s}$ $\frac{2}{1/s}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$	
Doric	$\underbrace{e}_{\frac{1}{5}} \underbrace{g}_{\frac{3}{15}} \underbrace{g}_{\frac{3}{15}} \underbrace{a}_{\frac{4}{15}} \underbrace{c}_{\frac{1}{5}} \underbrace{d+}_{\frac{1}{5}} e$	
	Name Lydian Ionic Phrygian, central mode: Æolian Doric	Name I II III IV V VI VII I Lydian $c_{1/6}$ $d_{5/86}$ $e_{1/4}$ $g_{1/6}$ $a_{3/8}$ $c_{3/8}$ Lydian $c_{1/6}$ $d_{5/86}$ $e_{1/4}$ $g_{1/6}$ $a_{3/8}$ $c_{1/8}$ Ionic $g_{1/6}$ $a_{3/6}$ $c_{1/6}$ d_{4} $e_{7/6}$ $a_{3/16}$ $a_{3/16}$ $c_{1/8}$ Phrygian, central mode: $d_{1/6}$ $e_{7/6}$ $g_{1/6}$ $a_{3/10}$ $c_{1/8}$ $d_{3/16}$ $a_{3/16}$ $a_$

In Nos. 2 and 4 the tetrachords are fifth-proportional, f. i. in the Ionic pentatonic scale: $\frac{1}{9} \cdot \frac{3}{2} = \frac{1}{6}$ and $\frac{2}{9} \cdot \frac{3}{2} = \frac{1}{5}$; in the Æolian: $\frac{1}{5} \cdot \frac{3}{2} = \frac{3}{10}$ and $\frac{2}{15} \cdot \frac{3}{2} = \frac{1}{5}$.

If the classic lyre or Kithara possessed 5 strings in the following succession: g, a, b, d, e, it follows that it must have given scale No. 1: The Lydian G major without c and f[#], without any Fourth or Seventh, like the East-African "Kissar"²²).

Helmholtz was not able to solve the pentatonic riddle for the reason that he did not think of constructing scales by means of 2 chords of the Seventh (equal to 3 Thirds) in the directions opposite of the Tonica (keynote).

By looking at annexure 1, another fact we will discover is that "comma-intervals with +" can be **complementary** only with "comma-intervals with \div " as f. i. "f+ and g \div " or "e \div and ab+", a.s. f., which fact is demonstrated graphically in the circle in the cliché, art. V, where the dotted lines connecting the complementary comma-intervals run **parallel** with the drawn lines connecting the complementary normal intervals.

If we were to construct say 15 Doric minor scales in the manner above described the result would be that these scales, together with the corresponding 15 major scales, would get **36 tones**, of which number 21 (or 60 %) are normal-intervals, 8 comma-intervals with + and 7 commaintervals with \div ; double \ddagger or double \ddagger do not occur, nor do we find any commaintervals on c, c+ or c÷, or comma-intervals outside annexure 1.

By playing through these scales once, up to the chord of the Seventh incl., we get $30 \times 7 = 210$ spaces, of which 161 (or $77^{0/0}$) should be filled with normal intervals (which is thus "The Normal"), 49 (or $23^{0/0}$) with comma-intervals; these 49 spaces are distributed symmetrically (with exception of the 49th) over the tones of the white digitals of the piano (and the deviations of these tones) when arranged in Fifth succession, as below:

 $\begin{array}{c} \mathbf{e} \quad \mathbf{b} \quad \mathbf{f} \quad \mathbf{c} \\ \mathbf{4} \div \quad 12 \div \quad 8+ \quad \mathbf{0} \quad \mathbf{8} \div \quad \mathbf{12} + \quad \mathbf{4} + = 48 \\ \mathbf{and} \quad \mathbf{1} \quad \mathbf{and} \quad \mathbf{1} \end{array}$

Also symmetrically in concurrence with the degrees of the scales, thus:

10

$$\begin{array}{c|cccc} V & VI & VII \\ 8 \div & 4+ & 12 \div \\ & and & 1 \end{array} \begin{array}{c|cccc} I & II & II & IV \\ 12+ & 4 \div & 8+ & = & 48 \\ & and & 1 \end{array}$$

Whatever opinion we may hold in regard to the 2 primitive modes, the C major and the Doric c minor, one fact is undeniable: they are geometrically correct (pendants).

It must be noted that the tones of scales with Tonica (keynote) on different degrees of C major are never congruent, as f. i. the melodic and harmonic a minor has $b \div = 889$ m, while C major has b =907. This "sliding" from normal intervals to comma-intervals has up to the present time erroneously been considered a "dualism" between "harmony" and "melody"; this has been mentioned by Jonquière²³) as the contrast between:

a) "Repose in Space", by homogeneous polyphony, f. i. the music from a harmonium, unaccompanied choruses, string quartets, etc. as also by slow tempo, and

b) "Change in Time", by heterogenous polyphony, as f. i. ensemble playing by different instruments, singing accompanied by instrumental music, as also by quick tempo.

This mystic "explanation" has now become quite superfluous, as the sliding from a) normal intervals to b) commaintervals, or even to extra-intervals, explains the whole thing as

1) The transitory step from music "in scales on the same keynote or its deviations", to "scales on other keynotes and their deviations" (mechanic modulation), or

2) The transitory steps from "homogeneous instruments" to "heterogeneous" with more or fewer **extra** tones.

This "sliding" is not characteristic of tones only; something corresponding is found in the colour system, the so-called "Wien's Displacement Law", where the intensity-maximum of the colour spectrum (the physical radiance-maximum) is **displaced** (sliding) from red to purple (violet) on the increase in temperature of the luminant (compare herewith the terms: red-hot, white-hot), — only the displacement of the tones is very limited, as it rarely goes beyond the 4 Pythagorean tones congruent with the comma-intervals e^{b} ; b^{b} ; d^{+} and a^{+} (see annexure 1).

A parallel may also be drawn between the different, individual perception of tones by different human beings (and by singing birds)³⁴), and between the varying sensitiveness by different human beings (and by different photographic negatives) to the shine, the radiance of colours²⁵), and there exists, 'as we know, an analogy between the microscopic nervefibres of the retina of the eye and the membrana basillaris in the cochlea of the human ear²⁶).

63

64

PART III. The MUSICAL PRACTICE.

Article VIII. The Natural Tonical System and the Artificial Temperaments.

and on the violin, are consequently only

The fumperature of 19 degrees is these

in pearly to the permit intervalues in

In case we are confining ourselves to play only in the 2 primitive modes, in the Lydian major mode and the Doric minor mode, and with up to $7 \ddagger \text{ or } 7 \oiint \text{ only}$, we shall to these 30 scales (as stated in art. VII) need only **36 tones** in the octave²⁷), and it will be possible to play these scales with every tone absolutely and mathematically pure and true, nay, heavenly tones they will all be, "silver pure", limpid and bright in their purity, such as the great masters of the violin and cello endeavour to produce on their instruments, or the great singers with their voices. Thes 36 tones are

The tones of C major with \ddagger and \flat , 21 normal tones and 15 comma-tones altogether, as follows:

eb÷	e÷:	db + d +	d#+#
gb÷	g÷ g≠÷	f+	13+
bb÷	b÷	ab+a+	a#+ .

If we desire to employ other i. e. more modes as f. i. the melodic minor mode, or if we play with more than 7 [#] or 7^b, more than 36 tones will be needed. For practical reasons, therefore, a temperature — or, as it is termed in England and by the Latin nations —: a temperament (which term I propose adopted for international use), has been invented.

The most logical of the temperaments have the following number of tones in the octave:

 $5 \times 2 + 2 \times 1 = 12$, Aristoxenos, about 350 b. C. $5 \times 3 + 2 \times 2 = 19$, Elsasz in Vienna, about 1590^{29}). $5 \times 4 + 2 \times 2 = 24$. Arabian system? ²⁹). $5 \times 5 + 2 \times 3 = 31$, Vicentino, about 1546 ²⁰). ${2 \times 6 \atop {3 \times 7}} + 2 \times 4 = 41$, Paul v. Janko, 1882–1901. ${2 \times 8}$

2 The inguithms will then be

to off odl dlin anivipithen bee S5 bds

other band the value of the intervals as fractions and to calculated out by logarithms; and is the jost of it No. 2, 3 and 5 in the 3 systems of will obtain the bras-

 $\binom{2\times8}{3\times9} + 2\times5 = 53$, Nicholas Mercator, c. 1675 **).

I do not propose to take the Arabian system into consideration in this present treatise; the 3 temperaments of 12, 19 and 31 degrees may be characterized as follows below, the tones being indicated by their numbers, with c = 0, c' = 12, 19 and 31 respectively:

12 degrees:	31 degrees:	19 degrees:
0 c 1 c♯, d♭. 2 d	$\begin{cases} 0 c \\ 1 dbb \\ 2 c \# \\ 3 db \\ 4 c \# \\ 5 d \end{cases}$	0 c 1 c# 2 db
11 b 12 c'	$ \left\{\begin{array}{c} 28 \text{ b} \\ 29 \text{ c'b} \\ 30 \text{ b} \\ 31 \text{ c'} \end{array}\right\} $	17 b 18 b\$ c'b 19 c'

The temperaments are called "Equal Temperaments" when the intervals between the tones is equal in millioctaves; these may then be calculated out simply by dividing 1000 with resp. 12, 19, 31, 41 and 53, and multiplying with the No. of the tone itself, with c being reckoned equal to 0, c'=12, 19, 31, 41 or 53. On the other hand the value of the intervals as fractions must be calculated out by logarithms; and as the tone d is No. 2, 3 and 5 in the 3 systems d will obtain the fractional value of resp. $\sqrt[12]{2}$, (12th root of 2 to the second power), $\sqrt[12]{2}$, $\sqrt[12]{2}$, $\sqrt[12]{2}$ and $\sqrt[53]{2}$. The logarithms will then be, respectively:

$0.30103 \times 2:12 = 0.050$	1721.1225 c	or 167 m
$0.30103 \times 3:19 = 0.047$	5311.1157 -	- 158
$0.30103 \times 5:31 = 0.048$	5531.1183 -	- 161 -
$0.30103 \times 6:41 = 0.044$	0531.1068 -	- 146
$0.30103 \times 8:53 = 0.045$	439	- 151 -

The acuteness, fineness, of the intonation may be demonstrated in various ways. In annexure II. we will find a statement as to the number of millioctaves by which deviates the 3 first temperaments from the normal intervals, in regard to 35 normal intervals alone:

Pythagor.	system	609÷	965+	1574, m
Temp. 12	degrees	416÷	659+	1075 -
— 19		190÷	126+	316 —
— 31	-	106÷	161+	267 —
- 41		106÷	161+	207 -
— 53	Billion	63÷	41+	104 —

dividing 1000 with very 12, 19, 51, 4

The temperament of 19 degrees is thus in regard to the normal intervals alone — 3 and a half times more refined than the temperament of 12 degrees, and the temperament of 31 degrees 4 times more refined than the one of 12 degrees. The difference between the temperaments of 19 and 31 degrees is, however, so small, than it would not be worth while to make use of the 31 degrees' system. Practically speaking our choice must be between the 12 degrees and the 19 degrees systems only. The temperaments of 3¹, 41 or 53 degrees can not be used on the violin, are consequently only of the oretical interest.

But it is not sufficient for our purpose to give all our attention to the normal intervals alone. The comma-intervals, as we know, have their demand for consideration as well, their place in the musical system, as f. i. d+ in E^b, G and B^b major, and so on; thus it naturally suggests itself that we should endeavour to find out about intermediate tones, average tones between d and d+, and between e^b and e^b÷, a. s. f., this has been done in the diagram below which is showing clearly the practical-ideal character of the system of 19 degrees:

breat singurs with their snices. Thes is

errant formes and 15 contra-force altone

Number of spaces in 30 Lydian and Doric scales	Names	ntermedi- te (avarage) ones in the hird system	.Temp. 19 degrees	Distances between these in milli- octaves	Serial No. In regard to 19 degrees 	Irdinary fraction (vibra- tion) Timbar	of vibra- tions ersecond 200 cents ccording to Ellis
14 12 8 14	c cs db d	0 59 102 161	0 - 53 105 158	$\begin{array}{c c} \hline \cdot & \tau \\ 0 & 0 \\ 6 \\ 3 \\ 3 \end{array}$		1,000 0 1,037 2 1,075 7 1,115 7	261,02 0 270,72 63 280,78 126 291,21 189
8 12 14	ds eb e	$220 \\ 254 \\ 313$	211 263 316	9 9 3	4 5 6	1,157 1 1,200 1 1,244 7	302,03 253 313,25 316 324,89 379
6 14 14	fb, es f fs	368 424 483	368 421 474	0 0 3 9		1,290 9 1,338 9 1,388 7	336,96 442 349,48 505 362,47 568
6 14	gb g	517 576	526 579	9 3	10 9 11 8	1,440 2 1,493 8	395.74 632 389,90 695

(to be continued.)

(contin	uea.)	or 1 tasta	1001 (119)10	Ar heldn I V				-2011.01	-
10 10	g#	635 687	632 684	3	12	76	1,549 3	404,39	758 821
14	a	746	737	9	14	5	1,666 5	435,00	884
6 14 14	a# bb b	805 839 898	789 842 895	16 3	15 16 17	4 3 2	1,728 4 1,792 7 1,859 3	451,16 467,93 485,31	947 1011 1074
6	cb, b# c'	953 1000	947 1000	6 0 0	18 19	10	1,928 4 2,000 0	503,34 522,04	1137 1200
Total 210	1 6	9040	9000	$\frac{\div 70 + 30}{= \div 40}$	nua muia	end?	doul	oled.	anew.

The false (discordant) character in regard to the comma-intervals alone has also been mentioned in annexure II; it means for the **30 comma-**intervals together:

Pythag	or.	system.	520÷	876+	1396 m	Dout them 72
Temp.	12	degrees	373÷	616+	989 —	d had
LOT I	19	1000	223÷	159+	382 -	INR
witt w	31	viterial .	181÷	236+	417 -	. }
	41	115	82÷	88+	170 -	- winde
Little 1	53	Carlotte Ca	59÷	35+	94 —	Contractor

Consequently the temperament of 19 degrees is — I need only mention its system of comma-intervals — even purer than the temperament of 31 degrees (NB).

The numbers of the 35 + 30 = 65 tones (see annexure II) are:

Pythagor.	system.	1129÷	1841+	2970	
Temp. 12	degrees	789÷	1275+	2064	
— 19	The start	413÷	285+	698)	about
- 31		287÷	397+	684	equal.
- 41	_	188÷	189+	377	
- 53	and the same	122÷	76+	198	

These systems are thus lying averagely on different planes, the 19- and 53-degrees-systems below, and the 4 others above the system of the Third; they are all more or less imperfect.

The falsity of the 12 degrees piano is, however, varying, according to the scales played. In case we confine ourselves to the Lydian major mode and the Doric minor mode up til 7 # or 7 \flat , — a total of 30 scales —, and add up the temperamental intervals for the first 7 tones in millioctaves the result will be: 231 m in F# major, 224 m in Doric d $\ddagger minor$, 219 in C \ddagger major, 213 in a $\ddagger 4$, 201 in e $\ddagger 4$, 151 in D and b $\ddagger 4$ (complement intervals), 140 in A and eb $\ddagger 4$, 133 in Gb major and f $\ddagger 4$ minor, a. s. f., while by using the temp. of 19 degrees we shall not get higher than 97 in B major.

is fo m pure than the one of 31 degree-

Illustration I. the falsity of the Lydian F[#] major:

	1007	Pytha-	Temperaments:						
.15		gor. system	12 deg.	19 deg.	31 deg.	41 deg.	53 deg.		
	e#	54	36	13	6	9	4		
Δ	d#	54	39	0	15	9	3		
	C#	36	24	6	6	10	2		
	b÷	36	28	• 6	14	11	2		
- 24	a#	54	37	7	10	9	4		
1	g‡÷	54	41	6	19	8	3		
-8	F#	36	26	0	10	11	2		
10.12		324	231	38 [°] NB.	80 NB.	67	. 20		

Illustration II. The total amount of falsity in 15 scales with not more than 7 \ddagger or 7 \flat , in the Lydian and **Phrygian** modes, total 30 \times 7 = 210 spaces (tones), see annexure III:

Totat: (270 213 113 123 82"

Dustry V NB, In considering only

in	Pyth. syst.	12 deg.	19 deg.	31 deg.	41 deg.	53 deg.
15Lydian scales 15 Phry -	2232	1580	738	661	598	1,35
gian do.	2358	1706	670	757	595	141
30 scales	4590	3286	1408 NB.	1418	1193	276

With the Lydian and Phrygian scales together the temperament of 19 degrees is 10 m purer than the one of 31 degrees.

Illustr. III. Number of **perfectly pure tones** in 30 Lydian major and Phrygian minor scales:

100 TI ni 151 . "So ni 108 . "So

	pure tones							
Temp,	c	f# d# a eb gb	number	٥/ ₀	false tones, number:	Number total		
12, 31, 41 deg. 19 —	14 14	<u> </u>	14 55	6,, 26, ₂	196 155	210 210		

Illustr. IV. The Number of false distances in **5 pentatonic scales**:

	19	2 00	Temperaments of						
My No.	9 K		12 deg.	4 19 deg.	31 deg.	41 deg.	53 deg.		
1	Lydian	54	41	18	19	16	3		
2	Ionic	36	29	24	19	11	2		
3	Phryg.	90	73	30	47	28	5		
4	Æolian	54	41	18	19	16	3		
5	Doric	36	29	24	19	11	2		
	Total:	270	213	114 NB.	123	82	15		

In the case of the 5 pentatonic scales the temperament of 19 degrees is purer than the one of 31 degrees, and can be played on the violin.

Illustr. V. NB. In considering only Tonica, Third and Fifth in the triads we must remember that these often consist of comma-tones; as f. i. the falsity in b^{\flat} minor will be:

and the second	bb	db+	f+	Tota	1
Pythag. system	18	36	18	72 m	10
Temp. 12 deg.	15	28	16	59	to.
- 19 -	6	6	12	24	==
- 31 -	9	14	14	37 —	Jean
- 41 -	6	11	6	23 -	1000
- 53 -	2	2	1	5 —	lar

Still greater will be the falsity in the 12 degrees temperament when we are using scales (harmonic, melodic, or with more than $7 \ddagger \text{ or } 7 \ddagger$) which are demanding doubled \ddagger or doubled \ddagger . The distance between f. i.: a $\ddagger = 796$ and b $\cancel{b} \ddagger = 789$ is only 7 m, while the distance between a = 737 and b $\cancel{b} \ddagger = 789$ is 52 m.

Of very special interest is the fact that by inserting distances of falsity for the above mentioned 65 tones in annexure 1: (compare annexure III.) we shall find that these same distances will group themselves in lines, **parallel with 3 axes**, namely:

Pythag. and

Temp.	12	deg.:	the	00	axis,	Fifth,	HOURS
Street 2	19	- :	the	÷60°		minor	Third
_	31	- :	the	$+60^{\circ}$	0+	major	

Illust. VI. The scales are grouping themselves spontaneously along the same 3 axes, -f. i. in the case of the temperament of 19 degrees:

四月 一 一 一 一 一 一	Major	Minor	the sur	n:
The axis e#—g#—b	96	72	168	-
a#—e—bb	54	42	96]	= 168
d≇—c—g♭	36	36	72	m.
d-ab-cb	42	54	96	DVENUE
dþ—fþ	72	96	168	oni. Ili

The mathematical solution of the above is that e^{\flat} in the temperament of 19 degrees = 5000:19 = 263,158 m is only one eight of a millioctave larger than the pure $e^{\flat} =$ ${}^{6}/{}_{5} = 263,035$ m, so that practically speaking all the tones of the axis d \sharp -c-g $^{\flat}$ (also the comma tones in the extension of the axis) are congruent with the corresponding tones in the temperament of 19 degrees.

But the temperamental distance is still smaller when taking into regard the manner in which the normal tones and commatones are distributing themselves over the **210 spaces** in the 30 scales mentioned in art. VII, f. i.: 8 d and 6 d+, namely $8 \times 152 + 6 \times 170$ is 2236, which, when divided by 14 make 159, while the d of the 19 degrees temperament is 158 m, congruent, in other words. The temperament of 19 degrees is a practical demonstration of **The ideal**! For instance: the falsity of 36 tones used in 15 Phrygian scales may be stated with 20 differences in the following manner:

Pythagor. system	614	m
Temp. 12 degrees	417	-
- 19 -	80	- 644
- 31 -	114	1.6.1

Thus the temperament of 19 degrees is the consequence of the Third system, the practical ideal, because it comes nearest to the truth (just as the average solar day-and-night comes nearest to the truth in regard to the astronomically true solar day-and-night), and can be used on the violin and the violoncello. The table page 63 shows the distances in a small whole tone, c-d; the annexures III and IV show the falsity of various scales in the Pythagorean system and 4 temperaments. Relating to the 22 tones of the Hindus, see art. IV.

To the mathematicians it is, of course, a matter of indifference whichever temperament is chosen, as long as it is an equal one; to the musicians it is a matter of deliberating: do we want to give preference to the clearest intonation possible — or do we put the main stress on the difficulty of playing 19 tones to the octave on the violin? Even should we — by taking a plebiscite vote from all lovers and students of music — find that the majority vote be cast in favour of the temperament of 12 degrees, yet none of us can prevent the great masters, the virtuosii, from using a finer intonation. One thing is certain: the schools and colleges of Music ought to **demonstrate** the temperament of 19 degrees seeing that it teaches the pupils to distinguish between the various degrees of perfection as regards intonation.

Teachers of the theories of harmony would also do well in employing millioctaves in place of numbers on tones in the various temperaments, among which the temp. of 19 degrees is the **supposition** of theories of harmony, which distinguishes between d, and e^{b} , indicated in 19 numbers, f. i.:

 $c-d\sharp -g = 0+4+11 = 15 t$ c-eb-g = 0+5+11 = 16 t c-e -g = 0+6+11 = 17 t $c-e\sharp -g = 0+7+11 = 18 t$ c-f -g = 0+8+11 = 19 t"t" = 52,63 m. see art. X.

Article IX. Mutual Relationship of the Intervals: Combinational Tones.

Do. D. F. F. A. and A minior: and d | and

a) A mechanic sort of relationship between the intervals has been demonstrated geometrically in the figure below which has been constructed by means of using the central points of the squares in annexure I as indication of the normal intervals.

burien ni

The 3 pure intervals, Prime, Fourth and Fifth, are to be found on the horizontal line through c; on the line immediately above are to be found the 4 large intervals, Second, Third, Sixth and Seventh; and on the line below: respect. the 4 small ones; and above these the augmented ones: c[#], a. s. f.; lowest down the diminished ones: c^h, a. s. f.

When Helmholtz writes⁵¹): "Hence while b and db are given with certainty, bb and d are uncertain. Either of them may be distant from the tonica (keynote) by the major tone $\frac{9}{8}$ (= 204 cents = 170 m) or the minor tone 10/9 (= 182 cents = 152 m)", he is absolutely wrong. It goes without saying that the normal tones d and bb are just as "certain" as db and b, and the comma tones d+ and b+ equally so on their special precincts, only we must bear in mind the fact that d and its derivations d[#] and d^b are to be found in C^b, C, C[#], Db, D, F, F[#], Ab and A major; and d+ and derivations from same in Eb, E, Gb, G, B^b and B major and the corresponding minor.

The axis $f \leftarrow c - g$ in annexure I contains the Pythagorean tones, the axis $f^{\sharp} - c - g^{\flat}$, the minor Thirds, congruent with the corresponding tones in the temperament of 19 degrees (compare art. VIII).

utilets to entries ve behandentet at

b) An **organic** sort of relationship between the intervals showing their "contents" is brought about by considering the combinational tones (namely differential and summational tones), which owe their existence to the intervals themselves:

While the overtones were discovered by the French musical theorist Pater Marie Mercenne (1588—1648), and later on explained by the French mathematician Joseph Sauveur (1653—1716),

The differential tones were discovered in the year 1745 by the German organist Georg Andreas Sorge (1703—78), as the difference between the vibration numbers of any 2 tones; this same discovery was made later on, in 1754—independent of the above—by the famous Italian violinist Guiseppe Tartini 1692—1770), while:

The summational tones as the sum of the vibration numbers of any 2 tones was not discovered till 1854 by the German physiologist H. v. Helmholtz (1821-94).

We speak about combination tones of the 1st, 2nd, 3rd and 4th order, a. s. f., according to a definite plan of succession³²) stated below, where the interval c—e^b is being used for illustrative purposes:

in a pill - in 841 - in 841	Order	Differential tones: Construction	Serial No.
c÷eþ	1	$5/s \div 6/s = 1/s = ab$	1
c ÷No.1	II	$5/s \div 1/s = 4/s = ab$	2
eþ÷No.1		$6/s \div 1/s = 5/s = c$	3
c ÷No. 2	III	$\frac{5}{5} \div \frac{4}{5} = \frac{1}{5} = ab$	4
e♭÷No. 2		$\frac{6}{5} \div \frac{4}{5} = \frac{2}{5} = ab$	5
c ÷No.3	80	${}^{\delta}_{1\delta} \div {}^{\delta}_{/\delta} = 0$	6
eþ÷No.3		${}^{\theta}_{/\delta} \div {}^{\delta}_{/\delta} = {}^{1}_{/\delta} = ab$	7
No 1÷No 2	IV	${}^{1}/_{5} \div {}^{4}/_{5} = {}^{8}/_{5} = eb$	8
No 1÷No 3		${}^{1}/_{5} \div {}^{5}/_{5} = {}^{4}/_{5} = ab$	9
estatos, A.	Order	Summational tones: Construction	Serial No.
c+eþ	dicition in the	5/5 + 6/5 = 11/5 = y	1
c + No. 1	п	$\delta/\delta + \frac{11}{5} = \frac{16}{5} = ab$	2
eb + No, 1		$\delta/\delta + \frac{11}{5} = \frac{17}{5} = z$	3
oon 111 e ni 1 maare moorma	III	 fone, c = d; file ant see the fakity- of tr with massion availant 	Louin 国际

If we take these 9+3 = 12 combinational tones together we shall see that the min or tonality, the interval $c - e^{b}$, of 12 combination tones, gets 7 a^b (variously pitched according to the series $\frac{1}{5}$, $\frac{2}{5}$, $\frac{4}{5}$ and $\frac{16}{5}$) 1 c, 1 e^b, together creating the A^b major triad, besides 1 equal to 0 and 2 extra tones: y and z, $\frac{11}{5}$ and $\frac{17}{5}$, corresponding to 1.98 and 766 m respectively.

We learn from the above that "Minor" is the child of "Major" and is always hankering back to its parent, or, as says Helmholtz, almost prophetically³⁵): "Every minor Third....becomes at once a major chord". Or, as Jonquière has it⁵⁴): "The minor tonality c—e^b is tending towards A^b with a certain amount of perseverance; it evinces a kind of modulated drawing towards a kindred species of major mode", "as part of some next-of-kin (although so far not known) major triad".

The long and short of all this is obviously that the "Dualism" of Hauptmann, v. Oettingen etc. between Major and Minor is exaggerated; we shall have to accustom ourselves to look upon the relations between these two modes as something like the relations existing between father and son (or mother and daughter): further we

- Taluyranii 10

must accustom ourselves to an entirely different perception of the parallel scales and the modulation between these, of which subject more will be said in the next article of this treatise.

c) By calculating out the 12 corresponding combinational tones for "the octave and the 10 principal intervals" — 11 altogether —, we obtain "the spiral of the consonances", as explained in 'the tabel below:

-			2. 343 M	1				-			2
Consonance of	Polygon-faces (art. VI)	The primitifs intervals	ini in ini ini ini ini ini ini ini ini	Extra-tones	0	Primes	Thirds	Fifths	Sevenths or Ninths	Tending towards major	Serial No.
oou	ıgle	c-c'	maj.	0	3	7c	1e	1g	-	С	1
deg	Irai	c—g	27 1	el 199	2	8c	1e		_	С	2
1st	quac	c—e	976 n (990 -	2	en i	6c	-	2g	1d+	С	3
eg.	gle	c-2 (-c')	min	9	4	8f	-	10		F	0
p p	ian		mai	191		75	10	10		F	-
2n	t	c - 1 (-c)	maj.	2	9 0	11.	Ia	IC	-	r	Э
gree	nog	c-ab (-c')	maj.	2	1	3aþ	1c	4eb	1bþ	Aþ	6
def	Itag	c-eb	min.	2	li 1	7ab	1c	1eb	-	Ab	7
3th	per	c-bb	1111 1 7 m	.3	1	6ab	1c	1eb	-	Aþ	8
ces	r ons	c-d (-c')	min.	4	1	6bþ÷		_	1c	B♭÷	32.75
Dis-	theil	c-db(-c')	maj.	6	1	4dþ		att.	1c	Dþ	errare Se
son	o loq	c-b	+	7	1	3c		1g	-	С	there a
	Total	11 \(19_ 1	99	- 91	14	65	G	19			
	Total		57 =	51	14	00	0	12	4	10	a ha ma

From the octave c-c' is evolved the C major triad by means only of the first 3 of the summational tones; from the minor Sixth, c-ab, is evolved the Ab major triad, analogic with the first 3 differential tones only; the "triads of the over- and undertones", as it says in the present treatise, art. IV, are thus proved to be resting on a still deeper lying basis; the triads of the combinational tones,

d) Finally it will be seen that the order of precedence for consonances and dissonances, as stated in art. VI after the polygon faces, is just exactly in conformity with the number of summation tones equal to 0 (c, g, e, consonances of the 1st degree) — and extra tones of the above tabel (b^{b} , d, d^{b} , b) a. s. f., and further it will be seen that of the consonances on c:

Letted. Totilgen

3	of	the	1st	degree	are	tending	towards	Cn	najor ((square)
2	-	12	2nd	d brand	11	andrep 9	JOIET IN	F		(triangle)
3	127	Del.	3rd	perapoa	1 pu	A DREET	State and	Ab	12.00	(pentagon)

A

3 Dissonances tending towards others, according to the character of each.

The spiral is easily remembered seeing that it is exactly spiral-shaped, c. shaped, in the annexure I as below:

article X.	Mutu	al Rela	ationship	of the				
anili hu	Scale	Scales. Organic Modulat						
	in 3	orders	between	Parallel				
सुर शालाग	Scales	Pipon.	Stool of s	JAPS200				

When talking about the mutual relationship of scales we distinguish — like in the case of intervals — between mechanic and organic relationship.

a) A **mechanic** relationship may be arranged in different degrees (grades) according to the number of triads in common for two scales; the degree will depend upon the number of \sharp and \flat , for which reason the successional order of the scales is stated in Fifth series in the "familytree" below:

b) An **organic** relationship we call the relation between modes with an equal number of \ddagger and \flat , namely **the Parallel scales**, as f. i. the 5 Greek scales mentioned in article V of the present treatise, played solely on the white digitals of the piano. By arranging these 5 scales according to the illustration in article V (above the 5 pentatonic scales) we obtain in temperament the following tabel of relationship, which may be continued to both sides at will (I mean: with as many \ddagger or \flat as we please):

ne semeral Annu-			Fo	ourth- with	circle b		Ee .	1			Fift	h-circl ith #	le		
Sum of b or #	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7
No. 2 Lydian maj. - 5 Ionic - - 8 Phrygian - - 9 Æolian - - 10 Doric -	Cb Gb db ab eb	Gb Db ab eb bb	Db Ab eb bb f	Ab Eb bb f C	Eb Bb f g	Bb F e g d	F C gd a	C G d a e	G D a e b	D A e b f#	AEbfitt	EBUU	Broggi		Ci Gi di a et
Sum of triads in com- mon with C major	0	0	0	0	0	2	4	7	4	2	0	0	0	0	0
Relationship = degree in regard of C major	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8

rint T

The horizontal line C[#] and C^b and the perpendicular line C—e are both in Fifth succession; the table itself is thus nothing less than ideal.

The transit from a scale to one of its 4 parallel scales we call "organic modulation", namely the resolution of a chord of the Seventh into a triad (with doubled Third) of equal value consisting (in a temperament) of the 3 other tones in the scale of the chord of the Seventh. The 2 illustrations below will serve to explain this; a certain amount of importance in this connection is attached to the temperament. The following indication is used below, with V standing for the 5th degree, "the dominant":

Triad	Chord of the Seventh
of "Fourth-Sixth" V _s of "Sixth" V ₂	V ⁴ of "Second" V ³ of "Third-Fourth" V ² of "Fifth-Sixth" V1 of "Seconth"
mental) V_1	v or seventir.

Illustation I:

The chord of the Seventh: "d f g b" of the Lydian C major V or - Ionic G - I

"c resolves in the triad a c'' of the Phrygian d minor V or - Doric e — IV or - Æolian a 1.

The 2 chords contain in the temperament of 19 degrees 39"t" (1 "t" = £2,63 m):

The resolution of the Chord of the Seventh is thus carried out through contraction of the wings "d-f" and "g-b" in the central triangle "a-c-e", with intensified c.

A of

Illustration II:

db

The chords of the Seventh "db f g bb" of the Phrygian b^b minor VI or - Doric c

— V or - Æolian f II

resolves in the triad "c eb ab c"

of the Lydian A^b major I

or - Ionic Eb - IV.

The 2 chords contain in the temperament of 19 degrees 37 "t".

The wings "db-f" and "g-bb" are contracted in the central triangle "ab $c-e^{b}$ ", with intensified c, that is: the child, Doric c minor, is hankering **back** to its parent, Lydian Ab major (see art. IX) by "a kind of modulated drawing".

eþ

bb .

ab

All of these triads and chords of the Seventh in the illustration I are in tempenament to be found in all of the 5 above ramed modes without \$ or b namely the parallel scales; and we are thus able to "analyse" (explain) the organic modulation as an expression of a close relationship between these scales mutually.

If next we contemplate the tabels in article V and add up, in pairs, the number of t in temperament of the 2 "halves":

(the chord of the Seventh d f g b) and the triad C e a C

as well as the number of the corresponding tonalities in all the other scales we shall get the sums:

right.

							•
	D	1	Π.	C	τ.	12	v
А	n		æ	u	1.	E.	· A.

g 1	Serial No.	Chord of the Seventh	Difference	Triad	Group ·	Order of the orga- nic modo- lation	The solution: the chords of
	2 8 10	39 t 50 - 61 -	- <u>Rol</u> ian solv <u>es</u> in a Ly <u>d</u> ian Ionic	39 t 50 - 61 -	sisting fu lonrs i coth Th coth S	atue cou te 3 .1 ther of the Sev	only R or K
pers	1 4 9 11	72 - 82 - 94 <u>-</u> , 104 -	ebn⇔l1t •→100 +1. +1.55	71 - 83 - 93 - 105 -	nportance , the ton aticH is 6 is 5th deg	t badaatta t badaatta aba2. yaix t yol yail	also D_or_U
1	9 7 81	ds 39 - 81	÷2-	37 -	a th III even	3. 9	only U and W

In other words: we get organic modulation of 3 orders. The first 3 scales. in group I, the double scales, are quite perfect; the following 4 scales, in group II, are less perfect, and the harmonic minor mode III is very imperfect. It is further seen that the chords of the Seventh on the 7 degrees of C major are congruent with the dominant chords of the Seventh of the other **Greek scales**, namely:

mode II	I is very imperfect.	b) An	organic relationshift noit	lilasta
Degrees of C major	The chords of the Seventh on the 7 degrees	Number of commas	The chord of the Seventh on the Dominant in	Group
1 2 1 3 3	c e g b d f a c e g b d+	0 0 ₃₁₀₁₅₁ 1 733	Hypolydian major Ionic — Æolian minor Mixolydian —	II II II
5 6	and to it and to be for a dia at to it and a dia at the second se	2 0 ^{1 (2)}	Lydian major Phrygian minor	
al aloga	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	Doric —	J

We learn from this that the scales ought to be constructed entirely independent of the dominant chords and their resolutions. From the tones g b d+ f+we are able to construct the Ionic G major but not C major, seeing that neither d+nor f+ are found in C major. An objection. Some musicians hold, that "the dominant-chord of Seventh" is not congruent with "the chord of Seventh on the 1st degree in the parallel scale". The question turns upon 3 forms of the chord, f, i. in 3 position:

No. 1	d 152	f 415	g 585	h 907	twice diminished.
No. 2	d+ 170	f 415	g 585	h 907	} mixed.a haftin
No. 3	d+ 170	f+ 433	g 582	h 907	right. 84

cons	equ	entl	y:
------	-----	------	----

in No. 1	in No. 2	in No. 3
	$d+f=245=eb \div f g=170=d+g h=322=e$	$ \begin{array}{c} d+f+=263 \\ f+g=152 \\ g h=322 \end{array} \right \begin{array}{c} t \\ t $
d $g = 433 = f + f h = 492 = f # + f h = 492 = $	d+g=415=f f h=492=f\$+	
dh = 755 = a +	d+h=737= a	d + h = 737)
Total 2 pure, 4 false (+)	3 pure, 3 false (÷+)	all pure!

No. 1 presupposes that d in C major is = ${}^{10}/s$, f = ${}^{4}/s$, and that these tones must be placed in the dominant-chord. In millioctaves: "d f g b" == 152 + 415 + 585 + 907= 2059 m = "c e a c" = 0 + 322 + 737 + 1000= 2059 m.

No. 2 presupposes that d in C major is $=\frac{9}{8}$, $f=\frac{4}{8}$; 170 + 415 + 385 + 907 = 2077 m. That is wrong, however, because (amongst others) the octave a-a' indicated in vibration numbers (degrees of arc) and triparted gives $d=\frac{10}{9}$:

namely $d = 400 \times 2 = 800$ degrees, — like the Fourth "a-d" triparted gives $b \div = 666^{2}/s^{0} = 50/27$ pure in a minor.

No. 3 is **quite pure**, wherefore I should like to see No. 3 as the dominant-chord.

Another example. In f minor the dominant chord is: "c e^b g bb" although the Phrygian f minor has the tones: "f g÷ a^b b^b÷ | c d e^b f". When some musicians prefer b^b÷ for b^b, then it is the temperament of 12 degrees which plays a trick on them. This temperament has a too low minor Seventh, b^b = 833, close upon b^b÷ = 830, while the pure b in c minor is 848 m. They have accustomed themselves, gradually, to demand a too low minor Seventh, b^b÷ for b^b.

We learn from this:

a) that the C **major triad** in the 3 positions has these distances of vibration numbers:

ositi	on	IOT.	2Ì,		111 101	itm	disi	av.	Ph	Sum:
1:	c	90	e	90	g 180	c'	1/4	.1/4	1/2	360°
2:	e	90	g	180	c' 180	e'	1/5	2/5	2/5	450°
3:	g	180	c'	180	e' 180	gʻ	1/2	1/3	¹ /3	540 °

The division

by	2 and 4	1 gives	the	1st position
-	5		-	2nd
ик <u>6</u> 13	= 3	Sei	1.1	3rd

with which discovery I supplement the axiom of Rameau of 1722; the 3 positions are reminiscent of the over-tones No. (with same distances):

b) that the c **minor triad** has these distances:

 Position:
 Sum:

 $\hat{1}$:
 c
 72
 eb
 108
 g
 180
 c'
 $\frac{1}{5}$ $\frac{3}{10}$ $\frac{360^{\circ}}{432^{\circ}}$

 2:
 eb
 108
 g
 180
 c'
 $\frac{1}{4}$ $\frac{5}{12}$ $\frac{1}{3}$ $\frac{432^{\circ}}{432^{\circ}}$

 3:
 g
 180
 c'
 144
 eb'
 $\frac{1}{3}$ $\frac{4}{15}$ $\frac{5}{40^{\circ}}$

The science of Harmony must undertake the explanation of these conditions in detail. In this present connection (acoustics) I shall just mention that Richter's "harmonic" minor mode and Rimski-Korssakow's "harmonic" major mode are both lying outside the natural system of scales and for this reason ought not to be made use of as basis to the Theory of Harmony — they ought to be replaced by the Phrygian minor mode, for instance. This last named mode has many advantages in its favour, namely:

The Phrygian minor mode — the central mode — is lying midway between the above mentioned 5 Greek scales, fragments of which are our pentatonic scales (see the tabels in articles V and VI).

ARTICLE X

The Phrygian minor mode is not only a double scale i. e. the two tetrachords are congruent — but these tetrachords are symmetric with the following distances in m:

low tetr.	с	d	eþ	f	
high —	g	a	bb	c'	10 2 14
difference:	152		111	152	= 415 m.

Relating to the difference between the vibration numbers (as degrees of arc) the figure in art. VI indicates, that these differences in the Phrygian minor mode are symmetric with the following distances in degrees of arc:

The lines "f-a" and "e^b-b^b" are parallel³⁵).

The Phrygian minor mode is, as we know, constructed of 2 R-chords viz: c, eb, g, bb, each of which is forming a symmetrical square, inserted in a circle, with arcs: 72, 108, 108 and 72°; comp. art. V and the fifth-proportional tetrachords in Doric c minor:

c 0°	dþ	24° ——eb	72° f	120°
Difference				

with both Third and Seventh pure, namely fifth-proportional $(24 + 12 = 36 \text{ and } 48 + 24 = 72^{\circ})$.

Further: the Phrygian minor mode is melodious, ascending and descending, as a lovely melody; I feel tempted to name this mode: "The fairest rose of the garden!" — while the harmonic modes are only to be likened to artificial. flowers, scentless, or, as Helmholtz expresses it: "A mixed mode, as a compromise between different kinds of claims" ³⁶).

All this makes one think that time must now be ripe for reforming the Theory of Harmony by discarding the harmonic minor mode as basis and replace it with, let us say, the Phrygian minor mode:

"the central mode",

which comes to us straight from the hands of nature.

win hetropiet "h - a" dimost -u

At all events, I propose the following diagram:

"chords of the Seventh as basis of the scales",

indicating the proportionate relation between vibration numbers differences.

elegraph. letter, ol.33-34	Chords of the Seventh	Prece- dence	in the provident of the	Positions 1st. 2nd. 3th.	4th.
R K D G U W	small minor large major small — augmented diminished large minor	1 2 3 4 5 6	$\begin{array}{cccc} c & eb & g & bb \\ c & e & g & b \\ c & e & g & bb \\ c & e & g & b \\ c & eb & gb & bb \\ c & eb & g & b \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2, 3 *) . 1, 4, 4 5, 5 . 1, 4, 5 . 5, 10, 12 .5, 16, 24
*) Exp Dif abb	planation: by c' 648 720 ferance 72 reviated 1	eb' 864 144 2	$\begin{array}{c c} g' \\ 1080^{\circ} \\ 216 \\ \hline 3 \\ 6 \\ \times 72^{\circ} \end{array}$	**) Explanation: d+ f+ g b 405 486 540 675° Difference 81 54 135 abbreviated 3 2 5	$sum: = 270^{\circ}$ $= 10 \times 27^{\circ}$

87

RESUMÉ.

Preface.

1782 mi stimly (0101-1421) 2draited)

Explanation of "the result": the 5 fundamental Laws of the Acoustics, corresponding to Keppler's 3 astronomical Laws.

Introduction.

Article I. As international terminology is proposed the English letters "a **b** c d e f g" for the white digitals of the piano, instead of the German and Scandinavian **h** for b, and the Latin "la, si, do (ut), re, mi, fa, sol", — and at the same time cis for c^{\sharp} , ces for c^{\flat} , bis for French si^{\sharp}, bes for si^{\flat}, as in Holland.

Part I. The Intervals.

Articles II and III. In the Pythagorean C major we find 4 false (discordant) tones of which only three were corrected during the Renaissance period while d =¹⁰/₉ and d + = ⁹/₈ were used at random in the place of d. The Danish school-master Hans Mikkelsen Ravn, called Corvinus (1610-63), is mentioning both these tonic values as co-ordinate, in his book: "Logistica Harmonica"; later on preference is given to ⁹/₈; Rameau in the year 1722 is seen to have used "d = ¹⁰/₉" and in 1726 "d = ⁹/₈"^{\$7}).

Helmholtz is beginning to vacillate: "bb and d are uncertain" ^{\$8}). It was not till 1882 that it was pointed out by the author of this present treatise ^{\$9}) that the normal tone ¹⁰/₉ belongs to C, D, F and A major, the comma tone ⁹/₈ to Eb, G and Bb major a. s. f. I insert (1918) **perpendicular tonal zones** in the "Tone-Aggroupment" of the Japanese **Tanaka**, in order to demonstrate my system. Article IV. The difference between overand under-tones is congruent with the difference between the Fourth- and Fifthcircles, i. e. between \ddagger and \flat . Both these kinds of natural tones produce both major and minor chords of the Seventh (Law 2).

is exchanged for any other tame belowing

a status - the section as

roustion

90

Part II The Scales.

Article V. By playing through these triads and chords of the Seventh from Tonica (keynote) and from the octave **towards the centre** all sorts of scales are constructed (Law 3).

Article VI. By tripartition No. 1 of the tonal circle in C major we obtain the major triad F—a—c, analogic with the colours triparting the colour-circle being harmonic colours. Likewise in A major (Law 1):

By tripartition No. 2 of the Fourth, the low tetrachord, we obtain the major Second; - f. i.:

C major:	c 360 - d 400 - f 480°
Difference	40 80
G major:	g 540 — a 600 — c 720°
Difference	60 120
A major:	a 300 - b÷ 333 ¹ /s - d 400°
Difference	33 ¹ /s 66 ³ /s

1. 1.

that is $c-d = \frac{10}{9}$ in C major, my discovery in the year 1882³⁹).

Article VII. If C as Tonica (keynote) is exchanged for any other tone belonging to C major (or their deviations) we get the **comma-tone**

g and
$$g = d + \text{ or } \frac{3}{2} \times \frac{3}{2} = \frac{9}{8} \cdot 2$$

b and $g = f \ddagger + \text{ or } \frac{15}{8} \times \frac{3}{2} = \frac{45}{32} \cdot 2$

The 5 pentatonic scales are fragments of 5 ancient Greek scales.

Part III. The Musical Practise.

Article VIII. The temperament of 19 degrees I suggest introduced at Music Schools, Colleges, Academies etc. for the demonstration of a **more exquisite introduced** that the piano of 12 tones is able to give; to mention an example: there is difference of only 7 m between the normal tones d## 270 m and e^b 263 m, or between f# 474 and g^bb 467, or between a## 855 and b^b 848 m.

The axis of the minor Thirds " f_{*}^{\sharp} , a, c, e_b, g^b", contains the purest tones in the temperament of 19 degrees:

Article IX. The Bohemian Dr. Otokar Hostinsky (1847—1910) admits in 1879 that the minor mode tonality is tending towards the major mode; "is showing a kind of a modulated drawing towards a kindred species of major mode"⁴⁰). Consequently: "Minor" is the child of "Major" and is hankering back to its parent. This is **Monism** — the very soul of modern natural science:

$$c-e^{b} = minor$$

 $A^{b}-c-e^{b} = major.$

Article X. When the theorists of the Renaissance gave up the ecclesiastical modes of the Church of Rome they were feeling their way, with faltering steps, when looking for new scales to replace the discarded ones. At the present time voices have been raised in favour of constructing new scales, to increase the number of scales. My suggestion in this present treatise is, by all means to discard the harmonic minor mode as basis to the Theory of Harmony. I suggest its being replaced by f. i. the Phrygian minor mode — the central mode — which is lying mid-way between the borderscales: Lydian major and Doric minor mode. Part I. The Intervals

Complementary diagram to the axiom of Ramean of 1722 about the invertion of chords.

in the Pytha

3

1/8 : c-f

		the second	and the second second	and the second sec		APRIL 1 I AND ADD	and the second s	
ai	raph. er, 1-34		ce-	Brooten	aster.	h, school m milion ('ar	Positions	the place of d.
	Teleg lett col.33	Triaus	Preder	(1ma.l)	ladie_ ous-	1st.	2nd.	3th.
	N A	major ***) minor diminished	1 2 2	c e g c eb g		. 1, 1, 2 2, 3, 5**) 5.6 14	$\begin{array}{c} 1, 2, 2 \\ . 3, 5, 4 \\ . \end{array}$	1, 1, 1*) 5, 4, 6 7 5 6
14	M	augmented	3	c e g	s# c'	4 , 5, 7	. 5, 7, 8 .	7, 8, 10
*)	Explanati	on: c f a 360 480 60	c' 0 720°	equal difference: 120 °	**) I	Explanation : Difference	d f a 400 480 60 80 120	$\begin{array}{c c} d^{4} \\ 0 & 800^{\circ} \\ 200 \end{array} = 400^{\circ}$
	or:	f bb÷ d	f' f'	1600	a	bbreviated	2 3	5 = 10×40°
	or :	a d' f; 600 800 100	' a' 00 1200°	200°	***)	Position	the first sector	the rest bisected (halved)
	Difference	e abbr. 1 1	1	1		1	1/s:g-c'	c-e-g
101				•		2	1/s:c-eb	eb-ab-c'

91

1.

f-a-

92

NOTES.

27) The Temperament of 36 degrees, used the Organist G. D. Berlind was law Equal Temperament, see "The Publications of the Tropditiem Society", III, Copenhagen 1765,

Column

Preface:

siti of esoni Article I. main mail

tonas to the ortage has been seen before

To The Court, Frame, by M. Preterius;

compare Periorius: "Syntagmic Musicum".

- 11 1) Helmholtz: "Tonempfindungen" 1863: Tyndall: "Sound" 1867; Ellis: "Sensations of tone" 1875; Stumpf: "Tonpsychologie" 1883; the Dane, Prof. Alfred Lehmann (1858-1921): "Grundzüge der Psychophysiologie", Leipzig, 1912.
- 14 2) Compare Grove: "Dictionary of Music and Musicians", Volume I., page 20 ... "for the sake of uniformity". Further the Norwegian Erik Eggen has

been sailatt Traffic reinstatement of the

1181 stasile Article II.

- 15 3) Compare A. Hammerich: "Mediæval Musical Relics of Denmark", Copenhagen 1912; and G. Skjerne: "Plutarc's Dialogue about Music", Copenhagen 1909.
- 16-17 4) P. Heegaard: "Popular Astronomy", Copenhagen 1911, page 27.
- 19 5) A. Hammerich: "Studies in Icelandic Music", Copenhagen 1900; and: Hjalmar Thuren (1874-1912): "On The Eskimo Music", in informations about Greenland, XL, Copenhagen 1911, page 17. when mentioning the predilection of the Swiss peasants for false Thirds, Fourths and Sevenths.

Article III.

- 19 6) Compare Jonquière's "Grundriss der musikalischen Akustik". Leipzig 1898, pages 93 -100 and 154.
- 22 7) Hermann L. F. Helmholtz: "Tonempfindungen", Augsburg, edition 1913, pages 532-36 or:

Ellis: "Sensations of Tone", 1912, pages 329-331;

Hugo Riemann's "Musiklexikon", Leipzig,

ed. 1916, page 889; Riemann: "Akustik", page 13; and Jonquière: "Akustik", page 36, note. — C. E. Naumann (1832—1910) has contributed towards the building up of the Hauptmann-system.

dor Harmonie", by Walhol, Steinberg & Havis Schmidt, Leipzig, 1913, pages 6 and Column

23

8) Jonquière's "Akustik", pages 38 and 155. The squres must be shorter, than the are long by about 1/7 for constructing regular hexagons, as in art. IX, as the shortest line from the centre of a cirele to the hexagon side is about 1/7 shorter than this (= Radius).

T2) Compare r.i. A. Paulsen (1832-1907) "Na-intel Fortes", Capanhagon, vol. I. 1874.

36 14) itinski Korssallowi "Praktlaches Lehrbuch

page 348; also eduton 1881, page 381

13) Used, nevertheless, by lithiboven and (.ho pin. see Pannan and Behrend; "History of

Article V.

Dr. Möhring has in 1855 suggested $d = \frac{10}{\sigma}$: but he evidently did not carry through his suggestion.

Article IV.

- 9) Riemann's "Musiklexikon", ed. 1916, page 30 62 23) Jonquière : "Alterath" : pages 100
- 10) Panum and Behrend: "Illus. History of Music", Copenhagen 1905, vol. I, pages 31 449 - 51: Helmholtz: "Tonemp.", 1913, page 380.
- 11) Margaret Watts-Hughes; "The Eidophone 31 voice figures", London 1904.

93

Column

65

66

Column

Part II.

- 33 12) Compare f. i. A. Paulsen (1833-1907): "Natural Forces", Copenhagen, vol. 1, 1874, page 348; also edition 1891, page 381.
- 36 13) Used, nevertheless, by Bcethoven and Chopin, see Panum and Behrend: "History of Music", 1905, I, page 13.
- 36 14) Rimski-Korssakow: "Praktisches Lehrbuch der Harmonie", by Withol, Steinberg & Hans Schmidt, Leipzig, 1913, pages 6 and 56, — and Arnold Schönberg: "Harmonielehre", Lcipzig, Vienna, 1913, pages 34, 115 and 125.
- 36 15) A. Hammerich: "Illus, catalogue of the Museum for Musical History", Copenhagen 1909 II, page 47, and Erik Eggen's essay in the Danish periodi-

cal: "Music", 1919, pages 149-152.

- 42 16) Helmholtz: "fonempfindungen", 1913, page 498 note, or: Ellis: "Sensations of Tone", 1912, page 308 note.
- 42 17) Helmholtz: "Tonempfindungen", 1913, page 441; or;
 Ellis: "Sensations of Tone", 1912, page 269.

Article VI.

- 43 18) Compare Ferd. Barmwater (1857-1918): "Textbook in Optic", Copenhagen 1916, page 76.
- 46 19) The Danish periodical: "Magazine for Physics and Chemistry", 1887, page 100.

Article VII.

- 50 20) Read f. i. Jonquière's vain attemps of explaining away the Phenomenon, in "Akustik", 1898, pages 132-137.
- 56 21) Helmholtz: "Tonempfindungen", 1913, pages 428-31, or: Ellis: "Sensations of Tone", pages 258-61, further

Hjalmar Thuren: "Old Folksongs of the Faroe Islands": Copenhagen 1908, pages 193-203.

- 61 22) Hammerich: "Catalogue" 1919, No. 545.
- 62 23) Jonquière: "Akustik", pages 146—154.
- 64 24) Compare The Perception of Tones by the Arabs.
- 64 25) The Preparing of Negatlves with various Chemicals.
- 64 26) Helmholtz: "Sensation of Sound" versus Ewald; "Sonorous Figures",

Article VIII.

27) The Temperament of 36 degrees, used by the Organist G. D. Berlin, was an Equal Temperament, see "The Publications of the Trondhiem Society", 111, Copenhagen 1765, pages 542 and 562

Part III.

28) Elsasz's "Universal Clavicymbal" with 19 tones to the octave has been seen before the year 1600 at Carl Luyton's, Organist To The Court, Prague, by M. Prætorius; compare Prætorius: "Syntagma Musicum", IV, 1619, pages 63—64.

A Harmonium with 19 tones to the octave, constructed about the year 1845 by P. S. Munck of Rosensköld, Professor at Lund, Sweden, is to be seen at the Stockholm Museum.

F. W. Opelt (1794-1863) has also suggested, in; "Allgem. Theoric der Musik", 1852, the introduction of the Temperament of 19 degrees (equal temp.), comp. Jonquière "Akustik", page 116.

Further the Norwegian Erik Eggen has been agitating for the reinstatement of the 19 degr. temperament, in: "Seen and Heard" (Syn og Sagn), Christiania 1911, and in: "Music", 1920, page. 112; Dr. P. S. Wedell has done the same in 1914, and has constructed a Harmonium with 19 and 31 tones to the octave.

- 66 29) Compare Idelsohn: "Die Maqamen (Scales) der arabischen Musik", in: "Sammelbände der internationalen Musikgesellschaft", 1913 --14, pages 1-63.
 66 30) Vicentino's "Clavicymbal" (Archicembalo);
 - 30) Vicentino's "Clavicymbal" (Archicembalo);
 a specimen from 1606, a "Clavicymbalum omnitonans" of Otto de Transuntini from Venice, with 31 tones is to be seen at the Bologne Museum, advised by Augul Hammerich; and the French priest, father M. Mersenne, speaks in 1636 of a piano of 31 tones, constructed by himself, see Riemann: "Akustik", 1914, pages 47-52. Wedell has also advocated the temp. of 31 degrees in "Music", 1917, page 61 and 98; 1918, page 165, and 1920, pag. 110 and 137.

A Harmonium wit 53 tones to the octave is constructed by Bosanquet, London, 1875.

Article IX.

75

31) Helmholtz: "Tonempfindungen", 1913, page 452 or:

Ellis: "Sensations of Tone", page 276.

76 32) Helmholtz: "Tonempfindungen", 1913, pages 353-55, or: Ellis': "Sensations of Tone", pages 215-17: also: Jonquière: "Akustik", page 321. Column

- 76 33) Helmholtz, page 355, or: Ellis', pages 215-17.
- 76 34) Jonquière: "Akustik", pages 144-45 and 316-17.

Article X.

- 87 35) The sentence in Jonquière's "Akustik", page 60, line 2—4, is explained by the word; "gewöhnt" (accustomed) page 68, line 13.
- 88 36) Helmholtz: "Tonempfindungen, 1913, page 498, notes, 586, notes, and 587; or: Ellis; "Sensations of Tone", 1912, page 308, (notes), 365 and 365 (notes).

Resumé:

89 37) In "Heptacordum Danicum", Copenhagen 1646, last part. pages 12 and 14, compare to

Postitions Si chands 81, 85-86.

Column

M. Mersenne: "Harmonicorum Instrumentorum, 4 libri, Paris, 1636, page 5, and; Descartes: "Musicæ Compendium", Amsterdam 1656, page 23; also Rameau: "Code de Musique Pratique", Paris 1760, page 218, notes,

- 49,89 39) Th. Kornerup in the Danish periodical "Magazine for Physics and Chemistry", 1882, pages 289-302.
- 92 40) Riemann: "Akustik", page 91; Jonquière; "Akustik", pages 144-45 and 316-17.

Construction of scales with shorts of the Seventh

(complement-tones, Inversion-Infersuls 10,

The axiom of Rameau of 1722 completed 1922 (see colm. 86 and 92), F, C and Ab major triads in 3th, 1st and 2nd position, (3 isosceles triangles):

Explaination of complementary differences (law 5):

$db 24^{\circ} + b 315^{\circ} =$ Sliding of b $1/15 \cdot 315 =$	339° 21°	or: $d 40^{\circ} + bb 288^{\circ} = 328^{\circ}$ Sliding of $bb^{1}/9 \cdot 288 = 32^{\circ}$
The Octave	360°	The Octave 360°

 ^{89 38)} Helmholtz: "Tonempfindungen", 1913, page 452, or: Ellis: "Sensations of Tone", 1912, page 276.

toruns, 4 libri, Parja, 1626, page 5, and ; SOME PROFESSIONAL TERMS.

RHTON '

Column

Rameau

Aggroupment, column 14, 21, 89, 94. 452, pr : 51 st Anti-major 39, 49.

Ellist "Sensations of Yone", 1912, page 276.

Musices Conspandium", Ameter

8, page 23; also Code de Musique Pratique",

M. Mersannet "Harmonizorium Instrumen

Border scales, primitive modes, Lydian and Doric (Greek) 9, 35, 38, 92. (12, 186, 64 VIE

Paris 1760. gada 218, notes.

Central mode, Phrygian (Greek) 36, 45, 49, 59, 70 92 40) Biemann: "Akustik", page 29, 88-88

Comma = 17, 92 millioctaves 18.

- Comma-tones (intervals) 8, 10, 25, 27, 50, 55, 65, 69, 91.
- Complement-tones, Inversion-intervals 10, 14, 25, 45-47, 61, 97.

Construction of scales with chords of the Seventh 9, 35, 57, 83, 90.

 $d = \frac{10}{9}$ in C, D, F and A scales 24, 46, 55, 68, 89. Degrees of arc = (difference of) vibrations numbers in 15/13 second 7, 13, 47, 59, 84-88. Diazeuxis = disjunctive interval 17, 37. (engrand a Dominant chords 50, 84-85.

Extra-tones 8, 10, 30, 49, 62.

Fifth-proportional intervals 10, 49, 61, 88.

i = 7/4, augmented "natural" Sixth a# 30. Intermediate, average tones 68.

Laws of the Acoustics 7, 35, 42, 49, 89-90.

The Octave 356*

m = millioctaves 12-13, 67.Minor is the child of Major 76, 82, 92. Modes, modi, 35. Modulation, organic 80, 83. Monism 76-77, 92. 198, notes, 186, notes, and 587

76 33) Reimholts, page 356, or

Ellis', pages 215-17

Natural (double) modes 37, 87, Normal tones 7, 25, 27. base call destoned

Over- and Under-tones 9, 27, 75, 86, 90.

In "Reptacordura thank Parallel scales 80. 1 and and but other Pendants 20, 33, 35, 39, 42. Pentatonic scales 37, 56, 71, 86, 91. Positions of chords 81, 85-86. Primitive intervals 29. Principal intervals 7, 42.

Restful and restless tones 43, 44.

Sliding of tones 62, 97. Spaces of tones in the scales 61, 70, 73. Spiral of consonances 48, 78-79.

what is another The Oclave

t = 52.63 millioctaves 14. Temperament of 19 degrees 65, 91. Terminology international 14, 89. Tetrachord 10, 14, 17, 20, 37, 39, 44, 49, 53. Tonal circle 7, 11, 43, 47. Tonal perpendicular zones 24, 50, 89. Tonica, keynote 50, 57, 75. Tripartition of the tonal circle 7, 49, 85, 90, 97.

ABBREVIATIONS.

a. s. f., and so forth, etc. f. i., for instance. i. e., id est, that is to say. ob., obiit, dead. (A mail anon a. C., after Christ. mos to notenialqui b. C., before -Stidiog of b los · '815 = 21" Stidiug of b? A 288 = 32"

360*

Annexure I.

Aggroupment of tones in 3 tonal zones.

The figure before the letter indicates the number in the temperament of 19 degrees, about equal to number of "t" = $52_{,63}$ millioctaves.

The figure underneath the letter indicates millioctaves. F. i. "g" equal $11 \times 52_{,63} = 579$, about 585 m.

102

65 tones in millioctaves, apportioned in 19 groups.

ence een d 19 ees		6	30	62	6		39	ern noi	20	17	17		49 49	70	62		26 26	and st
Differ betw temper 12 an degi	10	53	66	22		44	44	13	ndT Nort	99	99	35	35	4	4	57	5	
degr. 31 ent 31 ent	+		0	r à II	9	8	15	13	20	19	T	10	6	4	12	3	10	
19 degr.		19	10	1	9	25	01	18	1	12		12	2	9		25	0	
alsity. 12 Tel	18	2	74	49	15		39	2	63 45	29	11	ŭ	36	C1 X	09		26 8	
Pythag.	100	96	20	71	18		54 36	0	89 71	36	18	Ĩ	24	001	68	1	36 18	
31 degr.	12.3	20 20		14	0	0	10 3	5		2	25	1	19	1 10	14	15	30	
19 too sm degr. m		9	0	13.6	61	14	018	0	25		9		6 13	-	12		0 81	
Tel Tel		34	10	58	G	19	37	13		47	65	23	41 -		16	32	8	
Pythag.		54 72	18	36	0	36	54	0 %	1	11	3	36	54	0	. 18	53		
Denomi-	1	125	15	25	6.0	225	125 64	27	2592 512	625	3125	25	125	311664	2304	375	32	
02		1	-	-		1				1						1		
Nume- Stor	1	128 648	16	27	10	256	144 125 75	32	3125 625	768	3888	32	125	156951	3125	512 864	45	
Yame Name- Nume- Nume-	c . 1	dbb + 128 dbb+ 648	db 16	db+ 27	d 10	ebb÷ 256	dt 44 dt 125 dt 75	eb÷ 32 6	d## 3125 d##+ 625	fbb 768	fb++ 3888 6 5	fb 32	rb+ 162 125	f 15695	f+ 27	800 ÷ 512 864	f#+ 255	-
Name Name- Tator	35 c 1	34 dbb 128 33 dbb+ 648	31 db 16	29 db+ 27	26 d 10	24 ebb÷ 256	23 ebb 144 22 df 125 21 df 75	20 eb÷ 32 19 eb	17 d## 3125	16 fbb 768 15 e÷ 100	14 fbb+ 3888 13 e 5	12 fb 32	10 rb+ 9 ef 162	8 f 	5 c++ 3125	4 800÷ 512 3 abb÷ 864	2 f#+ 25	
rator femperament Nume- frame Name frame f	0 35 c 1	32 34 dbb 128 	00 02 31 db 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	161 26 d 10	194 24 ebb÷ 256	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	258 20 eb÷ 32 	290 18 d## 3125 17 d##+ 625		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	355 12 fb 32	$\begin{array}{c} 355 \\ 355 \\ 387 \\ 387 \\ 9 \\ e^{2}_{5} \\ 102 \\ 125 \\ 1$	419 8 f 419 44	419 6 f+ 27 452 5 eff 3125		$\frac{484}{1}$ $\frac{2}{1}$ $\frac{62}{12}$ $\frac{25}{12}$	
Temperament of 19 degrees Nume- Mame Mame Tamber	0 0 35 c 1	53 32 34 dbb + 128	105 07 31 db 16	- $ 30$ $db+$ 27	158 161 26 d 10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		263 258 20 eb÷ 32 19 eb	290 18 d## 3125 17 d##+ 625	316 - 16 fbb 768 - 323 15 e÷ 100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	368 355 12 fb 32 307 11 4 695	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.421 419 8 f 450 7 e##- 15605		474 - 4 gbb÷ 512 - 3 who 864		
Third system Third system Third system of 19 degrees Inversion number H Mame Thure- H Tame- H H H H H H H H H H H H H H H H H H H	0 0 0 35 c 1	34 53 32 34 dbb 128 52 - 23 dbb + 648	03 105 07 31 db 16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	152 158 161 26 d 10	186 211 194 24 ebb÷ 256	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	245 263 258 20 eb÷ 32 263 19 eb 6	270 - 290 18 d## 3125 - 288 17 d##+ 625	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	315 - 290 14 fpp+ 3888 322 - 323 13 e 5	356 368 355 12 fb 32 369 307 11 fb 695	374 - 355 10 fp+ 162 331 - 387 9 ez 125	415 421 419 8 f	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	467 474 4 865 512 467 - 3 865 864	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Temperament of 12 degrees The pure Third system of 19 degrees fores of the tones of the femperament fe	0 0 0 0 35 c 1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 152 158 161 26 d 10	- 186 211 194 24 ebb÷ 256	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	333 270 - 290 18 d## 3125 - 288 - 17 d##+ 625	250 297 316 - 16 fbb 768 333 304 - 323 15 e ⁺ 100	250 315 - 290 14 fbb+ 3888 333 322 - 323 13 e 5		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	417 449 474 - 4 855 512 - 467 - 3 855	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Annexure II.

	ł	21	44	36	32 S	99	99	13	ACI (# #	16	75	222	22.23	833	1574	.1#1	95. MA 11
	26 26	102	0.24	49	49	17	17	heat	39		6	ת	62	30		096		
an dete	∞ ;	10	14	10	1	95	2 1	5	30	2	6	16	14	20	25	397		do Nor
1	18 0		12	13	•	9		0	18 0	10.00	12	2.0.2	13 6	9	100	285	arge	i mini
	C L	330	16	11	⁴¹ 23	65	47	13	16	19	e	62 44	28 10	52 34	76 58	1275	too 1	1 10 1
	i m	23	18 0		36	0X	12	18	. 5	36	0	89	36 18	72 54	107 89	1841	<u>}-</u>),
	10	3		9	24	1	19	13	15	∞	-	50 CI	11 4	9		287.		degrees
	01	25	9	54 11	12.5	-	13	18.0	01	25	0	31 31	12	119	25	413	small.	mp. 19 4 m.
Ri-	26 26		5	36	54	11	29	5	39 39			2	49	24		789	too	2 m (tei 30 = 61
	18 36	1	0	54	72	18	36	0	36 54		0	10	71	36	100	1129		= 34.052 74 ÷ 96
	45	132	27	125	625 16	1044	384	16.3	125	1284	61	1728	625 27 8	25 324 64	1 7776 1536	vstem.		$\frac{1}{2} = \frac{413}{15}$
	364	375	40 33	192	972	3125	81 81	27	216	225	16	3125	1125	48 625 125	15625 3125	Third s		+ 285 - 34.05
		+ + + + + + + + + + + + + + + + + + + +		ada 44e	+ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ab otto	+++	1	- 449 *	****	- qq	+++++++++++++++++++++++++++++++++++++++	срђ рр	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	944 9##9	The		34.180 -
	-00	04	60 30 20	9	112	13	12	19 20	ននន	24 - 2	25	2228	388 38 38 38 38 38 38 38 38 38 38 38 38	34 33 2	36 37 37	+ .		roof: or:
	516	040	581	613	613 645	677	677	742	774 	811	839	871	903	935 968 	1000	2 34.29(1.0	1.10
5	526		579	632		684	11	737	789	11	842		895	947	1000	0 34.05	4.2	nation Participa
	508	551	567 585	619	637 644	678 685	696	737	771	807 814	830	855 8735	882 889 889 889	941 948 966	1000 1007 1025	6 34.18	tone:	
	500	<u> </u>	11		583	750	667			811	1	917	833 917	1000	1083	2 34.66		
	490	100	585	565	565	660	660	755	735		830	944	811 925 	905	1114	34.89		
				- and	24	-				1 0								

.

-

. ...

Annexure III.

Lydian major and Phrygian minor. 30 scales (210 spaces):

nodes:	ber of or b	Line of	Th	e degre	es of t	he scal	e:	. 88	ber of nma- nes:	Di Bag.	stance T	of falsit 'empera	y by th ment of	ne f
The n	Numl *	1	- II	m	IV	v	vi	VII	Num con tor	Pyth syste	12 deg r .	19 degr.	31 degr.	53 degr.
Major Circle of Fifth	7# 6 5 4 3 2	C# F# B E A D C	d# g#÷ c# f# b÷ e÷	e# a# d#+ g# c# f#	$ \begin{array}{c} \mathbf{f} \sharp \\ \mathbf{b} \div \\ \mathbf{e} \\ \mathbf{a} \\ \mathbf{d} \\ \mathbf{g} \div \\ \mathbf{c} \end{array} $	g# c# f#+ b e a	a# d# g# c# f# ÷	b# e# ++ a# ++ g# c# +	$\begin{array}{r} - \\ 2 \div \\ 3 + \\ 1 + \\ 1 \div \\ 3 \div \\ 2 + \end{array}$	324 324 198 198 198 198 198	219 231 1.6 128 140 151 47	57 38 97 54 36 42 54	50 80 31 30 46 77 31	21 20 13 12 11 11 4
-	-	C	d	e	f	g	a	b		72	53	36	27	4
Circle of Fourth	1b 2 3 4 Straute cool 7	F Bb Eb Ab Db Gb Cb	g÷ c f hb÷ eb÷ ab db	a d+ g c f bb eb	bb÷ eb ab db gb÷ cb fb	c f+ bb eb ab db+ gb	d g c f bb÷ eb ab	e a+ d+ g c f+ bb	$2 \div 3+ 1+ 1 \div 3 \div 2+ -$	72 54 54 54 54 54 180 180	60 54 46 41 39 133 122	42 54 36 42 72 36 42	42 54 32 27 39 59 36	4 4 3 3 11 10
Circle of Fifth Journ	7♯ 6 5 4 3 2 1	d# g# c# f# b e a	e## a## d## f# b	f# b e a d+ g c	g ♯ ÷ c ♯ f ♯ b÷ e a d	a# d#+ g# c# f#+ b e	b#÷ e# a# d# g# c# f#	c# f#+ b e a+ d+ g	$\begin{array}{r} 3 \div \\ 2 + \\ \hline 2 \div \\ 3 + \\ 1 + \\ 1 \div \end{array}$	378 252 252 252 126 126 126	273 159 170 182 84 89 95	25 86 43 24 84 42 24	104 38 47 70 42 39 43	24 17 15 14 7 7 7
Circle of Fourth	1þ 2 3 4 5 6 7	d g c f bb eb ab db	$e \div$ a d g \div c f bb ÷ eb ÷	f bb eb ab db+ gb cb fb	$g \div c$ f $bb \div c$ eb ab db $gb \div c$	a d+ g c f+ bb eb ab	b÷ e a d g c f bb÷	c f+ bb eb ab+ db+ gb cb	$ \begin{array}{c c} 3 \div \\ 2+ \\ \hline - \\ 2 \div \\ 3+ \\ . 1+ \\ 1 \div \\ 3 \div \\ \end{array} $	126 72 72 126 126 126 126	103 60 60 103 95 89 84	42 42 24 42 42 42 24 42 84	65 42 36 42 65 43 39 42	7 5 5 4 8 8 8 7 6
Numb	er of a-tones		13÷	4+	9÷	8+	5÷	12+	$\begin{array}{r} 24+\\ 27\div\\ 51 \end{array}$.4590	3286	1408 NB	1418	276

Example, d# minor:

19 688 962

	Pyth.	54	72	36	54	54	72	36	378	1211
- 1	12	39	54	26	41	37	52	24	273	-
ė	19	1-13	5	645	6	7	1	6	25	NB.
m	31	15	24	10	19	10	20	6	104	250
T	41	9	3	11	8	9	3	10	53	1.850
	53	3	5	2	3	4	5	2	24	1.1.11

107

Etimajo m. K 240 The falsity of 15 Lydian maior scales in Pythagorean system and various temperaments. 320 300 300 m 23.1 TYNY 280 nine a s 260-. : -40 0 4 12.17 The state of the state of the 1. 1. 1. 1 12 240 intendention. inited destablished to be vanicationst ince aunitational 110001 In -220 1 and : 7 Part 1. The Intervets: monogadavit industrationaris -200 m 200 Syth a gutter i - the to former. 115 the state of the debused bits stated znöftalss 180 + Baland Pares as sugarments 21=2 a superior A 160 1. . . e Fard M. The Scales: 1.2 8 15 all and ----and a 140 1 strates a terraria 1111 7 2. 1 (*ABRENVSA) 1 1 2 degrees 120 1 4 1 1.14 a mail Lamas : c ş States Barry 100 m. 100 80 60 19 degr 40 31 degrees Annexure IV. 20 3 TREA 53 degrees 112 0 Gb. D1. Bb. Eb. At ey Ŧ. Et major: T 6 6# F#

CONTENTS.

Column:

7 Preface. The 5 fundamental Laws of the Acoustics.

Introduction:

11 Art. 1. Limitations and terminology of musical acoustics.

Part I. The Intervals:

- 15 Art. 2. The one-sided Pythagorean system: "the Perfect Fifth", based on abstract speculation.
 19 Art. 3. Opposition to "the Pythagorean Fifth-
- 19 Art, 3. Opposition to "the Pythagorean Fifthsystem"; the founders of "the Third-system".
- 25 Art. 4. The natural tones as fundamental to "the pure Third-system".

Part II. The Scales:

- 33 Art. 5, Construction of scales with "c" as Tonica (keynote).
- 42 Art. 6. The 10 principal intervals.
- 50 Art. 7. Scales on other Tonicae (keynotes) than c, c# or cb; origin of the commaintervals. The pentatonic scales.

63 The distances within a small whole tone, c-d.

Column:

Part III. The Musical Practice:

- 65 Art. 8. The natural tonical system and the artificial temperaments.
- 74 Art. 9. Mutual relationship of the intervals; combinational tones.
- 80 Art. 10. Mutual relationship of the scales. Organic modulation in 3 orders between parallel scales.
- 89 Resumé.
- 93 Notes.
- 99 Some professonal terms.
- 99 Abbreviations.
- 101 Annexure I. Aggroupment of tones in 3 tonal zones.
- 103 II. 65 tones in milloctaves, apportioned in 19 groups.
- 107 III. Lydian major and Phrygian minor; 30 scales (210 spaces).
- 109 IV. The falsity of 15 Lydian major scales in the Pythagorean system and 4 temperaments.
- 111 Contents.

TABLE OF ERRATA:

Col. 39, line 9-10 from bottom: anti-minor read: anti-major.

ML	Kornerup, Thorvald Otto
3809	Musical acoustics based
K713	on the pure third-system

Musie

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

The Reform of the Calender.

The proposal of Thorvald Kornerup, published in "Scandinavian Astronomical Review", Copenhagen, October 1918, and in "Popular Astronomy", Northfield, Minnesota, U.S.A., Novbr. 1920, is the following:

1. March, June, September and December each 31 days, the other 8 months each 30 days, the 4 quarters of the year are equal: $4 \times 91 = 364$ days.

2. The 365th day is kept seperated from the date and the days of the week and placed between December 31 and January 1.

3. The intercalary day, which necessarily will appear each 4th year, is likewise kept without daily and weekly indication and placed between December 32 and January 1. December will consequently in each 4th year contain 33 days.

4. Easter Sunday shall always be appointed on April 7, as I [take 'it for granted that the normal calendar is so begun that January 1 is a Sunday, that is celebrated as a holy day all over the world. Whitsunday will thus occur on May 27.

According to Kornerup's proposal the Sundays will always be coincident with the following dates:

1- 8-15-22-29-Jan., April, July, Oct.

6-13-20-27 -Feb., May, Aug., Nov.

4-11-18-25 —March, June, Sept., Dec.

The 1st in each month will thus always be:

A Sunday in Jan., April, July, Oct.

A Tuesday in Feb., May, Aug., Nov.

A Thursday in March, June, Sept., Dec.